This file is indexed.

/usr/include/dlib/matrix/matrix_lu.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
// This code was adapted from code from the JAMA part of NIST's TNT library.
//    See: http://math.nist.gov/tnt/ 
#ifndef DLIB_MATRIX_LU_DECOMPOSITION_H
#define DLIB_MATRIX_LU_DECOMPOSITION_H

#include "matrix.h" 
#include "matrix_utilities.h"
#include "matrix_subexp.h"
#include "matrix_trsm.h"
#include <algorithm>

#ifdef DLIB_USE_LAPACK 
#include "lapack/getrf.h"
#endif


namespace dlib 
{

    template <
        typename matrix_exp_type
        >
    class lu_decomposition
    {
    public:

        const static long NR = matrix_exp_type::NR;
        const static long NC = matrix_exp_type::NC;
        typedef typename matrix_exp_type::type type;
        typedef typename matrix_exp_type::mem_manager_type mem_manager_type;
        typedef typename matrix_exp_type::layout_type layout_type;

        typedef matrix<type,0,0,mem_manager_type,layout_type>  matrix_type;
        typedef matrix<type,NR,1,mem_manager_type,layout_type> column_vector_type;
        typedef matrix<long,NR,1,mem_manager_type,layout_type> pivot_column_vector_type;

        // You have supplied an invalid type of matrix_exp_type.  You have
        // to use this object with matrices that contain float or double type data.
        COMPILE_TIME_ASSERT((is_same_type<float, type>::value || 
                             is_same_type<double, type>::value ));

        template <typename EXP>
        lu_decomposition (
            const matrix_exp<EXP> &A
        );

        bool is_square (
        ) const;

        bool is_singular (
        ) const;

        long nr(
        ) const;

        long nc(
        ) const;

        const matrix_type get_l (
        ) const; 

        const matrix_type get_u (
        ) const;

        const pivot_column_vector_type& get_pivot (
        ) const;

        type det (
        ) const;

        template <typename EXP>
        const matrix_type solve (
            const matrix_exp<EXP> &B
        ) const;

    private:

        /* Array for internal storage of decomposition.  */
        matrix<type,0,0,mem_manager_type,column_major_layout>  LU;
        long m, n, pivsign; 
        pivot_column_vector_type piv;


    }; 

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                              Public member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    template <typename EXP>
    lu_decomposition<matrix_exp_type>::
    lu_decomposition (
        const matrix_exp<EXP>& A
    ) : 
        LU(A),
        m(A.nr()),
        n(A.nc())
    {
        using namespace std;
        using std::abs;

        COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));

        // make sure requires clause is not broken
        DLIB_ASSERT(A.size() > 0,
            "\tlu_decomposition::lu_decomposition(A)"
            << "\n\tInvalid inputs were given to this function"
            << "\n\tA.size(): " << A.size()
            << "\n\tthis:     " << this
            );

#ifdef DLIB_USE_LAPACK
        matrix<lapack::integer,0,1,mem_manager_type,layout_type> piv_temp;
        lapack::getrf(LU, piv_temp);

        pivsign = 1;

        // Turn the piv_temp vector into a more useful form.  This way we will have the identity
        // rowm(A,piv) == L*U.  The permutation vector that comes out of LAPACK is somewhat
        // different.
        piv = trans(range(0,m-1));
        for (long i = 0; i < piv_temp.size(); ++i)
        {
            // -1 because FORTRAN is indexed starting with 1 instead of 0
            if (piv(piv_temp(i)-1) != piv(i))
            {
                std::swap(piv(i), piv(piv_temp(i)-1));
                pivsign = -pivsign;
            }
        }

#else

        // Use a "left-looking", dot-product, Crout/Doolittle algorithm.


        piv = trans(range(0,m-1));
        pivsign = 1;

        column_vector_type LUcolj(m);

        // Outer loop.
        for (long j = 0; j < n; j++) 
        {

            // Make a copy of the j-th column to localize references.
            LUcolj = colm(LU,j);

            // Apply previous transformations.
            for (long i = 0; i < m; i++) 
            {
                // Most of the time is spent in the following dot product.
                const long kmax = std::min(i,j);
                type s;
                if (kmax > 0)
                    s = rowm(LU,i, kmax)*colm(LUcolj,0,kmax);
                else 
                    s = 0;

                LU(i,j) = LUcolj(i) -= s;
            }

            // Find pivot and exchange if necessary.
            long p = j;
            for (long i = j+1; i < m; i++) 
            {
                if (abs(LUcolj(i)) > abs(LUcolj(p))) 
                {
                    p = i;
                }
            }
            if (p != j) 
            {
                long k=0;
                for (k = 0; k < n; k++) 
                {
                    type t = LU(p,k); 
                    LU(p,k) = LU(j,k); 
                    LU(j,k) = t;
                }
                k = piv(p); 
                piv(p) = piv(j); 
                piv(j) = k;
                pivsign = -pivsign;
            }

            // Compute multipliers.
            if ((j < m) && (LU(j,j) != 0.0)) 
            {
                for (long i = j+1; i < m; i++) 
                {
                    LU(i,j) /= LU(j,j);
                }
            }
        }

#endif
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    bool lu_decomposition<matrix_exp_type>::
    is_square (
    ) const
    {
        return m == n;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    long lu_decomposition<matrix_exp_type>::
    nr (
    ) const
    {
        return m;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    long lu_decomposition<matrix_exp_type>::
    nc (
    ) const
    {
        return n;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    bool lu_decomposition<matrix_exp_type>::
    is_singular (
    ) const
    {
        /* Is the matrix singular?
          if upper triangular factor U (and hence A) is singular, false otherwise.
        */
        // make sure requires clause is not broken
        DLIB_ASSERT(is_square() == true,
            "\tbool lu_decomposition::is_singular()"
            << "\n\tYou can only use this on square matrices"
            << "\n\tthis: " << this
            );

        type max_val, min_val;
        find_min_and_max (abs(diag(LU)), min_val, max_val);
        type eps = max_val;
        if (eps != 0)
            eps *= std::sqrt(std::numeric_limits<type>::epsilon())/10;
        else
            eps = 1;  // there is no max so just use 1

        return min_val < eps;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    const typename lu_decomposition<matrix_exp_type>::matrix_type lu_decomposition<matrix_exp_type>::
    get_l (
    ) const
    {
        if (LU.nr() >= LU.nc())
            return lowerm(LU,1.0);
        else
            return lowerm(subm(LU,0,0,m,m), 1.0);
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    const typename lu_decomposition<matrix_exp_type>::matrix_type lu_decomposition<matrix_exp_type>::
    get_u (
    ) const 
    {
        if (LU.nr() >= LU.nc())
            return upperm(subm(LU,0,0,n,n));
        else
            return upperm(LU);
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    const typename lu_decomposition<matrix_exp_type>::pivot_column_vector_type& lu_decomposition<matrix_exp_type>::
    get_pivot (
    ) const
    {
        return piv;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    typename lu_decomposition<matrix_exp_type>::type lu_decomposition<matrix_exp_type>::
    det (
    ) const
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(is_square() == true,
            "\ttype lu_decomposition::det()"
            << "\n\tYou can only use this on square matrices"
            << "\n\tthis: " << this
            );

        // Check if it is singular and if it is just return 0.  
        // We want to do this because a prod() operation can easily
        // overcome a single diagonal element that is effectively 0 when
        // LU is a big enough matrix.
        if (is_singular())
            return 0;

        return prod(diag(LU))*static_cast<type>(pivsign);
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    template <typename EXP>
    const typename lu_decomposition<matrix_exp_type>::matrix_type lu_decomposition<matrix_exp_type>::
    solve (
        const matrix_exp<EXP> &B
    ) const
    {
        COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));

        // make sure requires clause is not broken
        DLIB_ASSERT(is_square() == true && B.nr() == nr(),
            "\ttype lu_decomposition::solve()"
            << "\n\tInvalid arguments to this function"
            << "\n\tis_square():   " << (is_square()? "true":"false" )
            << "\n\tB.nr():        " << B.nr() 
            << "\n\tnr():          " << nr() 
            << "\n\tthis:          " << this
            );

        // Copy right hand side with pivoting
        matrix<type,0,0,mem_manager_type,column_major_layout> X(rowm(B, piv));

        using namespace blas_bindings;
        // Solve L*Y = B(piv,:)
        triangular_solver(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, LU, X);
        // Solve U*X = Y;
        triangular_solver(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, LU, X);
        return X;
    }

// ----------------------------------------------------------------------------------------

} 

#endif // DLIB_MATRIX_LU_DECOMPOSITION_H