This file is indexed.

/usr/include/dlib/image_keypoint/hog.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_HoG_Hh_
#define DLIB_HoG_Hh_

#include "hog_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../geometry.h"
#include <cmath>

namespace dlib
{
    enum 
    {
        hog_no_interpolation,
        hog_angle_interpolation,
        hog_full_interpolation,
        hog_signed_gradient,
        hog_unsigned_gradient
    };

    template <
        unsigned long cell_size_,
        unsigned long block_size_,
        unsigned long cell_stride_,
        unsigned long num_orientation_bins_,
        int           gradient_type_,
        int           interpolation_type_
        >
    class hog_image : noncopyable
    {
        COMPILE_TIME_ASSERT(cell_size_ > 1);
        COMPILE_TIME_ASSERT(block_size_ > 0);
        COMPILE_TIME_ASSERT(cell_stride_ > 0);
        COMPILE_TIME_ASSERT(num_orientation_bins_ > 0);

        COMPILE_TIME_ASSERT( gradient_type_ == hog_signed_gradient ||
                             gradient_type_ == hog_unsigned_gradient);

        COMPILE_TIME_ASSERT( interpolation_type_ == hog_no_interpolation ||
                             interpolation_type_ == hog_angle_interpolation ||
                             interpolation_type_ == hog_full_interpolation );


    public:

        const static unsigned long cell_size = cell_size_;
        const static unsigned long block_size = block_size_;
        const static unsigned long cell_stride = cell_stride_;
        const static unsigned long num_orientation_bins = num_orientation_bins_;
        const static int           gradient_type = gradient_type_;
        const static int           interpolation_type = interpolation_type_;

        const static long min_size = cell_size*block_size+2;

        typedef matrix<double, block_size*block_size*num_orientation_bins, 1> descriptor_type;

        hog_image (
        ) : 
            num_block_rows(0),
            num_block_cols(0)
        {}

        void clear (
        )
        {
            num_block_rows = 0;
            num_block_cols = 0;
            hist_cells.clear();
        }

        void copy_configuration (
            const hog_image&
        ){}

        template <
            typename image_type
            >
        inline void load (
            const image_type& img
        )
        {
            COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<image_type>::pixel_type>::has_alpha == false );
            load_impl(mat(img));
        }

        inline void unload(
        ) { clear(); }

        inline unsigned long size (
        ) const { return static_cast<unsigned long>(nr()*nc()); }

        inline long nr (
        ) const { return num_block_rows; }

        inline long nc (
        ) const { return num_block_cols; }

        long get_num_dimensions (
        ) const
        {
            return block_size*block_size*num_orientation_bins;
        }

        inline const descriptor_type& operator() (
            long row,
            long col
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( 0 <= row && row < nr() &&
                         0 <= col && col < nc(),
                "\t descriptor_type hog_image::operator()()"
                << "\n\t invalid row or col argument"
                << "\n\t row:  " << row
                << "\n\t col:  " << col 
                << "\n\t nr(): " << nr() 
                << "\n\t nc(): " << nc() 
                << "\n\t this: " << this
                );

            row *= cell_stride;
            col *= cell_stride;
            ++row;
            ++col;

            int feat = 0;
            for (unsigned long r = 0; r < block_size; ++r)
            {
                for (unsigned long c = 0; c < block_size; ++c)
                {
                    for (unsigned long i = 0; i < num_orientation_bins; ++i)
                    {
                        des(feat++) = hist_cells[row+r][col+c].values[i];
                    }
                }
            }

            des /= length(des) + 1e-8;

            return des;
        }

        const rectangle get_block_rect (
            long row,
            long col
        ) const
        {
            row *= cell_stride;
            col *= cell_stride;

            row *= cell_size;
            col *= cell_size;

            // do this to account for the 1 pixel padding we use all around the image
            ++row;
            ++col;

            return rectangle(col, row, col+cell_size*block_size-1, row+cell_size*block_size-1);
        }

        const point image_to_feat_space (
            const point& p
        ) const
        {

            const long half_block = block_size/2;
            if ((block_size%2) == 0)
            {
                return point(((p.x()-1)/(long)cell_size - half_block)/(long)cell_stride,
                             ((p.y()-1)/(long)cell_size - half_block)/(long)cell_stride);
            }
            else
            {
                return point(((p.x()-1-(long)cell_size/2)/(long)cell_size - half_block)/(long)cell_stride,
                             ((p.y()-1-(long)cell_size/2)/(long)cell_size - half_block)/(long)cell_stride);
            }
        }

        const rectangle image_to_feat_space (
            const rectangle& rect
        ) const
        {
            return rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
        }

        const point feat_to_image_space (
            const point& p
        ) const
        {
            const long half_block = block_size/2;
            if ((block_size%2) == 0)
            {
                return point((p.x()*cell_stride + half_block)*cell_size + 1,
                             (p.y()*cell_stride + half_block)*cell_size + 1);
            }
            else
            {
                return point((p.x()*cell_stride + half_block)*cell_size + 1 + cell_size/2,
                             (p.y()*cell_stride + half_block)*cell_size + 1 + cell_size/2);
            }
        }

        const rectangle feat_to_image_space (
            const rectangle& rect
        ) const
        {
            return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
        }



        // these _PRIVATE_ functions are only here as a workaround for a bug in visual studio 2005.  
        void _PRIVATE_serialize (std::ostream& out) const
        {
            // serialize hist_cells
            serialize(hist_cells.nc(),out);
            serialize(hist_cells.nr(),out);
            hist_cells.reset();
            while (hist_cells.move_next())
                serialize(hist_cells.element().values,out);
            hist_cells.reset();


            serialize(num_block_rows, out);
            serialize(num_block_cols, out);
        }

        void _PRIVATE_deserialize (std::istream& in )
        {
            // deserialize item.hist_cells
            long nc, nr;
            deserialize(nc,in);
            deserialize(nr,in);
            hist_cells.set_size(nr,nc);
            while (hist_cells.move_next())
                deserialize(hist_cells.element().values,in); 
            hist_cells.reset();


            deserialize(num_block_rows, in);
            deserialize(num_block_cols, in);
        }

    private:

        template <
            typename image_type
            >
        void load_impl (
            const image_type& img
        )
        {
            // Note that we keep a border of 1 pixel all around the image so that we don't have
            // to worry about running outside the image when computing the horizontal and vertical 
            // gradients.

            // Note also that we have a border of unused cells around the hist_cells array so that we
            // don't have to worry about edge effects when doing the interpolation in the main loop
            // below.


            // check if the window is just too small
            if (img.nr() < min_size || img.nc() < min_size)
            {
                // If the image is smaller than our windows then there aren't any descriptors at all!
                num_block_rows = 0;
                num_block_cols = 0;
                return;
            }

            // Make sure we have the right number of cell histograms and that they are
            // all set to zero.
            hist_cells.set_size((img.nr()-2)/cell_size+2, (img.nc()-2)/cell_size+2);
            for (long r = 0; r < hist_cells.nr(); ++r)
            {
                for (long c = 0; c < hist_cells.nc(); ++c)
                {
                    hist_cells[r][c].zero();
                }
            }


            // loop over all the histogram cells and fill them out
            for (long rh = 1; rh < hist_cells.nr()-1; ++rh)
            {
                for (long ch = 1; ch < hist_cells.nc()-1; ++ch)
                {
                    // Fill out the current histogram cell.
                    // First, figure out the row and column offsets into the image for the current histogram cell.
                    const long roff = (rh-1)*cell_size + 1;
                    const long coff = (ch-1)*cell_size + 1;

                    for (long r = 0; r < (long)cell_size; ++r)
                    {
                        for (long c = 0; c < (long)cell_size; ++c)
                        {
                            unsigned long left; 
                            unsigned long right;
                            unsigned long top;   
                            unsigned long bottom; 

                            assign_pixel(left,   img(r+roff,c+coff-1));
                            assign_pixel(right,  img(r+roff,c+coff+1));
                            assign_pixel(top,    img(r+roff-1,c+coff));
                            assign_pixel(bottom, img(r+roff+1,c+coff));

                            double grad_x = (long)right-(long)left;
                            double grad_y = (long)top-(long)bottom;

                            // obtain the angle of the gradient.  Make sure it is scaled between 0 and 1.
                            double angle = std::max(0.0, std::atan2(grad_y, grad_x)/pi + 1)/2;


                            if (gradient_type == hog_unsigned_gradient)
                            {
                                angle *= 2;
                                if (angle >= 1)
                                    angle -= 1;
                            }


                            // now scale angle to between 0 and num_orientation_bins
                            angle *= num_orientation_bins;


                            const double strength = std::sqrt(grad_y*grad_y + grad_x*grad_x);


                            if (interpolation_type == hog_no_interpolation)
                            {
                                // no interpolation
                                hist_cells[rh][ch].values[round_to_int(angle)%num_orientation_bins] += strength;
                            }
                            else  // if we should do some interpolation
                            {
                                unsigned long quantized_angle_lower = static_cast<unsigned long>(std::floor(angle));
                                unsigned long quantized_angle_upper = static_cast<unsigned long>(std::ceil(angle));

                                quantized_angle_lower %= num_orientation_bins;
                                quantized_angle_upper %= num_orientation_bins;

                                const double angle_split = (angle-std::floor(angle));
                                const double upper_strength = angle_split*strength;
                                const double lower_strength = (1-angle_split)*strength;

                                if (interpolation_type == hog_angle_interpolation)
                                {
                                    // Stick into gradient histogram.  Note that we linearly interpolate between neighboring
                                    // histogram buckets.
                                    hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength;
                                    hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength;
                                }
                                else // here we do hog_full_interpolation
                                {
                                    const double center_r = (cell_size-1)/2.0;
                                    const double center_c = (cell_size-1)/2.0;

                                    const double lin_neighbor_r = std::abs(center_r - r)/cell_size;
                                    const double lin_main_r = 1-lin_neighbor_r;

                                    const double lin_neighbor_c = std::abs(center_c - c)/cell_size;
                                    const double lin_main_c = 1-lin_neighbor_c;

                                    // Which neighboring cells we interpolate into depends on which
                                    // corner of our main cell we are nearest.
                                    if (r < center_r)
                                    {
                                        if (c < center_c)
                                        {
                                            hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength   * lin_main_r*lin_main_c;
                                            hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength   * lin_main_r*lin_main_c;

                                            hist_cells[rh-1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
                                            hist_cells[rh-1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;

                                            hist_cells[rh][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
                                            hist_cells[rh][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;

                                            hist_cells[rh-1][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
                                            hist_cells[rh-1][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
                                        }
                                        else
                                        {
                                            hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength   * lin_main_r*lin_main_c;
                                            hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength   * lin_main_r*lin_main_c;

                                            hist_cells[rh-1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
                                            hist_cells[rh-1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;

                                            hist_cells[rh][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
                                            hist_cells[rh][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;

                                            hist_cells[rh-1][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
                                            hist_cells[rh-1][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
                                        }
                                    }
                                    else 
                                    {
                                        if (c < center_c)
                                        {
                                            hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength   * lin_main_r*lin_main_c;
                                            hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength   * lin_main_r*lin_main_c;

                                            hist_cells[rh+1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
                                            hist_cells[rh+1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;

                                            hist_cells[rh][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
                                            hist_cells[rh][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;

                                            hist_cells[rh+1][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
                                            hist_cells[rh+1][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
                                        }
                                        else
                                        {
                                            hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength   * lin_main_r*lin_main_c;
                                            hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength   * lin_main_r*lin_main_c;

                                            hist_cells[rh+1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
                                            hist_cells[rh+1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;

                                            hist_cells[rh][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
                                            hist_cells[rh][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;

                                            hist_cells[rh+1][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
                                            hist_cells[rh+1][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
                                        }
                                    }
                                }
                            }


                        }
                    }
                }
            }


            // Now figure out how many blocks we should have.  Note again that the hist_cells has a border of 
            // unused cells (thats where that -2 comes from).
            num_block_rows = (hist_cells.nr()-2 - (block_size-1) + cell_stride - 1)/cell_stride; 
            num_block_cols = (hist_cells.nc()-2 - (block_size-1) + cell_stride - 1)/cell_stride; 

        }

        unsigned long round_to_int(
            double val
        ) const
        {
            return static_cast<unsigned long>(std::floor(val + 0.5));
        }

        struct histogram
        {
            void zero()
            {
                for (unsigned long i = 0; i < num_orientation_bins; ++i)
                    values[i] = 0;
            }
            double values[num_orientation_bins];
        };

        array2d<histogram> hist_cells;

        mutable descriptor_type des;

        long num_block_rows;
        long num_block_cols;


    };

// ----------------------------------------------------------------------------------------

    template <
        unsigned long T1,
        unsigned long T2,
        unsigned long T3,
        unsigned long T4,
        int           T5,
        int           T6 
        >
    void serialize (
        const hog_image<T1,T2,T3,T4,T5,T6>& item,
        std::ostream& out
    )
    {
        item._PRIVATE_serialize(out);
    }

    template <
        unsigned long T1,
        unsigned long T2,
        unsigned long T3,
        unsigned long T4,
        int           T5,
        int           T6 
        >
    void deserialize (
        hog_image<T1,T2,T3,T4,T5,T6>& item,
        std::istream& in 
    )
    {
        item._PRIVATE_deserialize(in);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_HoG_Hh_