/usr/include/dlib/statistics/dpca_abstract.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | // Copyright (C) 2009 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_DPCA_ABSTRaCT_
#ifdef DLIB_DPCA_ABSTRaCT_
#include <limits>
#include <cmath>
#include "../matrix/matrix_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class discriminant_pca
{
/*!
REQUIREMENTS ON matrix_type
Must be some type of dlib::matrix.
INITIAL VALUE
- in_vector_size() == 0
- between_class_weight() == 1
- within_class_weight() == 1
WHAT THIS OBJECT REPRESENTS
This object implements the Discriminant PCA technique described in the paper:
A New Discriminant Principal Component Analysis Method with Partial Supervision (2009)
by Dan Sun and Daoqiang Zhang
This algorithm is basically a straightforward generalization of the classical PCA
technique to handle partially labeled data. It is useful if you want to learn a linear
dimensionality reduction rule using a bunch of data that is partially labeled.
It functions by estimating three different scatter matrices. The first is the total scatter
matrix St (i.e. the total data covariance matrix), the second is the between class scatter
matrix Sb (basically a measure of the variance between data of different classes) and the
third is the within class scatter matrix Sw (a measure of the variance of data within the
same classes).
Once these three matrices are estimated they are combined according to the following equation:
S = St + a*Sb - b*Sw
Where a and b are user supplied weights. Then the largest eigenvalues of the S matrix are
computed and their associated eigenvectors are returned as the output of this algorithm.
That is, the desired linear dimensionality reduction is given by the matrix with these
eigenvectors stored in its rows.
Note that if a and b are set to 0 (or no labeled data is provided) then the output transformation
matrix is the same as the one produced by the classical PCA algorithm.
!*/
public:
struct discriminant_pca_error : public error;
/*!
This exception is thrown if there is some error that prevents us from creating
a DPCA matrix.
!*/
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
discriminant_pca (
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- #*this has its initial value
!*/
long in_vector_size (
) const;
/*!
ensures
- if (this object has been presented with any input vectors) then
- returns the dimension of the column vectors used with this object
- else
- returns 0
!*/
void set_within_class_weight (
scalar_type weight
);
/*!
requires
- weight >= 0
ensures
- #within_class_weight() == weight
!*/
scalar_type within_class_weight (
) const;
/*!
ensures
- returns the weight used when combining the within class scatter matrix with
the other scatter matrices.
!*/
void set_between_class_weight (
scalar_type weight
);
/*!
requires
- weight >= 0
ensures
- #between_class_weight() == weight
!*/
scalar_type between_class_weight (
) const;
/*!
ensures
- returns the weight used when combining the between class scatter matrix with
the other scatter matrices.
!*/
void add_to_within_class_variance(
const matrix_exp& x,
const matrix_exp& y
);
/*!
requires
- is_col_vector(x) == true
- is_col_vector(y) == true
- x.size() == y.size()
- if (in_vector_size() != 0) then
- x.size() == y.size() == in_vector_size()
ensures
- #in_vector_size() == x.size()
- Adds (x-y)*trans(x-y) to the within class scatter matrix.
(i.e. the direction given by (x-y) is recorded as being a direction associated
with within class variance and is therefore unimportant and will be weighted
less in the final dimensionality reduction)
!*/
void add_to_between_class_variance(
const matrix_exp& x,
const matrix_exp& y
);
/*!
requires
- is_col_vector(x) == true
- is_col_vector(y) == true
- x.size() == y.size()
- if (in_vector_size() != 0) then
- x.size() == y.size() == in_vector_size()
ensures
- #in_vector_size() == x.size()
- Adds (x-y)*trans(x-y) to the between class scatter matrix.
(i.e. the direction given by (x-y) is recorded as being a direction associated
with between class variance and is therefore important and will be weighted
higher in the final dimensionality reduction)
!*/
void add_to_total_variance(
const matrix_exp& x
);
/*!
requires
- is_col_vector(x) == true
- if (in_vector_size() != 0) then
- x.size() == in_vector_size()
ensures
- #in_vector_size() == x.size()
- let M denote the centroid (or mean) of all the data. Then this function
Adds (x-M)*trans(x-M) to the total scatter matrix.
(i.e. the direction given by (x-M) is recorded as being a direction associated
with unlabeled variance and is therefore of default importance and will be weighted
as described in the discriminant_pca class description.)
!*/
const general_matrix dpca_matrix (
const double eps = 0.99
) const;
/*!
requires
- 0 < eps <= 1
- in_vector_size() != 0
(i.e. you have to have given this object some data)
ensures
- computes and returns the matrix MAT given by dpca_matrix(MAT,eigen,eps).
That is, this function returns the dpca_matrix computed by the function
defined below.
- Note that MAT is the desired linear transformation matrix. That is,
multiplying a vector by MAT performs the desired linear dimensionality reduction.
throws
- discriminant_pca_error
This exception is thrown if we are unable to create the dpca_matrix for some
reason. For example, if only within class examples have been given or
within_class_weight() is very large then all eigenvalues will be negative and
that prevents this algorithm from working properly.
!*/
void dpca_matrix (
general_matrix& dpca_mat,
general_matrix& eigenvalues,
const double eps = 0.99
) const;
/*!
requires
- 0 < eps <= 1
- in_vector_size() != 0
(i.e. you have to have given this object some data)
ensures
- is_col_vector(#eigenvalues) == true
- #dpca_mat.nr() == eigenvalues.size()
- #dpca_mat.nc() == in_vector_size()
- rowm(#dpca_mat,i) represents the ith eigenvector of the S matrix described
in the class description and its eigenvalue is given by eigenvalues(i).
- all values in #eigenvalues are > 0. Moreover, the eigenvalues are in
sorted order with the largest eigenvalue stored at eigenvalues(0).
- (#dpca_mat)*trans(#dpca_mat) == identity_matrix.
(i.e. the rows of the dpca_matrix are all unit length vectors and are mutually
orthogonal)
- Note that #dpca_mat is the desired linear transformation matrix. That is,
multiplying a vector by #dpca_mat performs the desired linear dimensionality
reduction.
- sum(#eigenvalues) will be equal to about eps times the total sum of all
positive eigenvalues in the S matrix described in this class's description.
This means that eps is a number that controls how "lossy" the dimensionality
reduction will be. Large values of eps result in more output dimensions
while smaller values result in fewer.
throws
- discriminant_pca_error
This exception is thrown if we are unable to create the dpca_matrix for some
reason. For example, if only within class examples have been given or
within_class_weight() is very large then all eigenvalues will be negative and
that prevents this algorithm from working properly.
!*/
const general_matrix dpca_matrix_of_size (
const long num_rows
);
/*!
requires
- 0 < num_rows <= in_vector_size()
ensures
- computes and returns the matrix MAT given by dpca_matrix_of_size(MAT,eigen,num_rows).
That is, this function returns the dpca_matrix computed by the function
defined below.
- Note that MAT is the desired linear transformation matrix. That is,
multiplying a vector by MAT performs the desired linear dimensionality
reduction to num_rows dimensions.
!*/
void dpca_matrix_of_size (
general_matrix& dpca_mat,
general_matrix& eigenvalues,
const long num_rows
);
/*!
requires
- 0 < num_rows <= in_vector_size()
ensures
- is_col_vector(#eigenvalues) == true
- #dpca_mat.nr() == eigenvalues.size()
- #dpca_mat.nr() == num_rows
- #dpca_mat.nc() == in_vector_size()
- rowm(#dpca_mat,i) represents the ith eigenvector of the S matrix described
in the class description and its eigenvalue is given by eigenvalues(i).
- The values in #eigenvalues might be positive or negative. Additionally, the
eigenvalues are in sorted order with the largest eigenvalue stored at
eigenvalues(0).
- (#dpca_mat)*trans(#dpca_mat) == identity_matrix.
(i.e. the rows of the dpca_matrix are all unit length vectors and are mutually
orthogonal)
- Note that #dpca_mat is the desired linear transformation matrix. That is,
multiplying a vector by #dpca_mat performs the desired linear dimensionality
reduction to num_rows dimensions.
!*/
discriminant_pca operator+ (
const discriminant_pca& item
) const;
/*!
requires
- in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()
(i.e. the in_vector_size() of *this and item must match or one must be zero)
- between_class_weight() == item.between_class_weight()
- within_class_weight() == item.within_class_weight()
ensures
- returns a new discriminant_pca object that represents the combination of all
the measurements given to *this and item. That is, this function returns a
discriminant_pca object, R, that is equivalent to what you would obtain if all
modifying calls (e.g. the add_to_*() functions) to *this and item had instead
been done to R.
!*/
discriminant_pca& operator+= (
const discriminant_pca& rhs
);
/*!
requires
- in_vector_size() == 0 || rhs.in_vector_size() == 0 || in_vector_size() == rhs.in_vector_size()
(i.e. the in_vector_size() of *this and rhs must match or one must be zero)
- between_class_weight() == rhs.between_class_weight()
- within_class_weight() == rhs.within_class_weight()
ensures
- #*this == *item + rhs
- returns #*this
!*/
void swap (
discriminant_pca& item
);
/*!
ensures
- swaps *this and item
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
inline void swap (
discriminant_pca<matrix_type>& a,
discriminant_pca<matrix_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename matrix_type,
>
void deserialize (
discriminant_pca<matrix_type>& item,
std::istream& in
);
/*!
provides deserialization support
!*/
template <
typename matrix_type,
>
void serialize (
const discriminant_pca<matrix_type>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DPCA_ABSTRaCT_
|