/usr/include/dlib/optimization/optimization_oca.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_OPTIMIZATIoN_OCA_Hh_
#define DLIB_OPTIMIZATIoN_OCA_Hh_
#include "optimization_oca_abstract.h"
#include "../matrix.h"
#include "optimization_solve_qp_using_smo.h"
#include <vector>
#include "../sequence.h"
// ----------------------------------------------------------------------------------------
namespace dlib
{
template <typename matrix_type>
class oca_problem
{
public:
typedef typename matrix_type::type scalar_type;
virtual ~oca_problem() {}
virtual bool risk_has_lower_bound (
scalar_type&
) const { return false; }
virtual bool optimization_status (
scalar_type ,
scalar_type ,
scalar_type ,
scalar_type ,
unsigned long,
unsigned long
) const = 0;
virtual scalar_type get_c (
) const = 0;
virtual long get_num_dimensions (
) const = 0;
virtual void get_risk (
matrix_type& current_solution,
scalar_type& risk_value,
matrix_type& risk_subgradient
) const = 0;
};
// ----------------------------------------------------------------------------------------
class oca
{
public:
oca ()
{
sub_eps = 1e-2;
sub_max_iter = 50000;
inactive_thresh = 20;
}
void set_subproblem_epsilon (
double eps_
) { sub_eps = eps_; }
double get_subproblem_epsilon (
) const { return sub_eps; }
void set_subproblem_max_iterations (
unsigned long sub_max_iter_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(sub_max_iter_ > 0,
"\t void oca::set_subproblem_max_iterations"
<< "\n\t max iterations must be greater than 0"
<< "\n\t sub_max_iter_: " << sub_max_iter_
<< "\n\t this: " << this
);
sub_max_iter = sub_max_iter_;
}
unsigned long get_subproblem_max_iterations (
) const { return sub_max_iter; }
void set_inactive_plane_threshold (
unsigned long inactive_thresh_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(inactive_thresh_ > 0,
"\t void oca::set_inactive_plane_threshold"
<< "\n\t inactive threshold must be greater than 0"
<< "\n\t inactive_thresh_: " << inactive_thresh_
<< "\n\t this: " << this
);
inactive_thresh = inactive_thresh_;
}
unsigned long get_inactive_plane_threshold (
) const { return inactive_thresh; }
template <
typename matrix_type
>
typename matrix_type::type operator() (
const oca_problem<matrix_type>& problem,
matrix_type& w,
unsigned long num_nonnegative = 0,
unsigned long force_weight_to_1 = std::numeric_limits<unsigned long>::max()
) const
{
matrix_type empty_prior;
return oca_impl(problem, w, empty_prior, false, num_nonnegative, force_weight_to_1);
}
template <
typename matrix_type
>
typename matrix_type::type operator() (
const oca_problem<matrix_type>& problem,
matrix_type& w,
const matrix_type& prior
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(prior) && prior.size() == problem.get_num_dimensions(),
"\t scalar_type oca::operator()"
<< "\n\t The prior vector does not have the correct dimensions."
<< "\n\t is_col_vector(prior): " << is_col_vector(prior)
<< "\n\t prior.size(): " << prior.size()
<< "\n\t problem.get_num_dimensions(): " << problem.get_num_dimensions()
<< "\n\t this: " << this
);
// disable the force weight to 1 option for this mode. We also disable the
// non-negative constraints.
unsigned long force_weight_to_1 = std::numeric_limits<unsigned long>::max();
return oca_impl(problem, w, prior, true, 0, force_weight_to_1);
}
private:
template <
typename matrix_type
>
typename matrix_type::type oca_impl (
const oca_problem<matrix_type>& problem,
matrix_type& w,
const matrix_type prior,
bool have_prior,
unsigned long num_nonnegative,
unsigned long force_weight_to_1
) const
{
const unsigned long num_dims = problem.get_num_dimensions();
// make sure requires clause is not broken
DLIB_ASSERT(problem.get_c() > 0 &&
problem.get_num_dimensions() > 0,
"\t scalar_type oca::operator()"
<< "\n\t The oca_problem is invalid"
<< "\n\t problem.get_c(): " << problem.get_c()
<< "\n\t problem.get_num_dimensions(): " << num_dims
<< "\n\t this: " << this
);
if (num_nonnegative > num_dims)
num_nonnegative = num_dims;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef matrix_type vect_type;
const scalar_type C = problem.get_c();
typename sequence<vect_type>::kernel_2a planes;
std::vector<scalar_type> bs, miss_count;
vect_type new_plane, alpha;
w.set_size(num_dims, 1);
w = 0;
// The current objective value. Note also that w always contains
// the current solution.
scalar_type cur_obj = std::numeric_limits<scalar_type>::max();
// This will hold the cutting plane objective value. This value is
// a lower bound on the true optimal objective value.
scalar_type cp_obj = 0;
matrix<scalar_type,0,0,mem_manager_type, layout_type> K, Ktmp;
scalar_type R_lower_bound;
if (problem.risk_has_lower_bound(R_lower_bound))
{
// The flat lower bounding plane is always good to have if we know
// what it is.
bs.push_back(R_lower_bound);
new_plane = zeros_matrix(w);
planes.add(0, new_plane);
alpha = uniform_matrix<scalar_type>(1,1, C);
miss_count.push_back(0);
K.set_size(1,1);
K(0,0) = 0;
}
const double prior_norm = have_prior ? 0.5*dot(prior,prior) : 0;
unsigned long counter = 0;
while (true)
{
// add the next cutting plane
scalar_type cur_risk;
if (force_weight_to_1 < (unsigned long)w.size())
w(force_weight_to_1) = 1;
problem.get_risk(w, cur_risk, new_plane);
if (force_weight_to_1 < (unsigned long)w.size())
{
// We basically arrange for the w(force_weight_to_1) element and all
// subsequent elements of w to not be involved in the optimization at
// all. An easy way to do this is to just make sure the elements of w
// corresponding elements in the subgradient are always set to zero
// while we run the cutting plane algorithm. The only time
// w(force_weight_to_1) is 1 is when we pass it to the oca_problem.
set_rowm(w, range(force_weight_to_1, w.size()-1)) = 0;
set_rowm(new_plane, range(force_weight_to_1, new_plane.size()-1)) = 0;
}
if (have_prior)
bs.push_back(cur_risk - dot(w,new_plane) + dot(prior,new_plane));
else
bs.push_back(cur_risk - dot(w,new_plane));
planes.add(planes.size(), new_plane);
miss_count.push_back(0);
// If alpha is empty then initialize it (we must always have sum(alpha) == C).
// But otherwise, just append a zero.
if (alpha.size() == 0)
alpha = uniform_matrix<scalar_type>(1,1, C);
else
alpha = join_cols(alpha,zeros_matrix<scalar_type>(1,1));
const scalar_type wnorm = 0.5*trans(w)*w;
const double prior_part = have_prior? dot(w,prior) : 0;
cur_obj = wnorm + C*cur_risk + prior_norm-prior_part;
// report current status
const scalar_type risk_gap = cur_risk - (cp_obj-wnorm+prior_part-prior_norm)/C;
if (counter > 0 && problem.optimization_status(cur_obj, cur_obj - cp_obj,
cur_risk, risk_gap, planes.size(), counter))
{
break;
}
// compute kernel matrix for all the planes
K.swap(Ktmp);
K.set_size(planes.size(), planes.size());
// copy over the old K matrix
set_subm(K, 0,0, Ktmp.nr(), Ktmp.nc()) = Ktmp;
// now add the new row and column to K
for (unsigned long c = 0; c < planes.size(); ++c)
{
K(c, Ktmp.nc()) = dot(planes[c], planes[planes.size()-1]);
K(Ktmp.nc(), c) = K(c,Ktmp.nc());
}
// solve the cutting plane subproblem for the next w. We solve it to an
// accuracy that is related to how big the error gap is
scalar_type eps = std::min<scalar_type>(sub_eps, 0.1*(cur_obj-cp_obj)) ;
// just a sanity check
if (eps < 1e-16)
eps = 1e-16;
// Note that we warm start this optimization by using the alpha from the last
// iteration as the starting point.
if (num_nonnegative != 0)
{
// copy planes into a matrix so we can call solve_qp4_using_smo()
matrix<scalar_type,0,0,mem_manager_type, layout_type> planes_mat(num_nonnegative,planes.size());
for (unsigned long i = 0; i < planes.size(); ++i)
set_colm(planes_mat,i) = colm(planes[i],0,num_nonnegative);
solve_qp4_using_smo(planes_mat, K, mat(bs), alpha, eps, sub_max_iter);
}
else
{
solve_qp_using_smo(K, mat(bs), alpha, eps, sub_max_iter);
}
// construct the w that minimized the subproblem.
w = -alpha(0)*planes[0];
for (unsigned long i = 1; i < planes.size(); ++i)
w -= alpha(i)*planes[i];
// threshold the first num_nonnegative w elements if necessary.
if (num_nonnegative != 0)
set_rowm(w,range(0,num_nonnegative-1)) = lowerbound(rowm(w,range(0,num_nonnegative-1)),0);
for (long i = 0; i < alpha.size(); ++i)
{
if (alpha(i) != 0)
miss_count[i] = 0;
else
miss_count[i] += 1;
}
// Compute the lower bound on the true objective given to us by the cutting
// plane subproblem.
cp_obj = -0.5*trans(w)*w + trans(alpha)*mat(bs);
if (have_prior)
w += prior;
// If it has been a while since a cutting plane was an active constraint then
// we should throw it away.
while (max(mat(miss_count)) >= inactive_thresh)
{
const long idx = index_of_max(mat(miss_count));
bs.erase(bs.begin()+idx);
miss_count.erase(miss_count.begin()+idx);
K = removerc(K, idx, idx);
alpha = remove_row(alpha,idx);
planes.remove(idx, new_plane);
}
++counter;
}
if (force_weight_to_1 < (unsigned long)w.size())
w(force_weight_to_1) = 1;
return cur_obj;
}
double sub_eps;
unsigned long sub_max_iter;
unsigned long inactive_thresh;
};
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_OPTIMIZATIoN_OCA_Hh_
|