/usr/include/dlib/svm/assignment_function.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | // Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_ASSIGNMENT_FuNCTION_Hh_
#define DLIB_ASSIGNMENT_FuNCTION_Hh_
#include "assignment_function_abstract.h"
#include "../matrix.h"
#include <vector>
#include "../optimization/max_cost_assignment.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename feature_extractor
>
class assignment_function
{
public:
typedef typename feature_extractor::lhs_element lhs_element;
typedef typename feature_extractor::rhs_element rhs_element;
typedef std::pair<std::vector<lhs_element>, std::vector<rhs_element> > sample_type;
typedef std::vector<long> label_type;
typedef label_type result_type;
assignment_function()
{
weights.set_size(fe.num_features());
weights = 0;
bias = 0;
force_assignment = false;
}
explicit assignment_function(
const matrix<double,0,1>& weights_,
double bias_
) :
weights(weights_),
bias(bias_),
force_assignment(false)
{
// make sure requires clause is not broken
DLIB_ASSERT(fe.num_features() == static_cast<unsigned long>(weights_.size()),
"\t assignment_function::assignment_function(weights_)"
<< "\n\t These sizes should match"
<< "\n\t fe.num_features(): " << fe.num_features()
<< "\n\t weights_.size(): " << weights_.size()
<< "\n\t this: " << this
);
}
assignment_function(
const matrix<double,0,1>& weights_,
double bias_,
const feature_extractor& fe_
) :
fe(fe_),
weights(weights_),
bias(bias_),
force_assignment(false)
{
// make sure requires clause is not broken
DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
"\t assignment_function::assignment_function(weights_,fe_)"
<< "\n\t These sizes should match"
<< "\n\t fe_.num_features(): " << fe_.num_features()
<< "\n\t weights_.size(): " << weights_.size()
<< "\n\t this: " << this
);
}
assignment_function(
const matrix<double,0,1>& weights_,
double bias_,
const feature_extractor& fe_,
bool force_assignment_
) :
fe(fe_),
weights(weights_),
bias(bias_),
force_assignment(force_assignment_)
{
// make sure requires clause is not broken
DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
"\t assignment_function::assignment_function(weights_,fe_,force_assignment_)"
<< "\n\t These sizes should match"
<< "\n\t fe_.num_features(): " << fe_.num_features()
<< "\n\t weights_.size(): " << weights_.size()
<< "\n\t this: " << this
);
}
const feature_extractor& get_feature_extractor (
) const { return fe; }
const matrix<double,0,1>& get_weights (
) const { return weights; }
double get_bias (
) const { return bias; }
bool forces_assignment (
) const { return force_assignment; }
void predict_assignments (
const std::vector<lhs_element>& lhs,
const std::vector<rhs_element>& rhs,
result_type& assignment
) const
{
assignment.clear();
matrix<double> cost;
unsigned long size;
if (force_assignment)
{
size = std::max(lhs.size(), rhs.size());
}
else
{
size = rhs.size() + lhs.size();
}
cost.set_size(size, size);
typedef typename feature_extractor::feature_vector_type feature_vector_type;
feature_vector_type feats;
// now fill out the cost assignment matrix
for (long r = 0; r < cost.nr(); ++r)
{
for (long c = 0; c < cost.nc(); ++c)
{
if (r < (long)lhs.size() && c < (long)rhs.size())
{
fe.get_features(lhs[r], rhs[c], feats);
cost(r,c) = dot(weights, feats) + bias;
}
else
{
cost(r,c) = 0;
}
}
}
if (cost.size() != 0)
{
// max_cost_assignment() only works with integer matrices, so convert from
// double to integer.
const double scale = (std::numeric_limits<dlib::int64>::max()/1000)/max(abs(cost));
matrix<dlib::int64> int_cost = matrix_cast<dlib::int64>(round(cost*scale));
assignment = max_cost_assignment(int_cost);
assignment.resize(lhs.size());
}
// adjust assignment so that non-assignments have a value of -1
for (unsigned long i = 0; i < assignment.size(); ++i)
{
if (assignment[i] >= (long)rhs.size())
assignment[i] = -1;
}
}
void predict_assignments (
const sample_type& item,
result_type& assignment
) const
{
predict_assignments(item.first, item.second, assignment);
}
result_type operator()(
const std::vector<lhs_element>& lhs,
const std::vector<rhs_element>& rhs
) const
{
result_type temp;
predict_assignments(lhs,rhs,temp);
return temp;
}
result_type operator() (
const sample_type& item
) const
{
return (*this)(item.first, item.second);
}
private:
feature_extractor fe;
matrix<double,0,1> weights;
double bias;
bool force_assignment;
};
// ----------------------------------------------------------------------------------------
template <
typename feature_extractor
>
void serialize (
const assignment_function<feature_extractor>& item,
std::ostream& out
)
{
int version = 2;
serialize(version, out);
serialize(item.get_feature_extractor(), out);
serialize(item.get_weights(), out);
serialize(item.get_bias(), out);
serialize(item.forces_assignment(), out);
}
// ----------------------------------------------------------------------------------------
template <
typename feature_extractor
>
void deserialize (
assignment_function<feature_extractor>& item,
std::istream& in
)
{
feature_extractor fe;
matrix<double,0,1> weights;
double bias;
bool force_assignment;
int version = 0;
deserialize(version, in);
if (version != 2)
throw serialization_error("Unexpected version found while deserializing dlib::assignment_function.");
deserialize(fe, in);
deserialize(weights, in);
deserialize(bias, in);
deserialize(force_assignment, in);
item = assignment_function<feature_extractor>(weights, bias, fe, force_assignment);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_ASSIGNMENT_FuNCTION_Hh_
|