/usr/include/dlib/matrix/lapack/gesdd.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_SDD_Hh_
#define DLIB_LAPACk_SDD_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
extern "C"
{
void DLIB_FORTRAN_ID(dgesdd) (char const* jobz,
const integer* m, const integer* n, double* a, const integer* lda,
double* s, double* u, const integer* ldu,
double* vt, const integer* ldvt,
double* work, const integer* lwork, integer* iwork, integer* info);
void DLIB_FORTRAN_ID(sgesdd) (char const* jobz,
const integer* m, const integer* n, float* a, const integer* lda,
float* s, float* u, const integer* ldu,
float* vt, const integer* ldvt,
float* work, const integer* lwork, integer* iwork, integer* info);
}
inline integer gesdd (const char jobz,
const integer m, const integer n, double* a, const integer lda,
double* s, double* u, const integer ldu,
double* vt, const integer ldvt,
double* work, const integer lwork, integer* iwork)
{
integer info = 0;
DLIB_FORTRAN_ID(dgesdd)(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, &info);
return info;
}
inline integer gesdd (const char jobz,
const integer m, const integer n, float* a, const integer lda,
float* s, float* u, const integer ldu,
float* vt, const integer ldvt,
float* work, const integer lwork, integer* iwork)
{
integer info = 0;
DLIB_FORTRAN_ID(sgesdd)(&jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, iwork, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/* -- LAPACK driver routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGESDD computes the singular value decomposition (SVD) of a real */
/* M-by-N matrix A, optionally computing the left and right singular */
/* vectors. If singular vectors are desired, it uses a */
/* divide-and-conquer algorithm. */
/* The SVD is written */
/* A = U * SIGMA * transpose(V) */
/* where SIGMA is an M-by-N matrix which is zero except for its */
/* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
/* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
/* are the singular values of A; they are real and non-negative, and */
/* are returned in descending order. The first min(m,n) columns of */
/* U and V are the left and right singular vectors of A. */
/* Note that the routine returns VT = V**T, not V. */
/* The divide and conquer algorithm makes very mild assumptions about */
/* floating point arithmetic. It will work on machines with a guard */
/* digit in add/subtract, or on those binary machines without guard */
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* Specifies options for computing all or part of the matrix U: */
/* = 'A': all M columns of U and all N rows of V**T are */
/* returned in the arrays U and VT; */
/* = 'S': the first min(M,N) columns of U and the first */
/* min(M,N) rows of V**T are returned in the arrays U */
/* and VT; */
/* = 'O': If M >= N, the first N columns of U are overwritten */
/* on the array A and all rows of V**T are returned in */
/* the array VT; */
/* otherwise, all columns of U are returned in the */
/* array U and the first M rows of V**T are overwritten */
/* in the array A; */
/* = 'N': no columns of U or rows of V**T are computed. */
/* M (input) INTEGER */
/* The number of rows of the input matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the input matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, */
/* if JOBZ = 'O', A is overwritten with the first N columns */
/* of U (the left singular vectors, stored */
/* columnwise) if M >= N; */
/* A is overwritten with the first M rows */
/* of V**T (the right singular vectors, stored */
/* rowwise) otherwise. */
/* if JOBZ .ne. 'O', the contents of A are destroyed. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* S (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The singular values of A, sorted so that S(i) >= S(i+1). */
/* U (output) DOUBLE PRECISION array, dimension (LDU,UCOL) */
/* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
/* UCOL = min(M,N) if JOBZ = 'S'. */
/* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
/* orthogonal matrix U; */
/* if JOBZ = 'S', U contains the first min(M,N) columns of U */
/* (the left singular vectors, stored columnwise); */
/* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= 1; if */
/* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
/* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) */
/* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
/* N-by-N orthogonal matrix V**T; */
/* if JOBZ = 'S', VT contains the first min(M,N) rows of */
/* V**T (the right singular vectors, stored rowwise); */
/* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
/* LDVT (input) INTEGER */
/* The leading dimension of the array VT. LDVT >= 1; if */
/* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
/* if JOBZ = 'S', LDVT >= min(M,N). */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= 1. */
/* If JOBZ = 'N', */
/* LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)). */
/* If JOBZ = 'O', */
/* LWORK >= 3*min(M,N)*min(M,N) + */
/* max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). */
/* If JOBZ = 'S' or 'A' */
/* LWORK >= 3*min(M,N)*min(M,N) + */
/* max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). */
/* For good performance, LWORK should generally be larger. */
/* If LWORK = -1 but other input arguments are legal, WORK(1) */
/* returns the optimal LWORK. */
/* IWORK (workspace) INTEGER array, dimension (8*min(M,N)) */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: DBDSDC did not converge, updating process failed. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Ming Gu and Huan Ren, Computer Science Division, University of */
/* California at Berkeley, USA */
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2, long NR3, long NR4,
long NC1, long NC2, long NC3, long NC4,
typename MM
>
int gesdd (
const char jobz,
matrix<T,NR1,NC1,MM,column_major_layout>& a,
matrix<T,NR2,NC2,MM,column_major_layout>& s,
matrix<T,NR3,NC3,MM,column_major_layout>& u,
matrix<T,NR4,NC4,MM,column_major_layout>& vt
)
{
matrix<T,0,1,MM,column_major_layout> work;
matrix<integer,0,1,MM,column_major_layout> iwork;
const long m = a.nr();
const long n = a.nc();
s.set_size(std::min(m,n), 1);
// make sure the iwork memory block is big enough
if (iwork.size() < 8*std::min(m,n))
iwork.set_size(8*std::min(m,n), 1);
if (jobz == 'A')
{
u.set_size(m,m);
vt.set_size(n,n);
}
else if (jobz == 'S')
{
u.set_size(m, std::min(m,n));
vt.set_size(std::min(m,n), n);
}
else if (jobz == 'O')
{
DLIB_CASSERT(false, "jobz == 'O' not supported");
}
else
{
u.set_size(NR3?NR3:1, NC3?NC3:1);
vt.set_size(NR4?NR4:1, NC4?NC4:1);
}
// figure out how big the workspace needs to be.
T work_size = 1;
int info = binding::gesdd(jobz, a.nr(), a.nc(), &a(0,0), a.nr(),
&s(0,0), &u(0,0), u.nr(), &vt(0,0), vt.nr(),
&work_size, -1, &iwork(0,0));
if (info != 0)
return info;
// There is a bug in an older version of LAPACK in Debian etch
// that causes the gesdd to return the wrong value for work_size
// when jobz == 'N'. So verify the value of work_size.
if (jobz == 'N')
{
using std::min;
using std::max;
const T min_work_size = 3*min(m,n) + max(max(m,n),7*min(m,n));
if (work_size < min_work_size)
work_size = min_work_size;
}
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
// compute the actual SVD
info = binding::gesdd(jobz, a.nr(), a.nc(), &a(0,0), a.nr(),
&s(0,0), &u(0,0), u.nr(), &vt(0,0), vt.nr(),
&work(0,0), work.size(), &iwork(0,0));
return info;
}
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2, long NR3, long NR4,
long NC1, long NC2, long NC3, long NC4,
typename MM
>
int gesdd (
const char jobz,
matrix<T,NR1,NC1,MM,row_major_layout>& a,
matrix<T,NR2,NC2,MM,row_major_layout>& s,
matrix<T,NR3,NC3,MM,row_major_layout>& u_,
matrix<T,NR4,NC4,MM,row_major_layout>& vt_
)
{
matrix<T,0,1,MM,row_major_layout> work;
matrix<integer,0,1,MM,row_major_layout> iwork;
// Row major order matrices are transposed from LAPACK's point of view.
matrix<T,NR4,NC4,MM,row_major_layout>& u = vt_;
matrix<T,NR3,NC3,MM,row_major_layout>& vt = u_;
const long m = a.nc();
const long n = a.nr();
s.set_size(std::min(m,n), 1);
// make sure the iwork memory block is big enough
if (iwork.size() < 8*std::min(m,n))
iwork.set_size(8*std::min(m,n), 1);
if (jobz == 'A')
{
u.set_size(m,m);
vt.set_size(n,n);
}
else if (jobz == 'S')
{
u.set_size(std::min(m,n), m);
vt.set_size(n, std::min(m,n));
}
else if (jobz == 'O')
{
DLIB_CASSERT(false, "jobz == 'O' not supported");
}
else
{
u.set_size(NR4?NR4:1, NC4?NC4:1);
vt.set_size(NR3?NR3:1, NC3?NC3:1);
}
// figure out how big the workspace needs to be.
T work_size = 1;
int info = binding::gesdd(jobz, m, n, &a(0,0), a.nc(),
&s(0,0), &u(0,0), u.nc(), &vt(0,0), vt.nc(),
&work_size, -1, &iwork(0,0));
if (info != 0)
return info;
// There is a bug in an older version of LAPACK in Debian etch
// that causes the gesdd to return the wrong value for work_size
// when jobz == 'N'. So verify the value of work_size.
if (jobz == 'N')
{
using std::min;
using std::max;
const T min_work_size = 3*min(m,n) + max(max(m,n),7*min(m,n));
if (work_size < min_work_size)
work_size = min_work_size;
}
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
// compute the actual SVD
info = binding::gesdd(jobz, m, n, &a(0,0), a.nc(),
&s(0,0), &u(0,0), u.nc(), &vt(0,0), vt.nc(),
&work(0,0), work.size(), &iwork(0,0));
return info;
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_SDD_Hh_
|