/usr/include/dlib/matrix/matrix_cholesky.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | // Copyright (C) 2009 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
// This code was adapted from code from the JAMA part of NIST's TNT library.
// See: http://math.nist.gov/tnt/
#ifndef DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H
#define DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H
#include "matrix.h"
#include "matrix_utilities.h"
#include "matrix_subexp.h"
#include <cmath>
#ifdef DLIB_USE_LAPACK
#include "lapack/potrf.h"
#endif
#include "matrix_trsm.h"
namespace dlib
{
template <
typename matrix_exp_type
>
class cholesky_decomposition
{
public:
const static long NR = matrix_exp_type::NR;
const static long NC = matrix_exp_type::NC;
typedef typename matrix_exp_type::type type;
typedef typename matrix_exp_type::mem_manager_type mem_manager_type;
typedef typename matrix_exp_type::layout_type layout_type;
typedef matrix<type,0,0,mem_manager_type,layout_type> matrix_type;
typedef matrix<type,NR,1,mem_manager_type,layout_type> column_vector_type;
// You have supplied an invalid type of matrix_exp_type. You have
// to use this object with matrices that contain float or double type data.
COMPILE_TIME_ASSERT((is_same_type<float, type>::value ||
is_same_type<double, type>::value ));
template <typename EXP>
cholesky_decomposition(
const matrix_exp<EXP>& A
);
bool is_spd(
) const;
const matrix_type& get_l(
) const;
template <typename EXP>
const typename EXP::matrix_type solve (
const matrix_exp<EXP>& B
) const;
private:
matrix_type L_; // lower triangular factor
bool isspd; // true if matrix to be factored was SPD
};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
bool cholesky_decomposition<matrix_exp_type>::
is_spd(
) const
{
return isspd;
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
const typename cholesky_decomposition<matrix_exp_type>::matrix_type& cholesky_decomposition<matrix_exp_type>::
get_l(
) const
{
return L_;
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
template <typename EXP>
cholesky_decomposition<matrix_exp_type>::
cholesky_decomposition(
const matrix_exp<EXP>& A_
)
{
using std::sqrt;
COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));
// make sure requires clause is not broken
DLIB_ASSERT(A_.nr() == A_.nc() && A_.size() > 0,
"\tcholesky_decomposition::cholesky_decomposition(A_)"
<< "\n\tYou can only use this on square matrices"
<< "\n\tA_.nr(): " << A_.nr()
<< "\n\tA_.nc(): " << A_.nc()
<< "\n\tA_.size(): " << A_.size()
<< "\n\tthis: " << this
);
#ifdef DLIB_USE_LAPACK
L_ = A_;
const type eps = max(abs(diag(L_)))*std::sqrt(std::numeric_limits<type>::epsilon())/100;
// check if the matrix is actually symmetric
bool is_symmetric = true;
for (long r = 0; r < L_.nr() && is_symmetric; ++r)
{
for (long c = r+1; c < L_.nc() && is_symmetric; ++c)
{
// this is approximately doing: is_symmetric = is_symmetric && ( L_(k,j) == L_(j,k))
is_symmetric = is_symmetric && (std::abs(L_(r,c) - L_(c,r)) < eps );
}
}
// now compute the actual cholesky decomposition
int info = lapack::potrf('L', L_);
// check if it's really SPD
if (info == 0 && is_symmetric && min(abs(diag(L_))) > eps*100)
isspd = true;
else
isspd = false;
L_ = lowerm(L_);
#else
const_temp_matrix<EXP> A(A_);
isspd = true;
const long n = A.nc();
L_.set_size(n,n);
const type eps = max(abs(diag(A)))*std::sqrt(std::numeric_limits<type>::epsilon())/100;
// Main loop.
for (long j = 0; j < n; j++)
{
type d(0.0);
for (long k = 0; k < j; k++)
{
type s(0.0);
for (long i = 0; i < k; i++)
{
s += L_(k,i)*L_(j,i);
}
// if L_(k,k) != 0
if (std::abs(L_(k,k)) > eps)
{
s = (A(j,k) - s)/L_(k,k);
}
else
{
s = (A(j,k) - s);
isspd = false;
}
L_(j,k) = s;
d = d + s*s;
// this is approximately doing: isspd = isspd && ( A(k,j) == A(j,k))
isspd = isspd && (std::abs(A(k,j) - A(j,k)) < eps );
}
d = A(j,j) - d;
isspd = isspd && (d > eps);
L_(j,j) = sqrt(d > 0.0 ? d : 0.0);
for (long k = j+1; k < n; k++)
{
L_(j,k) = 0.0;
}
}
#endif
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
template <typename EXP>
const typename EXP::matrix_type cholesky_decomposition<matrix_exp_type>::
solve(
const matrix_exp<EXP>& B
) const
{
COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));
// make sure requires clause is not broken
DLIB_ASSERT(L_.nr() == B.nr(),
"\tconst matrix cholesky_decomposition::solve(B)"
<< "\n\tInvalid arguments were given to this function."
<< "\n\tL_.nr(): " << L_.nr()
<< "\n\tB.nr(): " << B.nr()
<< "\n\tthis: " << this
);
matrix<type, NR, EXP::NC, mem_manager_type, layout_type> X(B);
using namespace blas_bindings;
// Solve L*y = b;
triangular_solver(CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, L_, X);
// Solve L'*X = Y;
triangular_solver(CblasLeft, CblasLower, CblasTrans, CblasNonUnit, L_, X);
return X;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H
|