This file is indexed.

/usr/include/dlib/svm/active_learning.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (C) 2012  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ACTIVE_LEARnING_Hh_
#define DLIB_ACTIVE_LEARnING_Hh_

#include "active_learning_abstract.h"

#include "svm_c_linear_dcd_trainer.h"
#include <vector>

namespace dlib
{

    enum active_learning_mode
    {
        max_min_margin,
        ratio_margin
    };
    
// ----------------------------------------------------------------------------------------

    template <
        typename kernel_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type,
        typename in_sample_vector_type2
        >
    std::vector<unsigned long> impl_rank_unlabeled_training_samples (
        const svm_c_linear_dcd_trainer<kernel_type>& trainer,
        const in_sample_vector_type& samples,
        const in_scalar_vector_type& labels,
        const in_sample_vector_type2& unlabeled_samples,
        const active_learning_mode mode 
    )
    {
        DLIB_ASSERT(is_vector(unlabeled_samples) &&
                     (samples.size() == 0 || is_learning_problem(samples, labels)) ,
                "\t std::vector<unsigned long> rank_unlabeled_training_samples()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t is_vector(unlabeled_samples):         " << is_vector(unlabeled_samples) 
                << "\n\t is_learning_problem(samples, labels): " << is_learning_problem(samples, labels) 
                << "\n\t samples.size(): " << samples.size() 
                << "\n\t labels.size():  " << labels.size() 
                );

        // If there aren't any training samples then all unlabeled_samples are equally good.
        // So just report an arbitrary ordering.
        if (samples.size() == 0 || unlabeled_samples.size() == 0)
        {
            std::vector<unsigned long> ret(unlabeled_samples.size());
            for (unsigned long i = 0; i < ret.size(); ++i)
                ret[i] = i;

            return ret;
        }

        // We are going to score each unlabeled sample and put the score and index into
        // results.  Then at the end of this function we just sort it and return the indices.
        std::vector<std::pair<double, unsigned long> > results;
        results.resize(unlabeled_samples.size());

        // make sure we use this trainer's ability to warm start itself since that will make
        // this whole function run a lot faster.  But first, we need to find out what the state
        // we will be warm starting from is. 
        typedef typename svm_c_linear_dcd_trainer<kernel_type>::optimizer_state optimizer_state;
        optimizer_state state;
        trainer.train(samples, labels, state); // call train() just to get state

        decision_function<kernel_type> df;

        std::vector<typename kernel_type::sample_type> temp_samples;
        std::vector<typename kernel_type::scalar_type> temp_labels;
        temp_samples.reserve(samples.size()+1);
        temp_labels.reserve(labels.size()+1);
        temp_samples.assign(samples.begin(), samples.end());
        temp_labels.assign(labels.begin(), labels.end());
        temp_samples.resize(temp_samples.size()+1);
        temp_labels.resize(temp_labels.size()+1);


        for (long i = 0; i < unlabeled_samples.size(); ++i)
        {
            temp_samples.back() = unlabeled_samples(i);
            // figure out the margin for each possible labeling of this sample.

            optimizer_state temp(state);
            temp_labels.back() = +1;
            df = trainer.train(temp_samples, temp_labels, temp);
            const double margin_p = temp_labels.back()*df(temp_samples.back());

            temp = state;
            temp_labels.back() = -1;
            df = trainer.train(temp_samples, temp_labels, temp);
            const double margin_n = temp_labels.back()*df(temp_samples.back());

            if (mode == max_min_margin)
            {
                // The score for this sample is its min possible margin over possible labels.
                // Therefore, this score measures how much flexibility we have to label this
                // sample however we want.  The intuition being that the most useful points to
                // label are the ones that are still free to obtain either label.
                results[i] = std::make_pair(std::min(margin_p, margin_n), i);
            }
            else
            {
                // In this case, the score for the sample is a ratio that tells how close the
                // two margin values are to each other.  The closer they are the better.  So in
                // this case we are saying we are looking for samples that have the same
                // preference for either class label. 
                if (std::abs(margin_p) >= std::abs(margin_n))
                {
                    if (margin_p != 0)
                        results[i] = std::make_pair(margin_n/margin_p, i);
                    else // if both are == 0 then say 0/0 == 1
                        results[i] = std::make_pair(1, i);
                }
                else
                {
                    results[i] = std::make_pair(margin_p/margin_n, i);
                }
            }
        }

        // sort the results so the highest scoring samples come first.
        std::sort(results.rbegin(), results.rend());

        // transfer results into a vector with just sample indices so we can return it.
        std::vector<unsigned long> ret(results.size());
        for (unsigned long i = 0; i < ret.size(); ++i)
            ret[i] = results[i].second;
        return ret;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename kernel_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type,
        typename in_sample_vector_type2
        >
    std::vector<unsigned long> rank_unlabeled_training_samples (
        const svm_c_linear_dcd_trainer<kernel_type>& trainer,
        const in_sample_vector_type& samples,
        const in_scalar_vector_type& labels,
        const in_sample_vector_type2& unlabeled_samples,
        const active_learning_mode mode = max_min_margin
    )
    {
        return impl_rank_unlabeled_training_samples(trainer,
                                                    mat(samples),
                                                    mat(labels),
                                                    mat(unlabeled_samples),
                                                    mode);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ACTIVE_LEARnING_Hh_