This file is indexed.

/usr/include/dlib/statistics/dpca.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DPCA_h_
#define DLIB_DPCA_h_

#include "dpca_abstract.h"
#include <limits>
#include <cmath>
#include "../algs.h"
#include "../matrix.h"
#include <iostream>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type
        >
    class discriminant_pca
    {
        /*!
            INITIAL VALUE
                - vect_size == 0
                - total_count == 0
                - between_count == 0
                - within_count == 0
                - between_weight == 1
                - within_weight == 1

            CONVENTION
                - vect_size == in_vector_size()
                - total_count == the number of times add_to_total_variance() has been called.
                - within_count == the number of times add_to_within_class_variance() has been called.
                - between_count == the number of times add_to_between_class_variance() has been called.
                - between_weight == between_class_weight()
                - within_weight == within_class_weight()

                - if (total_count != 0)
                    - total_sum == the sum of all vectors given to add_to_total_variance()
                    - the covariance of all the elements given to add_to_total_variance() is given
                      by:
                        - let avg == total_sum/total_count
                        - covariance == total_cov/total_count - avg*trans(avg)
                - if (within_count != 0)
                    - within_cov/within_count == the normalized within class scatter matrix  
                - if (between_count != 0)
                    - between_cov/between_count == the normalized between class scatter matrix  
        !*/

    public:

        struct discriminant_pca_error : public error
        {
            discriminant_pca_error(const std::string& message): error(message) {}
        };

        typedef typename matrix_type::mem_manager_type mem_manager_type;
        typedef typename matrix_type::type scalar_type;
        typedef typename matrix_type::layout_type layout_type;
        typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
        typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;

        discriminant_pca (
        ) 
        {
            clear();
        }

        void clear(
        )
        {
            total_count = 0;
            between_count = 0;
            within_count = 0;

            vect_size = 0;


            between_weight = 1;
            within_weight = 1;


            total_sum.set_size(0);
            between_cov.set_size(0,0);
            total_cov.set_size(0,0);
            within_cov.set_size(0,0);
        }

        long in_vector_size (
        ) const
        {
            return vect_size;
        }

        void set_within_class_weight (
            scalar_type weight
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(weight >= 0,
                "\t void discriminant_pca::set_within_class_weight()"
                << "\n\t You can't use negative weight values"
                << "\n\t weight: " << weight 
                << "\n\t this:   " << this
                );

            within_weight = weight;
        }

        scalar_type within_class_weight (
        ) const
        {
            return within_weight;
        }

        void set_between_class_weight (
            scalar_type weight
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(weight >= 0,
                "\t void discriminant_pca::set_between_class_weight()"
                << "\n\t You can't use negative weight values"
                << "\n\t weight: " << weight 
                << "\n\t this:   " << this
                );

            between_weight = weight;
        }

        scalar_type between_class_weight (
        ) const
        {
            return between_weight;
        }

        template <typename EXP1, typename EXP2>
        void add_to_within_class_variance(
            const matrix_exp<EXP1>& x,
            const matrix_exp<EXP2>& y
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_col_vector(x) && is_col_vector(y) && 
                         x.size() == y.size() &&
                         (in_vector_size() == 0 || x.size() == in_vector_size()),
                "\t void discriminant_pca::add_to_within_class_variance()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t is_col_vector(x): " << is_col_vector(x) 
                << "\n\t is_col_vector(y): " << is_col_vector(y) 
                << "\n\t x.size():         " << x.size() 
                << "\n\t y.size():         " << y.size() 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t this:             " << this
                );

            vect_size = x.size();
            if (within_count == 0)
            {
                within_cov = (x-y)*trans(x-y);
            }
            else
            {
                within_cov += (x-y)*trans(x-y);
            }
            ++within_count;
        }

        template <typename EXP1, typename EXP2>
        void add_to_between_class_variance(
            const matrix_exp<EXP1>& x,
            const matrix_exp<EXP2>& y
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_col_vector(x) && is_col_vector(y) && 
                         x.size() == y.size() &&
                         (in_vector_size() == 0 || x.size() == in_vector_size()),
                "\t void discriminant_pca::add_to_between_class_variance()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t is_col_vector(x): " << is_col_vector(x) 
                << "\n\t is_col_vector(y): " << is_col_vector(y) 
                << "\n\t x.size():         " << x.size() 
                << "\n\t y.size():         " << y.size() 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t this:             " << this
                );

            vect_size = x.size();
            if (between_count == 0)
            {
                between_cov = (x-y)*trans(x-y);
            }
            else
            {
                between_cov += (x-y)*trans(x-y);
            }
            ++between_count;
        }

        template <typename EXP>
        void add_to_total_variance(
            const matrix_exp<EXP>& x
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_col_vector(x) && (in_vector_size() == 0 || x.size() == in_vector_size()),
                "\t void discriminant_pca::add_to_total_variance()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t is_col_vector(x): " << is_col_vector(x) 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t x.size():         " << x.size() 
                << "\n\t this:             " << this
                );

            vect_size = x.size();
            if (total_count == 0)
            {
                total_cov = x*trans(x);
                total_sum = x;
            }
            else
            {
                total_cov += x*trans(x);
                total_sum += x;
            }
            ++total_count;
        }

        const general_matrix dpca_matrix (
            const double eps = 0.99
        ) const
        {
            general_matrix dpca_mat;
            general_matrix eigenvalues;
            dpca_matrix(dpca_mat, eigenvalues, eps);
            return dpca_mat;
        }

        const general_matrix dpca_matrix_of_size (
            const long num_rows 
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 < num_rows && num_rows <= in_vector_size(),
                "\t general_matrix discriminant_pca::dpca_matrix_of_size()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t num_rows:         " << num_rows 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t this:             " << this
                );

            general_matrix dpca_mat;
            general_matrix eigenvalues;
            dpca_matrix_of_size(dpca_mat, eigenvalues, num_rows);
            return dpca_mat;
        }

        void dpca_matrix (
            general_matrix& dpca_mat,
            general_matrix& eigenvalues,
            const double eps = 0.99
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 < eps && eps <= 1 && in_vector_size() != 0,
                "\t void discriminant_pca::dpca_matrix()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t eps:              " << eps 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t this:             " << this
                );

            compute_dpca_matrix(dpca_mat, eigenvalues, eps, 0);
        }

        void dpca_matrix_of_size (
            general_matrix& dpca_mat,
            general_matrix& eigenvalues,
            const long num_rows 
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 < num_rows && num_rows <= in_vector_size(),
                "\t general_matrix discriminant_pca::dpca_matrix_of_size()"
                << "\n\t Invalid inputs were given to this function"
                << "\n\t num_rows:         " << num_rows 
                << "\n\t in_vector_size(): " << in_vector_size() 
                << "\n\t this:             " << this
                );

            compute_dpca_matrix(dpca_mat, eigenvalues, 1, num_rows);
        }

        void swap (
            discriminant_pca& item
        )
        {
            using std::swap;
            swap(total_cov, item.total_cov);
            swap(total_sum, item.total_sum);
            swap(total_count, item.total_count);
            swap(vect_size, item.vect_size);
            swap(between_cov, item.between_cov);

            swap(between_count, item.between_count);
            swap(between_weight, item.between_weight);
            swap(within_cov, item.within_cov);
            swap(within_count, item.within_count);
            swap(within_weight, item.within_weight);
        }

        friend void deserialize (
            discriminant_pca& item, 
            std::istream& in
        )
        {
            deserialize( item.total_cov, in);
            deserialize( item.total_sum, in);
            deserialize( item.total_count, in);
            deserialize( item.vect_size, in);
            deserialize( item.between_cov, in);
            deserialize( item.between_count, in);
            deserialize( item.between_weight, in);
            deserialize( item.within_cov, in);
            deserialize( item.within_count, in);
            deserialize( item.within_weight, in);
        }

        friend void serialize (
            const discriminant_pca& item, 
            std::ostream& out 
        )   
        {
            serialize( item.total_cov, out);
            serialize( item.total_sum, out);
            serialize( item.total_count, out);
            serialize( item.vect_size, out);
            serialize( item.between_cov, out);
            serialize( item.between_count, out);
            serialize( item.between_weight, out);
            serialize( item.within_cov, out);
            serialize( item.within_count, out);
            serialize( item.within_weight, out);
        }

        discriminant_pca operator+ (
            const discriminant_pca& item
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT((in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()) &&
                         between_class_weight() == item.between_class_weight() &&
                         within_class_weight() == item.within_class_weight(),
                "\t discriminant_pca discriminant_pca::operator+()"
                << "\n\t The two discriminant_pca objects being added must have compatible parameters"
                << "\n\t in_vector_size():            " << in_vector_size() 
                << "\n\t item.in_vector_size():       " << item.in_vector_size() 
                << "\n\t between_class_weight():      " << between_class_weight() 
                << "\n\t item.between_class_weight(): " << item.between_class_weight() 
                << "\n\t within_class_weight():       " << within_class_weight() 
                << "\n\t item.within_class_weight():  " << item.within_class_weight() 
                << "\n\t this:                        " << this
                );

            discriminant_pca temp(item);

            // We need to make sure to ignore empty matrices.  That's what these if statements
            // are for.

            if (total_count != 0 && temp.total_count != 0)
            {
                temp.total_cov += total_cov;
                temp.total_sum += total_sum;
                temp.total_count += total_count;
            }
            else if (total_count != 0)
            {
                temp.total_cov = total_cov;
                temp.total_sum = total_sum;
                temp.total_count = total_count;
            }

            if (between_count != 0 && temp.between_count != 0)
            {
                temp.between_cov += between_cov;
                temp.between_count += between_count;
            }
            else if (between_count != 0)
            {
                temp.between_cov = between_cov;
                temp.between_count = between_count;
            }

            if (within_count != 0 && temp.within_count != 0)
            {
                temp.within_cov += within_cov;
                temp.within_count += within_count;
            }
            else if (within_count != 0)
            {
                temp.within_cov = within_cov;
                temp.within_count = within_count;
            }

            return temp;
        }

        discriminant_pca& operator+= (
            const discriminant_pca& rhs
        )
        {
            (*this + rhs).swap(*this);
            return *this;
        }

    private:

        void compute_dpca_matrix (
            general_matrix& dpca_mat,
            general_matrix& eigenvalues,
            const double eps,
            long num_rows 
        ) const
        {
            general_matrix cov;

            // now combine the three measures of variance into a single matrix by using the
            // within_weight and between_weight weights.
            cov = get_total_covariance_matrix();
            if (within_count != 0)
                cov -= within_weight*within_cov/within_count; 
            if (between_count != 0)
                cov += between_weight*between_cov/between_count; 


            eigenvalue_decomposition<general_matrix> eig(make_symmetric(cov));

            eigenvalues = eig.get_real_eigenvalues();
            dpca_mat = eig.get_pseudo_v();

            // sort the eigenvalues and eigenvectors so that the biggest eigenvalues come first
            rsort_columns(dpca_mat, eigenvalues);

            long num_vectors = 0;
            if (num_rows == 0)
            {
                // Some of the eigenvalues might be negative.  So first lets zero those out
                // so they won't get considered.
                eigenvalues = pointwise_multiply(eigenvalues > 0, eigenvalues);
                // figure out how many eigenvectors we want in our dpca matrix
                const double thresh = sum(eigenvalues)*eps;
                double total = 0;
                for (long r = 0; r < eigenvalues.size() && total < thresh; ++r)
                {
                    // Don't even think about looking at eigenvalues that are 0.  If we go this
                    // far then we have all we need.
                    if (eigenvalues(r) == 0)
                        break;

                    ++num_vectors;
                    total += eigenvalues(r);
                }

                if (num_vectors == 0)
                    throw discriminant_pca_error("While performing discriminant_pca, all eigenvalues were negative or 0");
            }
            else
            {
                num_vectors = num_rows;
            }


            // So now we know we want to use num_vectors of the first eigenvectors.  So
            // pull those out and discard the rest.
            dpca_mat = trans(colm(dpca_mat,range(0,num_vectors-1)));

            // also clip off the eigenvalues we aren't using
            eigenvalues = rowm(eigenvalues, range(0,num_vectors-1));

        }

        general_matrix get_total_covariance_matrix (
        ) const
        /*!
            ensures
                - returns the covariance matrix of all the data given to the add_to_total_variance()
        !*/
        {
            // if we don't even know the dimensionality of the vectors we are dealing
            // with then just return an empty matrix
            if (vect_size == 0)
                return general_matrix();

            // we know the vector size but we have zero total covariance.  
            if (total_count == 0)
            {
                general_matrix temp(vect_size,vect_size);
                temp = 0;
                return temp;
            }

            // In this case we actually have something to make a total covariance matrix out of. 
            // So do that.
            column_matrix avg = total_sum/total_count;

            return total_cov/total_count - avg*trans(avg);
        }

        general_matrix total_cov;
        column_matrix total_sum;
        scalar_type total_count;

        long vect_size;

        general_matrix between_cov;
        scalar_type between_count;
        scalar_type between_weight;

        general_matrix within_cov;
        scalar_type within_count;
        scalar_type within_weight;
    };

    template <
        typename matrix_type
        >
    inline void swap (
        discriminant_pca<matrix_type>& a, 
        discriminant_pca<matrix_type>& b 
    ) { a.swap(b); }   

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_DPCA_h_