/usr/include/dlib/statistics/dpca.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | // Copyright (C) 2009 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DPCA_h_
#define DLIB_DPCA_h_
#include "dpca_abstract.h"
#include <limits>
#include <cmath>
#include "../algs.h"
#include "../matrix.h"
#include <iostream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class discriminant_pca
{
/*!
INITIAL VALUE
- vect_size == 0
- total_count == 0
- between_count == 0
- within_count == 0
- between_weight == 1
- within_weight == 1
CONVENTION
- vect_size == in_vector_size()
- total_count == the number of times add_to_total_variance() has been called.
- within_count == the number of times add_to_within_class_variance() has been called.
- between_count == the number of times add_to_between_class_variance() has been called.
- between_weight == between_class_weight()
- within_weight == within_class_weight()
- if (total_count != 0)
- total_sum == the sum of all vectors given to add_to_total_variance()
- the covariance of all the elements given to add_to_total_variance() is given
by:
- let avg == total_sum/total_count
- covariance == total_cov/total_count - avg*trans(avg)
- if (within_count != 0)
- within_cov/within_count == the normalized within class scatter matrix
- if (between_count != 0)
- between_cov/between_count == the normalized between class scatter matrix
!*/
public:
struct discriminant_pca_error : public error
{
discriminant_pca_error(const std::string& message): error(message) {}
};
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
discriminant_pca (
)
{
clear();
}
void clear(
)
{
total_count = 0;
between_count = 0;
within_count = 0;
vect_size = 0;
between_weight = 1;
within_weight = 1;
total_sum.set_size(0);
between_cov.set_size(0,0);
total_cov.set_size(0,0);
within_cov.set_size(0,0);
}
long in_vector_size (
) const
{
return vect_size;
}
void set_within_class_weight (
scalar_type weight
)
{
// make sure requires clause is not broken
DLIB_ASSERT(weight >= 0,
"\t void discriminant_pca::set_within_class_weight()"
<< "\n\t You can't use negative weight values"
<< "\n\t weight: " << weight
<< "\n\t this: " << this
);
within_weight = weight;
}
scalar_type within_class_weight (
) const
{
return within_weight;
}
void set_between_class_weight (
scalar_type weight
)
{
// make sure requires clause is not broken
DLIB_ASSERT(weight >= 0,
"\t void discriminant_pca::set_between_class_weight()"
<< "\n\t You can't use negative weight values"
<< "\n\t weight: " << weight
<< "\n\t this: " << this
);
between_weight = weight;
}
scalar_type between_class_weight (
) const
{
return between_weight;
}
template <typename EXP1, typename EXP2>
void add_to_within_class_variance(
const matrix_exp<EXP1>& x,
const matrix_exp<EXP2>& y
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(x) && is_col_vector(y) &&
x.size() == y.size() &&
(in_vector_size() == 0 || x.size() == in_vector_size()),
"\t void discriminant_pca::add_to_within_class_variance()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t is_col_vector(x): " << is_col_vector(x)
<< "\n\t is_col_vector(y): " << is_col_vector(y)
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t this: " << this
);
vect_size = x.size();
if (within_count == 0)
{
within_cov = (x-y)*trans(x-y);
}
else
{
within_cov += (x-y)*trans(x-y);
}
++within_count;
}
template <typename EXP1, typename EXP2>
void add_to_between_class_variance(
const matrix_exp<EXP1>& x,
const matrix_exp<EXP2>& y
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(x) && is_col_vector(y) &&
x.size() == y.size() &&
(in_vector_size() == 0 || x.size() == in_vector_size()),
"\t void discriminant_pca::add_to_between_class_variance()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t is_col_vector(x): " << is_col_vector(x)
<< "\n\t is_col_vector(y): " << is_col_vector(y)
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t this: " << this
);
vect_size = x.size();
if (between_count == 0)
{
between_cov = (x-y)*trans(x-y);
}
else
{
between_cov += (x-y)*trans(x-y);
}
++between_count;
}
template <typename EXP>
void add_to_total_variance(
const matrix_exp<EXP>& x
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(x) && (in_vector_size() == 0 || x.size() == in_vector_size()),
"\t void discriminant_pca::add_to_total_variance()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t is_col_vector(x): " << is_col_vector(x)
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t x.size(): " << x.size()
<< "\n\t this: " << this
);
vect_size = x.size();
if (total_count == 0)
{
total_cov = x*trans(x);
total_sum = x;
}
else
{
total_cov += x*trans(x);
total_sum += x;
}
++total_count;
}
const general_matrix dpca_matrix (
const double eps = 0.99
) const
{
general_matrix dpca_mat;
general_matrix eigenvalues;
dpca_matrix(dpca_mat, eigenvalues, eps);
return dpca_mat;
}
const general_matrix dpca_matrix_of_size (
const long num_rows
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < num_rows && num_rows <= in_vector_size(),
"\t general_matrix discriminant_pca::dpca_matrix_of_size()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t num_rows: " << num_rows
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t this: " << this
);
general_matrix dpca_mat;
general_matrix eigenvalues;
dpca_matrix_of_size(dpca_mat, eigenvalues, num_rows);
return dpca_mat;
}
void dpca_matrix (
general_matrix& dpca_mat,
general_matrix& eigenvalues,
const double eps = 0.99
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < eps && eps <= 1 && in_vector_size() != 0,
"\t void discriminant_pca::dpca_matrix()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t eps: " << eps
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t this: " << this
);
compute_dpca_matrix(dpca_mat, eigenvalues, eps, 0);
}
void dpca_matrix_of_size (
general_matrix& dpca_mat,
general_matrix& eigenvalues,
const long num_rows
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < num_rows && num_rows <= in_vector_size(),
"\t general_matrix discriminant_pca::dpca_matrix_of_size()"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t num_rows: " << num_rows
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t this: " << this
);
compute_dpca_matrix(dpca_mat, eigenvalues, 1, num_rows);
}
void swap (
discriminant_pca& item
)
{
using std::swap;
swap(total_cov, item.total_cov);
swap(total_sum, item.total_sum);
swap(total_count, item.total_count);
swap(vect_size, item.vect_size);
swap(between_cov, item.between_cov);
swap(between_count, item.between_count);
swap(between_weight, item.between_weight);
swap(within_cov, item.within_cov);
swap(within_count, item.within_count);
swap(within_weight, item.within_weight);
}
friend void deserialize (
discriminant_pca& item,
std::istream& in
)
{
deserialize( item.total_cov, in);
deserialize( item.total_sum, in);
deserialize( item.total_count, in);
deserialize( item.vect_size, in);
deserialize( item.between_cov, in);
deserialize( item.between_count, in);
deserialize( item.between_weight, in);
deserialize( item.within_cov, in);
deserialize( item.within_count, in);
deserialize( item.within_weight, in);
}
friend void serialize (
const discriminant_pca& item,
std::ostream& out
)
{
serialize( item.total_cov, out);
serialize( item.total_sum, out);
serialize( item.total_count, out);
serialize( item.vect_size, out);
serialize( item.between_cov, out);
serialize( item.between_count, out);
serialize( item.between_weight, out);
serialize( item.within_cov, out);
serialize( item.within_count, out);
serialize( item.within_weight, out);
}
discriminant_pca operator+ (
const discriminant_pca& item
) const
{
// make sure requires clause is not broken
DLIB_ASSERT((in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()) &&
between_class_weight() == item.between_class_weight() &&
within_class_weight() == item.within_class_weight(),
"\t discriminant_pca discriminant_pca::operator+()"
<< "\n\t The two discriminant_pca objects being added must have compatible parameters"
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t item.in_vector_size(): " << item.in_vector_size()
<< "\n\t between_class_weight(): " << between_class_weight()
<< "\n\t item.between_class_weight(): " << item.between_class_weight()
<< "\n\t within_class_weight(): " << within_class_weight()
<< "\n\t item.within_class_weight(): " << item.within_class_weight()
<< "\n\t this: " << this
);
discriminant_pca temp(item);
// We need to make sure to ignore empty matrices. That's what these if statements
// are for.
if (total_count != 0 && temp.total_count != 0)
{
temp.total_cov += total_cov;
temp.total_sum += total_sum;
temp.total_count += total_count;
}
else if (total_count != 0)
{
temp.total_cov = total_cov;
temp.total_sum = total_sum;
temp.total_count = total_count;
}
if (between_count != 0 && temp.between_count != 0)
{
temp.between_cov += between_cov;
temp.between_count += between_count;
}
else if (between_count != 0)
{
temp.between_cov = between_cov;
temp.between_count = between_count;
}
if (within_count != 0 && temp.within_count != 0)
{
temp.within_cov += within_cov;
temp.within_count += within_count;
}
else if (within_count != 0)
{
temp.within_cov = within_cov;
temp.within_count = within_count;
}
return temp;
}
discriminant_pca& operator+= (
const discriminant_pca& rhs
)
{
(*this + rhs).swap(*this);
return *this;
}
private:
void compute_dpca_matrix (
general_matrix& dpca_mat,
general_matrix& eigenvalues,
const double eps,
long num_rows
) const
{
general_matrix cov;
// now combine the three measures of variance into a single matrix by using the
// within_weight and between_weight weights.
cov = get_total_covariance_matrix();
if (within_count != 0)
cov -= within_weight*within_cov/within_count;
if (between_count != 0)
cov += between_weight*between_cov/between_count;
eigenvalue_decomposition<general_matrix> eig(make_symmetric(cov));
eigenvalues = eig.get_real_eigenvalues();
dpca_mat = eig.get_pseudo_v();
// sort the eigenvalues and eigenvectors so that the biggest eigenvalues come first
rsort_columns(dpca_mat, eigenvalues);
long num_vectors = 0;
if (num_rows == 0)
{
// Some of the eigenvalues might be negative. So first lets zero those out
// so they won't get considered.
eigenvalues = pointwise_multiply(eigenvalues > 0, eigenvalues);
// figure out how many eigenvectors we want in our dpca matrix
const double thresh = sum(eigenvalues)*eps;
double total = 0;
for (long r = 0; r < eigenvalues.size() && total < thresh; ++r)
{
// Don't even think about looking at eigenvalues that are 0. If we go this
// far then we have all we need.
if (eigenvalues(r) == 0)
break;
++num_vectors;
total += eigenvalues(r);
}
if (num_vectors == 0)
throw discriminant_pca_error("While performing discriminant_pca, all eigenvalues were negative or 0");
}
else
{
num_vectors = num_rows;
}
// So now we know we want to use num_vectors of the first eigenvectors. So
// pull those out and discard the rest.
dpca_mat = trans(colm(dpca_mat,range(0,num_vectors-1)));
// also clip off the eigenvalues we aren't using
eigenvalues = rowm(eigenvalues, range(0,num_vectors-1));
}
general_matrix get_total_covariance_matrix (
) const
/*!
ensures
- returns the covariance matrix of all the data given to the add_to_total_variance()
!*/
{
// if we don't even know the dimensionality of the vectors we are dealing
// with then just return an empty matrix
if (vect_size == 0)
return general_matrix();
// we know the vector size but we have zero total covariance.
if (total_count == 0)
{
general_matrix temp(vect_size,vect_size);
temp = 0;
return temp;
}
// In this case we actually have something to make a total covariance matrix out of.
// So do that.
column_matrix avg = total_sum/total_count;
return total_cov/total_count - avg*trans(avg);
}
general_matrix total_cov;
column_matrix total_sum;
scalar_type total_count;
long vect_size;
general_matrix between_cov;
scalar_type between_count;
scalar_type between_weight;
general_matrix within_cov;
scalar_type within_count;
scalar_type within_weight;
};
template <
typename matrix_type
>
inline void swap (
discriminant_pca<matrix_type>& a,
discriminant_pca<matrix_type>& b
) { a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DPCA_h_
|