/usr/include/dlib/optimization/optimization_abstract.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_OPTIMIZATIOn_ABSTRACT_
#ifdef DLIB_OPTIMIZATIOn_ABSTRACT_
#include <cmath>
#include <limits>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "optimization_search_strategies_abstract.h"
#include "optimization_stop_strategies_abstract.h"
#include "optimization_line_search_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Functions that transform other functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename funct
>
class central_differences;
/*!
This is a function object that represents the derivative of some other
function.
Note that if funct is a function of a double then the derivative of
funct is just a double but if funct is a function of a dlib::matrix (i.e. a
function of many variables) then its derivative is a gradient vector (a column
vector in particular).
!*/
template <
typename funct
>
const central_differences<funct> derivative(
const funct& f,
double eps
);
/*!
requires
- f == a function that returns a scalar
- f must have one of the following forms:
- double f(double)
- double f(dlib::matrix) (where the matrix is a column vector)
- double f(T, dlib::matrix) (where the matrix is a column vector. In
this case the derivative of f is taken with respect to the second argument.)
- eps > 0
ensures
- returns a function that represents the derivative of the function f. It
is approximated numerically by:
(f(x+eps)-f(x-eps))/(2*eps)
!*/
template <
typename funct
>
const central_differences<funct> derivative(
const funct& f
);
/*!
ensures
- returns derivative(f, 1e-7)
!*/
// ----------------------------------------------------------------------------------------
template <
typename funct,
typename EXP1,
typename EXP2
>
clamped_function_object<funct,EXP1,EXP2> clamp_function (
const funct& f,
const matrix_exp<EXP1>& x_lower,
const matrix_exp<EXP2>& x_upper
);
/*!
requires
- f == a function that takes a matrix and returns a scalar value. Moreover, f
must be capable of taking in matrices with the same dimensions as x_lower and
x_upper. So f(x_lower) must be a valid expression that evaluates to a scalar
value.
- x_lower.nr() == x_upper.nr() && x_lower.nc() == x_upper.nc()
(i.e. x_lower and x_upper must have the same dimensions)
- x_lower and x_upper must contain the same type of elements.
ensures
- returns a function object that represents the function g(x) where
g(x) == f(clamp(x,x_lower,x_upper))
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Functions that perform unconstrained optimization
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T
>
double find_min (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
double min_f
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
ensures
- Performs an unconstrained minimization of the function f() using the given
search_strategy and starting from the initial point x.
- The function is optimized until stop_strategy decides that an acceptable
point has been found or f(#x) < min_f.
- #x == the value of x that was found to minimize f()
- returns f(#x).
- When this function makes calls to f() and der() it always does so by
first calling f() and then calling der(). That is, these two functions
are always called in pairs with f() being called first and then der()
being called second.
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T
>
double find_max (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
double max_f
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
ensures
- Performs an unconstrained maximization of the function f() using the given
search_strategy and starting from the initial point x.
- The function is optimized until stop_strategy decides that an acceptable
point has been found or f(#x) > max_f.
- #x == the value of x that was found to maximize f()
- returns f(#x).
- When this function makes calls to f() and der() it always does so by
first calling f() and then calling der(). That is, these two functions
are always called in pairs with f() being called first and then der()
being called second.
- Note that this function solves the maximization problem by converting it
into a minimization problem. Therefore, the values of f and its derivative
reported to the stopping strategy will be negated. That is, stop_strategy
will see -f() and -der(). All this really means is that the status messages
from a stopping strategy in verbose mode will display a negated objective
value.
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename T
>
double find_min_using_approximate_derivatives (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
T& x,
double min_f,
double derivative_eps = 1e-7
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- is_col_vector(x) == true
- derivative_eps > 0
ensures
- Performs an unconstrained minimization of the function f() using the given
search_strategy and starting from the initial point x.
- The function is optimized until stop_strategy decides that an acceptable
point has been found or f(#x) < min_f.
- #x == the value of x that was found to minimize f()
- returns f(#x).
- Uses the dlib::derivative(f,derivative_eps) function to compute gradient
information.
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename T
>
double find_max_using_approximate_derivatives (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
T& x,
double max_f,
double derivative_eps = 1e-7
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- is_col_vector(x) == true
- derivative_eps > 0
ensures
- Performs an unconstrained maximization of the function f() using the given
search_strategy and starting from the initial point x.
- The function is optimized until stop_strategy decides that an acceptable
point has been found or f(#x) > max_f.
- #x == the value of x that was found to maximize f()
- returns f(#x).
- Uses the dlib::derivative(f,derivative_eps) function to compute gradient
information.
- Note that this function solves the maximization problem by converting it
into a minimization problem. Therefore, the values of f and its derivative
reported to the stopping strategy will be negated. That is, stop_strategy
will see -f() and -der(). All this really means is that the status messages
from a stopping strategy in verbose mode will display a negated objective
value.
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Functions that perform box constrained optimization
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T,
typename EXP1,
typename EXP2
>
double find_min_box_constrained (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
const matrix_exp<EXP1>& x_lower,
const matrix_exp<EXP2>& x_upper
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
- is_col_vector(x_lower) == true
- is_col_vector(x_upper) == true
- x.size() == x_lower.size() == x_upper.size()
(i.e. x, x_lower, and x_upper need to all be column vectors of the same dimensionality)
- min(x_upper-x_lower) > 0
(i.e. x_upper must contain upper bounds relative to x_lower)
ensures
- Performs a box constrained minimization of the function f() using the given
search_strategy and starting from the initial point x. That is, we try to
find the x value that minimizes f(x) but is also within the box constraints
specified by x_lower and x_upper. That is, we ensure that #x satisfies:
- min(#x - x_lower) >= 0 && min(x_upper - #x) >= 0
- This function uses a backtracking line search along with a gradient projection
step to handle the box constraints.
- The function is optimized until stop_strategy decides that an acceptable
point has been found.
- #x == the value of x that was found to minimize f() within the given box
constraints.
- returns f(#x).
- The last call to f() will be made with f(#x).
- When calling f() and der(), the input passed to them will always be inside
the box constraints defined by x_lower and x_upper.
- When calling der(x), it will always be the case that the last call to f() was
made with the same x value. This means that you can reuse any intermediate
results from the previous call to f(x) inside der(x) rather than recomputing
them inside der(x).
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T
>
double find_min_box_constrained (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
const double x_lower,
const double x_upper
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
- x_lower < x_upper
ensures
- This function is identical to find_min_box_constrained() as defined above
except that it takes x_lower and x_upper as doubles rather than column
vectors. In this case, all variables have the same lower bound of x_lower
and similarly have the same upper bound of x_upper. Therefore, this is just
a convenience function for calling find_max_box_constrained() when all
variables have the same bound constraints.
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T,
typename EXP1,
typename EXP2
>
double find_max_box_constrained (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
const matrix_exp<EXP1>& x_lower,
const matrix_exp<EXP2>& x_upper
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
- is_col_vector(x_lower) == true
- is_col_vector(x_upper) == true
- x.size() == x_lower.size() == x_upper.size()
(i.e. x, x_lower, and x_upper need to all be column vectors of the same dimensionality)
- min(x_upper-x_lower) > 0
(i.e. x_upper must contain upper bounds relative to x_lower)
ensures
- Performs a box constrained maximization of the function f() using the given
search_strategy and starting from the initial point x. That is, we try to
find the x value that maximizes f(x) but is also within the box constraints
specified by x_lower and x_upper. That is, we ensure that #x satisfies:
- min(#x - x_lower) >= 0 && min(x_upper - #x) >= 0
- This function uses a backtracking line search along with a gradient projection
step to handle the box constraints.
- The function is optimized until stop_strategy decides that an acceptable
point has been found.
- #x == the value of x that was found to maximize f() within the given box
constraints.
- returns f(#x).
- The last call to f() will be made with f(#x).
- When calling f() and der(), the input passed to them will always be inside
the box constraints defined by x_lower and x_upper.
- When calling der(x), it will always be the case that the last call to f() was
made with the same x value. This means that you can reuse any intermediate
results from the previous call to f(x) inside der(x) rather than recomputing
them inside der(x).
- Note that this function solves the maximization problem by converting it
into a minimization problem. Therefore, the values of f and its derivative
reported to the stopping strategy will be negated. That is, stop_strategy
will see -f() and -der(). All this really means is that the status messages
from a stopping strategy in verbose mode will display a negated objective
value.
!*/
// ----------------------------------------------------------------------------------------
template <
typename search_strategy_type,
typename stop_strategy_type,
typename funct,
typename funct_der,
typename T
>
double find_max_box_constrained (
search_strategy_type search_strategy,
stop_strategy_type stop_strategy,
const funct& f,
const funct_der& der,
T& x,
const double x_lower,
const double x_upper
);
/*!
requires
- search_strategy == an object that defines a search strategy such as one
of the objects from dlib/optimization/optimization_search_strategies_abstract.h
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- f(x) must be a valid expression that evaluates to a double
- der(x) must be a valid expression that evaluates to the derivative of f() at x.
- is_col_vector(x) == true
- x_lower < x_upper
ensures
- This function is identical to find_max_box_constrained() as defined above
except that it takes x_lower and x_upper as doubles rather than column
vectors. In this case, all variables have the same lower bound of x_lower
and similarly have the same upper bound of x_upper. Therefore, this is just
a convenience function for calling find_max_box_constrained() when all
variables have the same bound constraints.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_OPTIMIZATIOn_ABSTRACT_
|