This file is indexed.

/usr/share/doc/libcln-dev/html/cln.html is in libcln-dev 1.3.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>CLN, a Class Library for Numbers</title>

<meta name="description" content="CLN, a Class Library for Numbers">
<meta name="keywords" content="CLN, a Class Library for Numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="#Top" rel="start" title="Top">
<link href="#Index" rel="index" title="Index">
<link href="dir.html#Top" rel="up" title="(dir)">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<h1 class="settitle" align="center">CLN, a Class Library for Numbers</h1>



<a name="Top"></a>
<div class="header">
<p>
Next: <a href="#Introduction" accesskey="n" rel="next">Introduction</a>, Up: <a href="dir.html#Top" accesskey="u" rel="up">(dir)</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="CLN"></a>
<h1 class="top">CLN</h1>

<p>This manual documents <small>CLN</small>, a Class Library for Numbers.
</p>
<p>Published by Bruno Haible, <code>&lt;haible@clisp.cons.org&gt;</code> and
Richard B. Kreckel, <code>&lt;kreckel@ginac.de&gt;</code>.
</p>
<p>Copyright (C)  Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008.
Copyright (C)  Richard B. Kreckel 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014.
Copyright (C)  Alexei Sheplyakov 2008, 2010.
</p>
<p>Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
</p>
<p>Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
</p>
<p>Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
</p>




<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Introduction" accesskey="1">Introduction</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Installation" accesskey="2">Installation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Ordinary-number-types" accesskey="3">Ordinary number types</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-numbers" accesskey="4">Functions on numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Input_002fOutput" accesskey="5">Input/Output</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Rings" accesskey="6">Rings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Modular-integers" accesskey="7">Modular integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Symbolic-data-types" accesskey="8">Symbolic data types</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Univariate-polynomials" accesskey="9">Univariate polynomials</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Internals">Internals</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Using-the-library">Using the library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Customizing">Customizing</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Index">Index</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr><tr><th colspan="3" align="left" valign="top"><pre class="menu-comment"> &mdash; The Detailed Node Listing &mdash;

Installation

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Prerequisites">Prerequisites</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Building-the-library">Building the library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Installing-the-library">Installing the library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Cleaning-up">Cleaning up</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Prerequisites

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#C_002b_002b-compiler">C++ compiler</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Make-utility">Make utility</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Sed-utility">Sed utility</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Building the library

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Using-the-GNU-MP-Library">Using the GNU MP Library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Ordinary number types

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Exact-numbers">Exact numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Floating_002dpoint-numbers">Floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Complex-numbers">Complex numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversions">Conversions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Functions on numbers

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Constructing-numbers">Constructing numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-functions">Elementary functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-rational-functions">Elementary rational functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-complex-functions">Elementary complex functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Comparisons">Comparisons</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Rounding-functions">Rounding functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Roots">Roots</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Transcendental-functions">Transcendental functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-integers">Functions on integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversion-functions">Conversion functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Random-number-generators">Random number generators</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Modifying-operators">Modifying operators</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Constructing numbers

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Constructing-integers">Constructing integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-rational-numbers">Constructing rational numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-floating_002dpoint-numbers">Constructing floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-complex-numbers">Constructing complex numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Transcendental functions

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Trigonometric-functions">Trigonometric functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Hyperbolic-functions">Hyperbolic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Euler-gamma">Euler gamma</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Riemann-zeta">Riemann zeta</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Functions on integers

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Logical-functions">Logical functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Number-theoretic-functions">Number theoretic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Combinatorial-functions">Combinatorial functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Conversion functions

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversion-to-rational-numbers">Conversion to rational numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Input/Output

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Internal-and-printed-representation">Internal and printed representation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Input-functions">Input functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Output-functions">Output functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Modular integers

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Modular-integer-rings">Modular integer rings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-modular-integers">Functions on modular integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Symbolic data types

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Strings">Strings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Symbols">Symbols</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Univariate polynomials

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Univariate-polynomial-rings">Univariate polynomial rings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Special-polynomials">Special polynomials</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Internals

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Why-C_002b_002b-_003f">Why C++ ?</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Memory-efficiency">Memory efficiency</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Speed-efficiency">Speed efficiency</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Garbage-collection">Garbage collection</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Using the library

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Compiler-options">Compiler options</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Include-files">Include files</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#An-Example">An Example</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Debugging-support">Debugging support</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Reporting-Problems">Reporting Problems</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Customizing

</pre></th></tr><tr><td align="left" valign="top">&bull; <a href="#Error-handling">Error handling</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Floating_002dpoint-underflow">Floating-point underflow</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Customizing-I_002fO">Customizing I/O</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Customizing-the-memory-allocator">Customizing the memory allocator</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr></table>

<hr>
<a name="Introduction"></a>
<div class="header">
<p>
Next: <a href="#Installation" accesskey="n" rel="next">Installation</a>, Previous: <a href="#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-1"></a>
<h2 class="chapter">1 Introduction</h2>

<p>CLN is a library for computations with all kinds of numbers.
It has a rich set of number classes:
</p>
<ul>
<li> Integers (with unlimited precision),

</li><li> Rational numbers,

</li><li> Floating-point numbers:

<ul class="no-bullet">
<li>- Short float,
</li><li>- Single float,
</li><li>- Double float,
</li><li>- Long float (with unlimited precision),
</li></ul>

</li><li> Complex numbers,

</li><li> Modular integers (integers modulo a fixed integer),

</li><li> Univariate polynomials.
</li></ul>

<p>The subtypes of the complex numbers among these are exactly the
types of numbers known to the Common Lisp language. Therefore
<code>CLN</code> can be used for Common Lisp implementations, giving
&lsquo;<samp>CLN</samp>&rsquo; another meaning: it becomes an abbreviation of
&ldquo;Common Lisp Numbers&rdquo;.
</p>
<p>The CLN package implements
</p>
<ul>
<li> Elementary functions (<code>+</code>, <code>-</code>, <code>*</code>, <code>/</code>, <code>sqrt</code>,
comparisons, &hellip;),

</li><li> Logical functions (logical <code>and</code>, <code>or</code>, <code>not</code>, &hellip;),

</li><li> Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
functions and their inverse functions).
</li></ul>

<p>CLN is a C++ library. Using C++ as an implementation language provides
</p>
<ul>
<li> efficiency: it compiles to machine code,
</li><li> type safety: the C++ compiler knows about the number types and complains
if, for example, you try to assign a float to an integer variable.
</li><li> algebraic syntax: You can use the <code>+</code>, <code>-</code>, <code>*</code>, <code>=</code>,
<code>==</code>, &hellip; operators as in C or C++.
</li></ul>

<p>CLN is memory efficient:
</p>
<ul>
<li> Small integers and short floats are immediate, not heap allocated.
</li><li> Heap-allocated memory is reclaimed through an automatic, non-interruptive
garbage collection.
</li></ul>

<p>CLN is speed efficient:
</p>
<ul>
<li> The kernel of CLN has been written in assembly language for some CPUs
(<code>i386</code>, <code>m68k</code>, <code>sparc</code>, <code>mips</code>, <code>arm</code>).
</li><li> <a name="index-GMP"></a>
On all CPUs, CLN may be configured to use the superefficient low-level
routines from GNU GMP version 3.
</li><li> It uses Karatsuba multiplication, which is significantly faster
for large numbers than the standard multiplication algorithm.
</li><li> For very large numbers (more than 12000 decimal digits), it uses
multiplication, which is an asymptotically optimal multiplication
algorithm, for multiplication, division and radix conversion.
</li><li> <a name="index-binary-splitting"></a>
It uses binary splitting for fast evaluation of series of rational
numbers as they occur in the evaluation of elementary functions and some
constants.
</li></ul>

<p>CLN aims at being easily integrated into larger software packages:
</p>
<ul>
<li> The garbage collection imposes no burden on the main application.
</li><li> The library provides hooks for memory allocation and throws exceptions
in case of errors.
</li><li> <a name="index-namespace"></a>
All non-macro identifiers are hidden in namespace <code>cln</code> in 
order to avoid name clashes.
</li></ul>


<hr>
<a name="Installation"></a>
<div class="header">
<p>
Next: <a href="#Ordinary-number-types" accesskey="n" rel="next">Ordinary number types</a>, Previous: <a href="#Introduction" accesskey="p" rel="prev">Introduction</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Installation-1"></a>
<h2 class="chapter">2 Installation</h2>

<p>This section describes how to install the CLN package on your system.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Prerequisites" accesskey="1">Prerequisites</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Building-the-library" accesskey="2">Building the library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Installing-the-library" accesskey="3">Installing the library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Cleaning-up" accesskey="4">Cleaning up</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Prerequisites"></a>
<div class="header">
<p>
Next: <a href="#Building-the-library" accesskey="n" rel="next">Building the library</a>, Previous: <a href="#Installation" accesskey="p" rel="prev">Installation</a>, Up: <a href="#Installation" accesskey="u" rel="up">Installation</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Prerequisites-1"></a>
<h3 class="section">2.1 Prerequisites</h3>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#C_002b_002b-compiler" accesskey="1">C++ compiler</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Make-utility" accesskey="2">Make utility</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Sed-utility" accesskey="3">Sed utility</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="C_002b_002b-compiler"></a>
<div class="header">
<p>
Next: <a href="#Make-utility" accesskey="n" rel="next">Make utility</a>, Up: <a href="#Prerequisites" accesskey="u" rel="up">Prerequisites</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="C_002b_002b-compiler-1"></a>
<h4 class="subsection">2.1.1 C++ compiler</h4>

<p>To build CLN, you need a C++ compiler.
GNU <code>g++ 4.0.0</code> or newer is recommended.
</p>
<p>The following C++ features are used:
classes, member functions, overloading of functions and operators,
constructors and destructors, inline, const, multiple inheritance,
templates and namespaces.
</p>
<p>The following C++ features are not used:
<code>new</code>, <code>delete</code>, virtual inheritance.
</p>
<p>CLN relies on semi-automatic ordering of initializations of static and
global variables, a feature which I could implement for GNU g++
only. Also, it is not known whether this semi-automatic ordering works
on all platforms when a non-GNU assembler is being used.
</p>
<hr>
<a name="Make-utility"></a>
<div class="header">
<p>
Next: <a href="#Sed-utility" accesskey="n" rel="next">Sed utility</a>, Previous: <a href="#C_002b_002b-compiler" accesskey="p" rel="prev">C++ compiler</a>, Up: <a href="#Prerequisites" accesskey="u" rel="up">Prerequisites</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Make-utility-1"></a>
<h4 class="subsection">2.1.2 Make utility</h4>
<a name="index-make"></a>

<p>To build CLN, you also need to have GNU <code>make</code> installed.
</p>
<hr>
<a name="Sed-utility"></a>
<div class="header">
<p>
Previous: <a href="#Make-utility" accesskey="p" rel="prev">Make utility</a>, Up: <a href="#Prerequisites" accesskey="u" rel="up">Prerequisites</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Sed-utility-1"></a>
<h4 class="subsection">2.1.3 Sed utility</h4>
<a name="index-sed"></a>

<p>To build CLN on HP-UX, you also need to have GNU <code>sed</code> installed.
This is because the libtool script, which creates the CLN library, relies
on <code>sed</code>, and the vendor&rsquo;s <code>sed</code> utility on these systems is too
limited.
</p>

<hr>
<a name="Building-the-library"></a>
<div class="header">
<p>
Next: <a href="#Installing-the-library" accesskey="n" rel="next">Installing the library</a>, Previous: <a href="#Prerequisites" accesskey="p" rel="prev">Prerequisites</a>, Up: <a href="#Installation" accesskey="u" rel="up">Installation</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Building-the-library-1"></a>
<h3 class="section">2.2 Building the library</h3>

<p>As with any autoconfiguring GNU software, installation is as easy as this:
</p>
<div class="example">
<pre class="example">$ ./configure
$ make
$ make check
</pre></div>

<p>If on your system, &lsquo;<samp>make</samp>&rsquo; is not GNU <code>make</code>, you have to use
&lsquo;<samp>gmake</samp>&rsquo; instead of &lsquo;<samp>make</samp>&rsquo; above.
</p>
<p>The <code>configure</code> command checks out some features of your system and
C++ compiler and builds the <code>Makefile</code>s. The <code>make</code> command
builds the library. This step may take about half an hour on an average
workstation.  The <code>make check</code> runs some test to check that no
important subroutine has been miscompiled.
</p>
<p>The <code>configure</code> command accepts options. To get a summary of them, try
</p>
<div class="example">
<pre class="example">$ ./configure --help
</pre></div>

<p>Some of the options are explained in detail in the &lsquo;<samp>INSTALL.generic</samp>&rsquo; file.
</p>
<p>You can specify the C compiler, the C++ compiler and their options through
the following environment variables when running <code>configure</code>:
</p>
<dl compact="compact">
<dt><code>CC</code></dt>
<dd><p>Specifies the C compiler.
</p>
</dd>
<dt><code>CFLAGS</code></dt>
<dd><p>Flags to be given to the C compiler when compiling programs (not when linking).
</p>
</dd>
<dt><code>CXX</code></dt>
<dd><p>Specifies the C++ compiler.
</p>
</dd>
<dt><code>CXXFLAGS</code></dt>
<dd><p>Flags to be given to the C++ compiler when compiling programs (not when linking).
</p>
</dd>
<dt><code>CPPFLAGS</code></dt>
<dd><p>Flags to be given to the C/C++ preprocessor.
</p>
</dd>
<dt><code>LDFLAGS</code></dt>
<dd><p>Flags to be given to the linker.
</p></dd>
</dl>

<p>Examples:
</p>
<div class="example">
<pre class="example">$ CC=&quot;gcc&quot; CFLAGS=&quot;-O&quot; CXX=&quot;g++&quot; CXXFLAGS=&quot;-O&quot; ./configure
</pre></div>
<div class="example">
<pre class="example">$ CC=&quot;gcc -V 3.2.3&quot; CFLAGS=&quot;-O2 -finline-limit=1000&quot; \
  CXX=&quot;g++ -V 3.2.3&quot; CXXFLAGS=&quot;-O2 -finline-limit=1000&quot; \
  CPPFLAGS=&quot;-DNO_ASM&quot; ./configure
</pre></div>
<div class="example">
<pre class="example">$ CC=&quot;gcc-4.2&quot; CFLAGS=&quot;-O2&quot; CXX=&quot;g++-4.2&quot; CXXFLAGS=&quot;-O2&quot; ./configure
</pre></div>

<p>Note that for these environment variables to take effect, you have to set
them (assuming a Bourne-compatible shell) on the same line as the
<code>configure</code> command. If you made the settings in earlier shell
commands, you have to <code>export</code> the environment variables before
calling <code>configure</code>. In a <code>csh</code> shell, you have to use the
&lsquo;<samp>setenv</samp>&rsquo; command for setting each of the environment variables.
</p>
<p>Currently CLN works only with the GNU <code>g++</code> compiler, and only in
optimizing mode. So you should specify at least <code>-O</code> in the
CXXFLAGS, or no CXXFLAGS at all. If CXXFLAGS is not set, CLN will be
compiled with <code>-O</code>.
</p>
<p>The assembler language kernel can be turned off by specifying
<code>-DNO_ASM</code> in the CPPFLAGS. If <code>make check</code> reports any
problems, you may try to clean up (see <a href="#Cleaning-up">Cleaning up</a>) and configure
and compile again, this time with <code>-DNO_ASM</code>.
</p>
<p>If you use <code>g++</code> 3.2.x or earlier, I recommend adding
&lsquo;<samp>-finline-limit=1000</samp>&rsquo; to the CXXFLAGS. This is essential for good
code.
</p>
<p>If you use <code>g++</code> from gcc-3.0.4 or older on Sparc, add either
&lsquo;<samp>-O</samp>&rsquo;, &lsquo;<samp>-O1</samp>&rsquo; or &lsquo;<samp>-O2 -fno-schedule-insns</samp>&rsquo; to the
CXXFLAGS. With full &lsquo;<samp>-O2</samp>&rsquo;, <code>g++</code> miscompiles the division
routines. Also, do not use gcc-3.0 on Sparc for compiling CLN, it
won&rsquo;t work at all.
</p>
<p>Also, please do not compile CLN with <code>g++</code> using the <code>-O3</code>
optimization level.  This leads to inferior code quality.
</p>
<p>Some newer versions of <code>g++</code> require quite an amount of memory.
You might need some swap space if your machine doesn&rsquo;t have 512 MB of
RAM.
</p>
<p>By default, both a shared and a static library are built.  You can build
CLN as a static (or shared) library only, by calling <code>configure</code>
with the option &lsquo;<samp>--disable-shared</samp>&rsquo; (or &lsquo;<samp>--disable-static</samp>&rsquo;).
While shared libraries are usually more convenient to use, they may not
work on all architectures.  Try disabling them if you run into linker
problems.  Also, they are generally slightly slower than static
libraries so runtime-critical applications should be linked statically.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Using-the-GNU-MP-Library" accesskey="1">Using the GNU MP Library</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Using-the-GNU-MP-Library"></a>
<div class="header">
<p>
Up: <a href="#Building-the-library" accesskey="u" rel="up">Building the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-the-GNU-MP-Library-1"></a>
<h4 class="subsection">2.2.1 Using the GNU MP Library</h4>
<a name="index-GMP-1"></a>

<p>CLN may be configured to make use of a preinstalled <code>gmp</code> library
for some low-level routines.  Please make sure that you have at least
<code>gmp</code> version 3.0 installed since earlier versions are unsupported
and likely not to work.  Using <code>gmp</code> is known to be quite a boost
for CLN&rsquo;s performance.
</p>
<p>By default, CLN will autodetect <code>gmp</code> and use it. If you do not
want CLN to make use of a preinstalled <code>gmp</code> library, then you can
explicitly specify so by calling <code>configure</code> with the option
&lsquo;<samp>--without-gmp</samp>&rsquo;.
</p>
<p>If you have installed the <code>gmp</code> library and its header files in
some place where the compiler cannot find it by default, you must help
<code>configure</code> and specify the prefix that was used when <code>gmp</code>
was configured. Here is an example:
</p>
<div class="example">
<pre class="example">$ ./configure --with-gmp=/opt/gmp-4.2.2
</pre></div>

<p>This assumes that the <code>gmp</code> header files have been installed in
<samp>/opt/gmp-4.2.2/include/</samp> and the library in
<samp>/opt/gmp-4.2.2/lib/</samp>. More uncommon GMP installations can be
handled by setting CPPFLAGS and LDFLAGS appropriately prior to running
<code>configure</code>.
</p>

<hr>
<a name="Installing-the-library"></a>
<div class="header">
<p>
Next: <a href="#Cleaning-up" accesskey="n" rel="next">Cleaning up</a>, Previous: <a href="#Building-the-library" accesskey="p" rel="prev">Building the library</a>, Up: <a href="#Installation" accesskey="u" rel="up">Installation</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Installing-the-library-1"></a>
<h3 class="section">2.3 Installing the library</h3>
<a name="index-installation"></a>

<p>As with any autoconfiguring GNU software, installation is as easy as this:
</p>
<div class="example">
<pre class="example">$ make install
</pre></div>

<p>The &lsquo;<samp>make install</samp>&rsquo; command installs the library and the include files
into public places (<samp>/usr/local/lib/</samp> and <samp>/usr/local/include/</samp>,
if you haven&rsquo;t specified a <code>--prefix</code> option to <code>configure</code>).
This step may require superuser privileges.
</p>
<p>If you have already built the library and wish to install it, but didn&rsquo;t
specify <code>--prefix=&hellip;</code> at configure time, just re-run
<code>configure</code>, giving it the same options as the first time, plus
the <code>--prefix=&hellip;</code> option.
</p>

<hr>
<a name="Cleaning-up"></a>
<div class="header">
<p>
Previous: <a href="#Installing-the-library" accesskey="p" rel="prev">Installing the library</a>, Up: <a href="#Installation" accesskey="u" rel="up">Installation</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cleaning-up-1"></a>
<h3 class="section">2.4 Cleaning up</h3>

<p>You can remove system-dependent files generated by <code>make</code> through
</p>
<div class="example">
<pre class="example">$ make clean
</pre></div>

<p>You can remove all files generated by <code>make</code>, thus reverting to a
virgin distribution of CLN, through
</p>
<div class="example">
<pre class="example">$ make distclean
</pre></div>


<hr>
<a name="Ordinary-number-types"></a>
<div class="header">
<p>
Next: <a href="#Functions-on-numbers" accesskey="n" rel="next">Functions on numbers</a>, Previous: <a href="#Installation" accesskey="p" rel="prev">Installation</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Ordinary-number-types-1"></a>
<h2 class="chapter">3 Ordinary number types</h2>

<p>CLN implements the following class hierarchy:
</p>
<div class="example">
<pre class="example">                        Number
                      cl_number
                    &lt;cln/number.h&gt;
                          |
                          |
                 Real or complex number
                        cl_N
                    &lt;cln/complex.h&gt;
                          |
                          |
                     Real number
                        cl_R
                     &lt;cln/real.h&gt;
                          |
      +-------------------+-------------------+
      |                                       |
Rational number                     Floating-point number
    cl_RA                                   cl_F
&lt;cln/rational.h&gt;                         &lt;cln/float.h&gt;
      |                                       |
      |                +--------------+--------------+--------------+
   Integer             |              |              |              |
    cl_I          Short-Float    Single-Float   Double-Float    Long-Float
&lt;cln/integer.h&gt;      cl_SF          cl_FF          cl_DF          cl_LF
                 &lt;cln/sfloat.h&gt; &lt;cln/ffloat.h&gt; &lt;cln/dfloat.h&gt; &lt;cln/lfloat.h&gt;
</pre></div>

<a name="index-cl_005fnumber"></a>
<a name="index-abstract-class"></a>
<p>The base class <code>cl_number</code> is an abstract base class.
It is not useful to declare a variable of this type except if you want
to completely disable compile-time type checking and use run-time type
checking instead.
</p>
<a name="index-cl_005fN"></a>
<a name="index-real-number"></a>
<a name="index-complex-number"></a>
<p>The class <code>cl_N</code> comprises real and complex numbers. There is
no special class for complex numbers since complex numbers with imaginary
part <code>0</code> are automatically converted to real numbers.
</p>
<a name="index-cl_005fR"></a>
<p>The class <code>cl_R</code> comprises real numbers of different kinds. It is an
abstract class.
</p>
<a name="index-cl_005fRA"></a>
<a name="index-rational-number"></a>
<a name="index-integer"></a>
<p>The class <code>cl_RA</code> comprises exact real numbers: rational numbers, including
integers. There is no special class for non-integral rational numbers
since rational numbers with denominator <code>1</code> are automatically converted
to integers.
</p>
<a name="index-cl_005fF"></a>
<p>The class <code>cl_F</code> implements floating-point approximations to real numbers.
It is an abstract class.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Exact-numbers" accesskey="1">Exact numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Floating_002dpoint-numbers" accesskey="2">Floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Complex-numbers" accesskey="3">Complex numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversions" accesskey="4">Conversions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Exact-numbers"></a>
<div class="header">
<p>
Next: <a href="#Floating_002dpoint-numbers" accesskey="n" rel="next">Floating-point numbers</a>, Up: <a href="#Ordinary-number-types" accesskey="u" rel="up">Ordinary number types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Exact-numbers-1"></a>
<h3 class="section">3.1 Exact numbers</h3>
<a name="index-exact-number"></a>

<p>Some numbers are represented as exact numbers: there is no loss of information
when such a number is converted from its mathematical value to its internal
representation. On exact numbers, the elementary operations (<code>+</code>,
<code>-</code>, <code>*</code>, <code>/</code>, comparisons, &hellip;) compute the completely
correct result.
</p>
<p>In CLN, the exact numbers are:
</p>
<ul>
<li> rational numbers (including integers),
</li><li> complex numbers whose real and imaginary parts are both rational numbers.
</li></ul>

<p>Rational numbers are always normalized to the form
<code><var>numerator</var>/<var>denominator</var></code> where the numerator and denominator
are coprime integers and the denominator is positive. If the resulting
denominator is <code>1</code>, the rational number is converted to an integer.
</p>
<a name="index-immediate-numbers"></a>
<p>Small integers (typically in the range <code>-2^29</code>&hellip;<code>2^29-1</code>,
for 32-bit machines) are especially efficient, because they consume no heap
allocation. Otherwise the distinction between these immediate integers
(called &ldquo;fixnums&rdquo;) and heap allocated integers (called &ldquo;bignums&rdquo;)
is completely transparent.
</p>

<hr>
<a name="Floating_002dpoint-numbers"></a>
<div class="header">
<p>
Next: <a href="#Complex-numbers" accesskey="n" rel="next">Complex numbers</a>, Previous: <a href="#Exact-numbers" accesskey="p" rel="prev">Exact numbers</a>, Up: <a href="#Ordinary-number-types" accesskey="u" rel="up">Ordinary number types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Floating_002dpoint-numbers-1"></a>
<h3 class="section">3.2 Floating-point numbers</h3>
<a name="index-floating_002dpoint-number"></a>

<p>Not all real numbers can be represented exactly. (There is an easy mathematical
proof for this: Only a countable set of numbers can be stored exactly in
a computer, even if one assumes that it has unlimited storage. But there
are uncountably many real numbers.) So some approximation is needed.
CLN implements ordinary floating-point numbers, with mantissa and exponent.
</p>
<a name="index-rounding-error"></a>
<p>The elementary operations (<code>+</code>, <code>-</code>, <code>*</code>, <code>/</code>, &hellip;)
only return approximate results. For example, the value of the expression
<code>(cl_F) 0.3 + (cl_F) 0.4</code> prints as &lsquo;<samp>0.70000005</samp>&rsquo;, not as
&lsquo;<samp>0.7</samp>&rsquo;. Rounding errors like this one are inevitable when computing
with floating-point numbers.
</p>
<p>Nevertheless, CLN rounds the floating-point results of the operations <code>+</code>,
<code>-</code>, <code>*</code>, <code>/</code>, <code>sqrt</code> according to the &ldquo;round-to-even&rdquo;
rule: It first computes the exact mathematical result and then returns the
floating-point number which is nearest to this. If two floating-point numbers
are equally distant from the ideal result, the one with a <code>0</code> in its least
significant mantissa bit is chosen.
</p>
<p>Similarly, testing floating point numbers for equality &lsquo;<samp>x == y</samp>&rsquo;
is gambling with random errors. Better check for &lsquo;<samp>abs(x - y) &lt; epsilon</samp>&rsquo;
for some well-chosen <code>epsilon</code>.
</p>
<p>Floating point numbers come in four flavors:
</p>
<ul>
<li> <a name="index-cl_005fSF"></a>
Short floats, type <code>cl_SF</code>.
They have 1 sign bit, 8 exponent bits (including the exponent&rsquo;s sign),
and 17 mantissa bits (including the &ldquo;hidden&rdquo; bit).
They don&rsquo;t consume heap allocation.

</li><li> <a name="index-cl_005fFF"></a>
Single floats, type <code>cl_FF</code>.
They have 1 sign bit, 8 exponent bits (including the exponent&rsquo;s sign),
and 24 mantissa bits (including the &ldquo;hidden&rdquo; bit).
In CLN, they are represented as IEEE single-precision floating point numbers.
This corresponds closely to the C/C++ type &lsquo;<samp>float</samp>&rsquo;.

</li><li> <a name="index-cl_005fDF"></a>
Double floats, type <code>cl_DF</code>.
They have 1 sign bit, 11 exponent bits (including the exponent&rsquo;s sign),
and 53 mantissa bits (including the &ldquo;hidden&rdquo; bit).
In CLN, they are represented as IEEE double-precision floating point numbers.
This corresponds closely to the C/C++ type &lsquo;<samp>double</samp>&rsquo;.

</li><li> <a name="index-cl_005fLF"></a>
Long floats, type <code>cl_LF</code>.
They have 1 sign bit, 32 exponent bits (including the exponent&rsquo;s sign),
and n mantissa bits (including the &ldquo;hidden&rdquo; bit), where n &gt;= 64.
The precision of a long float is unlimited, but once created, a long float
has a fixed precision. (No &ldquo;lazy recomputation&rdquo;.)
</li></ul>

<p>Of course, computations with long floats are more expensive than those
with smaller floating-point formats.
</p>
<p>CLN does not implement features like NaNs, denormalized numbers and
gradual underflow. If the exponent range of some floating-point type
is too limited for your application, choose another floating-point type
with larger exponent range.
</p>
<a name="index-cl_005fF-1"></a>
<p>As a user of CLN, you can forget about the differences between the
four floating-point types and just declare all your floating-point
variables as being of type <code>cl_F</code>. This has the advantage that
when you change the precision of some computation (say, from <code>cl_DF</code>
to <code>cl_LF</code>), you don&rsquo;t have to change the code, only the precision
of the initial values. Also, many transcendental functions have been
declared as returning a <code>cl_F</code> when the argument is a <code>cl_F</code>,
but such declarations are missing for the types <code>cl_SF</code>, <code>cl_FF</code>,
<code>cl_DF</code>, <code>cl_LF</code>. (Such declarations would be wrong if
the floating point contagion rule happened to change in the future.)
</p>

<hr>
<a name="Complex-numbers"></a>
<div class="header">
<p>
Next: <a href="#Conversions" accesskey="n" rel="next">Conversions</a>, Previous: <a href="#Floating_002dpoint-numbers" accesskey="p" rel="prev">Floating-point numbers</a>, Up: <a href="#Ordinary-number-types" accesskey="u" rel="up">Ordinary number types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Complex-numbers-1"></a>
<h3 class="section">3.3 Complex numbers</h3>
<a name="index-complex-number-1"></a>

<p>Complex numbers, as implemented by the class <code>cl_N</code>, have a real
part and an imaginary part, both real numbers. A complex number whose
imaginary part is the exact number <code>0</code> is automatically converted
to a real number.
</p>
<p>Complex numbers can arise from real numbers alone, for example
through application of <code>sqrt</code> or transcendental functions.
</p>

<hr>
<a name="Conversions"></a>
<div class="header">
<p>
Previous: <a href="#Complex-numbers" accesskey="p" rel="prev">Complex numbers</a>, Up: <a href="#Ordinary-number-types" accesskey="u" rel="up">Ordinary number types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conversions-1"></a>
<h3 class="section">3.4 Conversions</h3>
<a name="index-conversion"></a>

<p>Conversions from any class to any its superclasses (&ldquo;base classes&rdquo; in
C++ terminology) is done automatically.
</p>
<p>Conversions from the C built-in types &lsquo;<samp>long</samp>&rsquo; and &lsquo;<samp>unsigned long</samp>&rsquo;
are provided for the classes <code>cl_I</code>, <code>cl_RA</code>, <code>cl_R</code>,
<code>cl_N</code> and <code>cl_number</code>.
</p>
<p>Conversions from the C built-in types &lsquo;<samp>int</samp>&rsquo; and &lsquo;<samp>unsigned int</samp>&rsquo;
are provided for the classes <code>cl_I</code>, <code>cl_RA</code>, <code>cl_R</code>,
<code>cl_N</code> and <code>cl_number</code>. However, these conversions emphasize
efficiency. On 32-bit systems, their range is therefore limited:
</p>
<ul class="no-bullet">
<li>- The conversion from &lsquo;<samp>int</samp>&rsquo; works only if the argument is &lt; 2^29 and &gt;= -2^29.
</li><li>- The conversion from &lsquo;<samp>unsigned int</samp>&rsquo; works only if the argument is &lt; 2^29.
</li></ul>

<p>In a declaration like &lsquo;<samp>cl_I x = 10;</samp>&rsquo; the C++ compiler is able to
do the conversion of <code>10</code> from &lsquo;<samp>int</samp>&rsquo; to &lsquo;<samp>cl_I</samp>&rsquo; at compile time
already. On the other hand, code like &lsquo;<samp>cl_I x = 1000000000;</samp>&rsquo; is
in error on 32-bit machines.
So, if you want to be sure that an &lsquo;<samp>int</samp>&rsquo; whose magnitude is not guaranteed
to be &lt; 2^29 is correctly converted to a &lsquo;<samp>cl_I</samp>&rsquo;, first convert it to a
&lsquo;<samp>long</samp>&rsquo;. Similarly, if a large &lsquo;<samp>unsigned int</samp>&rsquo; is to be converted to a
&lsquo;<samp>cl_I</samp>&rsquo;, first convert it to an &lsquo;<samp>unsigned long</samp>&rsquo;. On 64-bit machines
there is no such restriction. There, conversions from arbitrary 32-bit &lsquo;<samp>int</samp>&rsquo;
values always works correctly.
</p>
<p>Conversions from the C built-in type &lsquo;<samp>float</samp>&rsquo; are provided for the classes
<code>cl_FF</code>, <code>cl_F</code>, <code>cl_R</code>, <code>cl_N</code> and <code>cl_number</code>.
</p>
<p>Conversions from the C built-in type &lsquo;<samp>double</samp>&rsquo; are provided for the classes
<code>cl_DF</code>, <code>cl_F</code>, <code>cl_R</code>, <code>cl_N</code> and <code>cl_number</code>.
</p>
<p>Conversions from &lsquo;<samp>const char *</samp>&rsquo; are provided for the classes
<code>cl_I</code>, <code>cl_RA</code>,
<code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>, <code>cl_F</code>,
<code>cl_R</code>, <code>cl_N</code>.
The easiest way to specify a value which is outside of the range of the
C++ built-in types is therefore to specify it as a string, like this:
<a name="index-Rubik_0027s-cube"></a>
</p><div class="example">
<pre class="example">   cl_I order_of_rubiks_cube_group = &quot;43252003274489856000&quot;;
</pre></div>
<p>Note that this conversion is done at runtime, not at compile-time.
</p>
<p>Conversions from <code>cl_I</code> to the C built-in types &lsquo;<samp>int</samp>&rsquo;,
&lsquo;<samp>unsigned int</samp>&rsquo;, &lsquo;<samp>long</samp>&rsquo;, &lsquo;<samp>unsigned long</samp>&rsquo; are provided through
the functions
</p>
<dl compact="compact">
<dt><code>int cl_I_to_int (const cl_I&amp; x)</code></dt>
<dd><a name="index-cl_005fI_005fto_005fint-_0028_0029"></a>
</dd>
<dt><code>unsigned int cl_I_to_uint (const cl_I&amp; x)</code></dt>
<dd><a name="index-cl_005fI_005fto_005fuint-_0028_0029"></a>
</dd>
<dt><code>long cl_I_to_long (const cl_I&amp; x)</code></dt>
<dd><a name="index-cl_005fI_005fto_005flong-_0028_0029"></a>
</dd>
<dt><code>unsigned long cl_I_to_ulong (const cl_I&amp; x)</code></dt>
<dd><a name="index-cl_005fI_005fto_005fulong-_0028_0029"></a>
<p>Returns <code>x</code> as element of the C type <var>ctype</var>. If <code>x</code> is not
representable in the range of <var>ctype</var>, a runtime error occurs.
</p></dd>
</dl>

<p>Conversions from the classes <code>cl_I</code>, <code>cl_RA</code>,
<code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>, <code>cl_F</code> and
<code>cl_R</code>
to the C built-in types &lsquo;<samp>float</samp>&rsquo; and &lsquo;<samp>double</samp>&rsquo; are provided through
the functions
</p>
<dl compact="compact">
<dt><code>float float_approx (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fapprox-_0028_0029"></a>
</dd>
<dt><code>double double_approx (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-double_005fapprox-_0028_0029"></a>
<p>Returns an approximation of <code>x</code> of C type <var>ctype</var>.
If <code>abs(x)</code> is too close to 0 (underflow), 0 is returned.
If <code>abs(x)</code> is too large (overflow), an IEEE infinity is returned.
</p></dd>
</dl>

<p>Conversions from any class to any of its subclasses (&ldquo;derived classes&rdquo; in
C++ terminology) are not provided. Instead, you can assert and check
that a value belongs to a certain subclass, and return it as element of that
class, using the &lsquo;<samp>As</samp>&rsquo; and &lsquo;<samp>The</samp>&rsquo; macros.
<a name="index-cast"></a>
<a name="index-As_0028_0029_0028_0029"></a>
<code>As(<var>type</var>)(<var>value</var>)</code> checks that <var>value</var> belongs to
<var>type</var> and returns it as such.
<a name="index-The_0028_0029_0028_0029"></a>
<code>The(<var>type</var>)(<var>value</var>)</code> assumes that <var>value</var> belongs to
<var>type</var> and returns it as such. It is your responsibility to ensure
that this assumption is valid.  Since macros and namespaces don&rsquo;t go
together well, there is an equivalent to &lsquo;<samp>The</samp>&rsquo;: the template
&lsquo;<samp>the</samp>&rsquo;.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">   cl_I x = &hellip;;
   if (!(x &gt;= 0)) abort();
   cl_I ten_x_a = The(cl_I)(expt(10,x)); // If x &gt;= 0, 10^x is an integer.
                // In general, it would be a rational number.
   cl_I ten_x_b = the&lt;cl_I&gt;(expt(10,x)); // The same as above.
</pre></div>


<hr>
<a name="Functions-on-numbers"></a>
<div class="header">
<p>
Next: <a href="#Input_002fOutput" accesskey="n" rel="next">Input/Output</a>, Previous: <a href="#Ordinary-number-types" accesskey="p" rel="prev">Ordinary number types</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-on-numbers-1"></a>
<h2 class="chapter">4 Functions on numbers</h2>

<p>Each of the number classes declares its mathematical operations in the
corresponding include file. For example, if your code operates with
objects of type <code>cl_I</code>, it should <code>#include &lt;cln/integer.h&gt;</code>.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Constructing-numbers" accesskey="1">Constructing numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-functions" accesskey="2">Elementary functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-rational-functions" accesskey="3">Elementary rational functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Elementary-complex-functions" accesskey="4">Elementary complex functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Comparisons" accesskey="5">Comparisons</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Rounding-functions" accesskey="6">Rounding functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Roots" accesskey="7">Roots</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Transcendental-functions" accesskey="8">Transcendental functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-integers" accesskey="9">Functions on integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversion-functions">Conversion functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Random-number-generators">Random number generators</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Modifying-operators">Modifying operators</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Constructing-numbers"></a>
<div class="header">
<p>
Next: <a href="#Elementary-functions" accesskey="n" rel="next">Elementary functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-numbers-1"></a>
<h3 class="section">4.1 Constructing numbers</h3>

<p>Here is how to create number objects &ldquo;from nothing&rdquo;.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Constructing-integers" accesskey="1">Constructing integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-rational-numbers" accesskey="2">Constructing rational numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-floating_002dpoint-numbers" accesskey="3">Constructing floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Constructing-complex-numbers" accesskey="4">Constructing complex numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Constructing-integers"></a>
<div class="header">
<p>
Next: <a href="#Constructing-rational-numbers" accesskey="n" rel="next">Constructing rational numbers</a>, Up: <a href="#Constructing-numbers" accesskey="u" rel="up">Constructing numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-integers-1"></a>
<h4 class="subsection">4.1.1 Constructing integers</h4>

<p><code>cl_I</code> objects are most easily constructed from C integers and from
strings. See <a href="#Conversions">Conversions</a>.
</p>

<hr>
<a name="Constructing-rational-numbers"></a>
<div class="header">
<p>
Next: <a href="#Constructing-floating_002dpoint-numbers" accesskey="n" rel="next">Constructing floating-point numbers</a>, Previous: <a href="#Constructing-integers" accesskey="p" rel="prev">Constructing integers</a>, Up: <a href="#Constructing-numbers" accesskey="u" rel="up">Constructing numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-rational-numbers-1"></a>
<h4 class="subsection">4.1.2 Constructing rational numbers</h4>

<p><code>cl_RA</code> objects can be constructed from strings. The syntax
for rational numbers is described in <a href="#Internal-and-printed-representation">Internal and printed representation</a>.
Another standard way to produce a rational number is through application
of &lsquo;<samp>operator /</samp>&rsquo; or &lsquo;<samp>recip</samp>&rsquo; on integers.
</p>

<hr>
<a name="Constructing-floating_002dpoint-numbers"></a>
<div class="header">
<p>
Next: <a href="#Constructing-complex-numbers" accesskey="n" rel="next">Constructing complex numbers</a>, Previous: <a href="#Constructing-rational-numbers" accesskey="p" rel="prev">Constructing rational numbers</a>, Up: <a href="#Constructing-numbers" accesskey="u" rel="up">Constructing numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-floating_002dpoint-numbers-1"></a>
<h4 class="subsection">4.1.3 Constructing floating-point numbers</h4>

<p><code>cl_F</code> objects with low precision are most easily constructed from
C &lsquo;<samp>float</samp>&rsquo; and &lsquo;<samp>double</samp>&rsquo;. See <a href="#Conversions">Conversions</a>.
</p>
<p>To construct a <code>cl_F</code> with high precision, you can use the conversion
from &lsquo;<samp>const char *</samp>&rsquo;, but you have to specify the desired precision
within the string. (See <a href="#Internal-and-printed-representation">Internal and printed representation</a>.)
Example:
</p><div class="example">
<pre class="example">   cl_F e = &quot;0.271828182845904523536028747135266249775724709369996e+1_40&quot;;
</pre></div>
<p>will set &lsquo;<samp>e</samp>&rsquo; to the given value, with a precision of 40 decimal digits.
</p>
<p>The programmatic way to construct a <code>cl_F</code> with high precision is
through the <code>cl_float</code> conversion function, see
<a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a>. For example, to compute
<code>e</code> to 40 decimal places, first construct 1.0 to 40 decimal places
and then apply the exponential function:
</p><div class="example">
<pre class="example">   float_format_t precision = float_format(40);
   cl_F e = exp(cl_float(1,precision));
</pre></div>


<hr>
<a name="Constructing-complex-numbers"></a>
<div class="header">
<p>
Previous: <a href="#Constructing-floating_002dpoint-numbers" accesskey="p" rel="prev">Constructing floating-point numbers</a>, Up: <a href="#Constructing-numbers" accesskey="u" rel="up">Constructing numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Constructing-complex-numbers-1"></a>
<h4 class="subsection">4.1.4 Constructing complex numbers</h4>

<p>Non-real <code>cl_N</code> objects are normally constructed through the function
</p><div class="example">
<pre class="example">   cl_N complex (const cl_R&amp; realpart, const cl_R&amp; imagpart)
</pre></div>
<p>See <a href="#Elementary-complex-functions">Elementary complex functions</a>.
</p>

<hr>
<a name="Elementary-functions"></a>
<div class="header">
<p>
Next: <a href="#Elementary-rational-functions" accesskey="n" rel="next">Elementary rational functions</a>, Previous: <a href="#Constructing-numbers" accesskey="p" rel="prev">Constructing numbers</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Elementary-functions-1"></a>
<h3 class="section">4.2 Elementary functions</h3>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code><var>type</var> operator + (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002b-_0028_0029"></a>
<p>Addition.
</p>
</dd>
<dt><code><var>type</var> operator - (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002d-_0028_0029"></a>
<p>Subtraction.
</p>
</dd>
<dt><code><var>type</var> operator - (const <var>type</var>&amp;)</code></dt>
<dd><p>Returns the negative of the argument.
</p>
</dd>
<dt><code><var>type</var> plus1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-plus1-_0028_0029"></a>
<p>Returns <code>x + 1</code>.
</p>
</dd>
<dt><code><var>type</var> minus1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-minus1-_0028_0029"></a>
<p>Returns <code>x - 1</code>.
</p>
</dd>
<dt><code><var>type</var> operator * (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002a-_0028_0029"></a>
<p>Multiplication.
</p>
</dd>
<dt><code><var>type</var> square (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-square-_0028_0029"></a>
<p>Returns <code>x * x</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code><var>type</var> operator / (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002f-_0028_0029"></a>
<p>Division.
</p>
</dd>
<dt><code><var>type</var> recip (const <var>type</var>&amp;)</code></dt>
<dd><a name="index-recip-_0028_0029"></a>
<p>Returns the reciprocal of the argument.
</p></dd>
</dl>

<p>The class <code>cl_I</code> doesn&rsquo;t define a &lsquo;<samp>/</samp>&rsquo; operation because
in the C/C++ language this operator, applied to integral types,
denotes the &lsquo;<samp>floor</samp>&rsquo; or &lsquo;<samp>truncate</samp>&rsquo; operation (which one of these,
is implementation dependent). (See <a href="#Rounding-functions">Rounding functions</a>.)
Instead, <code>cl_I</code> defines an &ldquo;exact quotient&rdquo; function:
</p>
<dl compact="compact">
<dt><code>cl_I exquo (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-exquo-_0028_0029"></a>
<p>Checks that <code>y</code> divides <code>x</code>, and returns the quotient <code>x</code>/<code>y</code>.
</p></dd>
</dl>

<p>The following exponentiation functions are defined:
</p>
<dl compact="compact">
<dt><code>cl_I expt_pos (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt_005fpos-_0028_0029"></a>
</dd>
<dt><code>cl_RA expt_pos (const cl_RA&amp; x, const cl_I&amp; y)</code></dt>
<dd><p><code>y</code> must be &gt; 0. Returns <code>x^y</code>.
</p>
</dd>
<dt><code>cl_RA expt (const cl_RA&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt-_0028_0029"></a>
</dd>
<dt><code>cl_R expt (const cl_R&amp; x, const cl_I&amp; y)</code></dt>
<dt><code>cl_N expt (const cl_N&amp; x, const cl_I&amp; y)</code></dt>
<dd><p>Returns <code>x^y</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operation:
</p>
<dl compact="compact">
<dt><code><var>type</var> abs (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-abs-_0028_0029"></a>
<p>Returns the absolute value of <code>x</code>.
This is <code>x</code> if <code>x &gt;= 0</code>, and <code>-x</code> if <code>x &lt;= 0</code>.
</p></dd>
</dl>

<p>The class <code>cl_N</code> implements this as follows:
</p>
<dl compact="compact">
<dt><code>cl_R abs (const cl_N x)</code></dt>
<dd><p>Returns the absolute value of <code>x</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operation:
</p>
<dl compact="compact">
<dt><code><var>type</var> signum (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-signum-_0028_0029"></a>
<p>Returns the sign of <code>x</code>, in the same number format as <code>x</code>.
This is defined as <code>x / abs(x)</code> if <code>x</code> is non-zero, and
<code>x</code> if <code>x</code> is zero. If <code>x</code> is real, the value is either
0 or 1 or -1.
</p></dd>
</dl>


<hr>
<a name="Elementary-rational-functions"></a>
<div class="header">
<p>
Next: <a href="#Elementary-complex-functions" accesskey="n" rel="next">Elementary complex functions</a>, Previous: <a href="#Elementary-functions" accesskey="p" rel="prev">Elementary functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Elementary-rational-functions-1"></a>
<h3 class="section">4.3 Elementary rational functions</h3>

<p>Each of the classes <code>cl_RA</code>, <code>cl_I</code> defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_I numerator (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-numerator-_0028_0029"></a>
<p>Returns the numerator of <code>x</code>.
</p>
</dd>
<dt><code>cl_I denominator (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-denominator-_0028_0029"></a>
<p>Returns the denominator of <code>x</code>.
</p></dd>
</dl>

<p>The numerator and denominator of a rational number are normalized in such
a way that they have no factor in common and the denominator is positive.
</p>

<hr>
<a name="Elementary-complex-functions"></a>
<div class="header">
<p>
Next: <a href="#Comparisons" accesskey="n" rel="next">Comparisons</a>, Previous: <a href="#Elementary-rational-functions" accesskey="p" rel="prev">Elementary rational functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Elementary-complex-functions-1"></a>
<h3 class="section">4.4 Elementary complex functions</h3>

<p>The class <code>cl_N</code> defines the following operation:
</p>
<dl compact="compact">
<dt><code>cl_N complex (const cl_R&amp; a, const cl_R&amp; b)</code></dt>
<dd><a name="index-complex-_0028_0029"></a>
<p>Returns the complex number <code>a+bi</code>, that is, the complex number with
real part <code>a</code> and imaginary part <code>b</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code> defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_R realpart (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-realpart-_0028_0029"></a>
<p>Returns the real part of <code>x</code>.
</p>
</dd>
<dt><code>cl_R imagpart (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-imagpart-_0028_0029"></a>
<p>Returns the imaginary part of <code>x</code>.
</p>
</dd>
<dt><code><var>type</var> conjugate (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-conjugate-_0028_0029"></a>
<p>Returns the complex conjugate of <code>x</code>.
</p></dd>
</dl>

<p>We have the relations
</p>
<ul class="no-bullet">
<li><!-- /@w --> <code>x = complex(realpart(x), imagpart(x))</code>
</li><li><!-- /@w --> <code>conjugate(x) = complex(realpart(x), -imagpart(x))</code>
</li></ul>


<hr>
<a name="Comparisons"></a>
<div class="header">
<p>
Next: <a href="#Rounding-functions" accesskey="n" rel="next">Rounding functions</a>, Previous: <a href="#Elementary-complex-functions" accesskey="p" rel="prev">Elementary complex functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Comparisons-1"></a>
<h3 class="section">4.5 Comparisons</h3>
<a name="index-comparison"></a>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>bool operator == (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003d_003d-_0028_0029"></a>
</dd>
<dt><code>bool operator != (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_0021_003d-_0028_0029"></a>
<p>Comparison, as in C and C++.
</p>
</dd>
<dt><code>uint32 equal_hashcode (const <var>type</var>&amp;)</code></dt>
<dd><a name="index-equal_005fhashcode-_0028_0029"></a>
<p>Returns a 32-bit hash code that is the same for any two numbers which are
the same according to <code>==</code>. This hash code depends on the number&rsquo;s value,
not its type or precision.
</p>
</dd>
<dt><code>bool zerop (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-zerop-_0028_0029"></a>
<p>Compare against zero: <code>x == 0</code>
</p></dd>
</dl>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_signean compare (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-compare-_0028_0029"></a>
<p>Compares <code>x</code> and <code>y</code>. Returns +1 if <code>x</code>&gt;<code>y</code>,
-1 if <code>x</code>&lt;<code>y</code>, 0 if <code>x</code>=<code>y</code>.
</p>
</dd>
<dt><code>bool operator &lt;= (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003c_003d-_0028_0029"></a>
</dd>
<dt><code>bool operator &lt; (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003c-_0028_0029"></a>
</dd>
<dt><code>bool operator &gt;= (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003e_003d-_0028_0029"></a>
</dd>
<dt><code>bool operator &gt; (const <var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003e-_0028_0029"></a>
<p>Comparison, as in C and C++.
</p>
</dd>
<dt><code>bool minusp (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-minusp-_0028_0029"></a>
<p>Compare against zero: <code>x &lt; 0</code>
</p>
</dd>
<dt><code>bool plusp (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-plusp-_0028_0029"></a>
<p>Compare against zero: <code>x &gt; 0</code>
</p>
</dd>
<dt><code><var>type</var> max (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-max-_0028_0029"></a>
<p>Return the maximum of <code>x</code> and <code>y</code>.
</p>
</dd>
<dt><code><var>type</var> min (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-min-_0028_0029"></a>
<p>Return the minimum of <code>x</code> and <code>y</code>.
</p></dd>
</dl>

<p>When a floating point number and a rational number are compared, the float
is first converted to a rational number using the function <code>rational</code>.
Since a floating point number actually represents an interval of real numbers,
the result might be surprising.
For example, <code>(cl_F)(cl_R)&quot;1/3&quot; == (cl_R)&quot;1/3&quot;</code> returns false because
there is no floating point number whose value is exactly <code>1/3</code>.
</p>

<hr>
<a name="Rounding-functions"></a>
<div class="header">
<p>
Next: <a href="#Roots" accesskey="n" rel="next">Roots</a>, Previous: <a href="#Comparisons" accesskey="p" rel="prev">Comparisons</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Rounding-functions-1"></a>
<h3 class="section">4.6 Rounding functions</h3>
<a name="index-rounding"></a>

<p>When a real number is to be converted to an integer, there is no &ldquo;best&rdquo;
rounding. The desired rounding function depends on the application.
The Common Lisp and ISO Lisp standards offer four rounding functions:
</p>
<dl compact="compact">
<dt><code>floor(x)</code></dt>
<dd><p>This is the largest integer &lt;=<code>x</code>.
</p>
</dd>
<dt><code>ceiling(x)</code></dt>
<dd><p>This is the smallest integer &gt;=<code>x</code>.
</p>
</dd>
<dt><code>truncate(x)</code></dt>
<dd><p>Among the integers between 0 and <code>x</code> (inclusive) the one nearest to <code>x</code>.
</p>
</dd>
<dt><code>round(x)</code></dt>
<dd><p>The integer nearest to <code>x</code>. If <code>x</code> is exactly halfway between two
integers, choose the even one.
</p></dd>
</dl>

<p>These functions have different advantages:
</p>
<p><code>floor</code> and <code>ceiling</code> are translation invariant:
<code>floor(x+n) = floor(x) + n</code> and <code>ceiling(x+n) = ceiling(x) + n</code>
for every <code>x</code> and every integer <code>n</code>.
</p>
<p>On the other hand, <code>truncate</code> and <code>round</code> are symmetric:
<code>truncate(-x) = -truncate(x)</code> and <code>round(-x) = -round(x)</code>,
and furthermore <code>round</code> is unbiased: on the &ldquo;average&rdquo;, it rounds
down exactly as often as it rounds up.
</p>
<p>The functions are related like this:
</p>
<ul class="no-bullet">
<li><!-- /@w --> <code>ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1</code>
for rational numbers <code>m/n</code> (<code>m</code>, <code>n</code> integers, <code>n</code>&gt;0), and
</li><li><!-- /@w --> <code>truncate(x) = sign(x) * floor(abs(x))</code>
</li></ul>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_I floor1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-floor1-_0028_0029"></a>
<p>Returns <code>floor(x)</code>.
</p></dd>
<dt><code>cl_I ceiling1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-ceiling1-_0028_0029"></a>
<p>Returns <code>ceiling(x)</code>.
</p></dd>
<dt><code>cl_I truncate1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-truncate1-_0028_0029"></a>
<p>Returns <code>truncate(x)</code>.
</p></dd>
<dt><code>cl_I round1 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-round1-_0028_0029"></a>
<p>Returns <code>round(x)</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_I floor1 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><p>Returns <code>floor(x/y)</code>.
</p></dd>
<dt><code>cl_I ceiling1 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><p>Returns <code>ceiling(x/y)</code>.
</p></dd>
<dt><code>cl_I truncate1 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><p>Returns <code>truncate(x/y)</code>.
</p></dd>
<dt><code>cl_I round1 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><p>Returns <code>round(x/y)</code>.
</p></dd>
</dl>

<p>These functions are called &lsquo;<samp>floor1</samp>&rsquo;, &hellip; here instead of
&lsquo;<samp>floor</samp>&rsquo;, &hellip;, because on some systems, system dependent include
files define &lsquo;<samp>floor</samp>&rsquo; and &lsquo;<samp>ceiling</samp>&rsquo; as macros.
</p>
<p>In many cases, one needs both the quotient and the remainder of a division.
It is more efficient to compute both at the same time than to perform
two divisions, one for quotient and the next one for the remainder.
The following functions therefore return a structure containing both
the quotient and the remainder. The suffix &lsquo;<samp>2</samp>&rsquo; indicates the number
of &ldquo;return values&rdquo;. The remainder is defined as follows:
</p>
<ul>
<li> for the computation of <code>quotient = floor(x)</code>,
<code>remainder = x - quotient</code>,
</li><li> for the computation of <code>quotient = floor(x,y)</code>,
<code>remainder = x - quotient*y</code>,
</li></ul>

<p>and similarly for the other three operations.
</p>
<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>struct <var>type</var>_div_t { cl_I quotient; <var>type</var> remainder; };</code></dt>
<dt><code><var>type</var>_div_t floor2 (const <var>type</var>&amp; x)</code></dt>
<dt><code><var>type</var>_div_t ceiling2 (const <var>type</var>&amp; x)</code></dt>
<dt><code><var>type</var>_div_t truncate2 (const <var>type</var>&amp; x)</code></dt>
<dt><code><var>type</var>_div_t round2 (const <var>type</var>&amp; x)</code></dt>
</dl>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>struct <var>type</var>_div_t { cl_I quotient; <var>type</var> remainder; };</code></dt>
<dt><code><var>type</var>_div_t floor2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-floor2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_div_t ceiling2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-ceiling2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_div_t truncate2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-truncate2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_div_t round2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-round2-_0028_0029"></a>
</dd>
</dl>

<p>Sometimes, one wants the quotient as a floating-point number (of the
same format as the argument, if the argument is a float) instead of as
an integer. The prefix &lsquo;<samp>f</samp>&rsquo; indicates this.
</p>
<p>Each of the classes
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code><var>type</var> ffloor (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-ffloor-_0028_0029"></a>
</dd>
<dt><code><var>type</var> fceiling (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-fceiling-_0028_0029"></a>
</dd>
<dt><code><var>type</var> ftruncate (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-ftruncate-_0028_0029"></a>
</dd>
<dt><code><var>type</var> fround (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-fround-_0028_0029"></a>
</dd>
</dl>

<p>and similarly for class <code>cl_R</code>, but with return type <code>cl_F</code>.
</p>
<p>The class <code>cl_R</code> defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_F ffloor (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code>cl_F fceiling (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code>cl_F ftruncate (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code>cl_F fround (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
</dl>

<p>These functions also exist in versions which return both the quotient
and the remainder. The suffix &lsquo;<samp>2</samp>&rsquo; indicates this.
</p>
<p>Each of the classes
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations:
<a name="index-cl_005fF_005ffdiv_005ft"></a>
<a name="index-cl_005fSF_005ffdiv_005ft"></a>
<a name="index-cl_005fFF_005ffdiv_005ft"></a>
<a name="index-cl_005fDF_005ffdiv_005ft"></a>
<a name="index-cl_005fLF_005ffdiv_005ft"></a>
</p>
<dl compact="compact">
<dt><code>struct <var>type</var>_fdiv_t { <var>type</var> quotient; <var>type</var> remainder; };</code></dt>
<dt><code><var>type</var>_fdiv_t ffloor2 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-ffloor2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_fdiv_t fceiling2 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-fceiling2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_fdiv_t ftruncate2 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-ftruncate2-_0028_0029"></a>
</dd>
<dt><code><var>type</var>_fdiv_t fround2 (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-fround2-_0028_0029"></a>
</dd>
</dl>
<p>and similarly for class <code>cl_R</code>, but with quotient type <code>cl_F</code>.
<a name="index-cl_005fR_005ffdiv_005ft"></a>
</p>
<p>The class <code>cl_R</code> defines the following operations:
</p>
<dl compact="compact">
<dt><code>struct <var>type</var>_fdiv_t { cl_F quotient; cl_R remainder; };</code></dt>
<dt><code><var>type</var>_fdiv_t ffloor2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code><var>type</var>_fdiv_t fceiling2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code><var>type</var>_fdiv_t ftruncate2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dt><code><var>type</var>_fdiv_t fround2 (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
</dl>

<p>Other applications need only the remainder of a division.
The remainder of &lsquo;<samp>floor</samp>&rsquo; and &lsquo;<samp>ffloor</samp>&rsquo; is called &lsquo;<samp>mod</samp>&rsquo;
(abbreviation of &ldquo;modulo&rdquo;). The remainder &lsquo;<samp>truncate</samp>&rsquo; and
&lsquo;<samp>ftruncate</samp>&rsquo; is called &lsquo;<samp>rem</samp>&rsquo; (abbreviation of &ldquo;remainder&rdquo;).
</p>
<ul>
<li> <code>mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y</code>
</li><li> <code>rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y</code>
</li></ul>

<p>If <code>x</code> and <code>y</code> are both &gt;= 0, <code>mod(x,y) = rem(x,y) &gt;= 0</code>.
In general, <code>mod(x,y)</code> has the sign of <code>y</code> or is zero,
and <code>rem(x,y)</code> has the sign of <code>x</code> or is zero.
</p>
<p>The classes <code>cl_R</code>, <code>cl_I</code> define the following operations:
</p>
<dl compact="compact">
<dt><code><var>type</var> mod (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-mod-_0028_0029"></a>
</dd>
<dt><code><var>type</var> rem (const <var>type</var>&amp; x, const <var>type</var>&amp; y)</code></dt>
<dd><a name="index-rem-_0028_0029"></a>
</dd>
</dl>


<hr>
<a name="Roots"></a>
<div class="header">
<p>
Next: <a href="#Transcendental-functions" accesskey="n" rel="next">Transcendental functions</a>, Previous: <a href="#Rounding-functions" accesskey="p" rel="prev">Rounding functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Roots-1"></a>
<h3 class="section">4.7 Roots</h3>

<p>Each of the classes <code>cl_R</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operation:
</p>
<dl compact="compact">
<dt><code><var>type</var> sqrt (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-sqrt-_0028_0029"></a>
<p><code>x</code> must be &gt;= 0. This function returns the square root of <code>x</code>,
normalized to be &gt;= 0. If <code>x</code> is the square of a rational number,
<code>sqrt(x)</code> will be a rational number, else it will return a
floating-point approximation.
</p></dd>
</dl>

<p>The classes <code>cl_RA</code>, <code>cl_I</code> define the following operation:
</p>
<dl compact="compact">
<dt><code>bool sqrtp (const <var>type</var>&amp; x, <var>type</var>* root)</code></dt>
<dd><a name="index-sqrtp-_0028_0029"></a>
<p>This tests whether <code>x</code> is a perfect square. If so, it returns true
and the exact square root in <code>*root</code>, else it returns false.
</p></dd>
</dl>

<p>Furthermore, for integers, similarly:
</p>
<dl compact="compact">
<dt><code>bool isqrt (const <var>type</var>&amp; x, <var>type</var>* root)</code></dt>
<dd><a name="index-isqrt-_0028_0029"></a>
<p><code>x</code> should be &gt;= 0. This function sets <code>*root</code> to
<code>floor(sqrt(x))</code> and returns the same value as <code>sqrtp</code>:
the boolean value <code>(expt(*root,2) == x)</code>.
</p></dd>
</dl>

<p>For <code>n</code>th roots, the classes <code>cl_RA</code>, <code>cl_I</code>
define the following operation:
</p>
<dl compact="compact">
<dt><code>bool rootp (const <var>type</var>&amp; x, const cl_I&amp; n, <var>type</var>* root)</code></dt>
<dd><a name="index-rootp-_0028_0029"></a>
<p><code>x</code> must be &gt;= 0. <code>n</code> must be &gt; 0.
This tests whether <code>x</code> is an <code>n</code>th power of a rational number.
If so, it returns true and the exact root in <code>*root</code>, else it returns
false.
</p></dd>
</dl>

<p>The only square root function which accepts negative numbers is the one
for class <code>cl_N</code>:
</p>
<dl compact="compact">
<dt><code>cl_N sqrt (const cl_N&amp; z)</code></dt>
<dd><a name="index-sqrt-_0028_0029-1"></a>
<p>Returns the square root of <code>z</code>, as defined by the formula
<code>sqrt(z) = exp(log(z)/2)</code>. Conversion to a floating-point type
or to a complex number are done if necessary. The range of the result is the
right half plane <code>realpart(sqrt(z)) &gt;= 0</code>
including the positive imaginary axis and 0, but excluding
the negative imaginary axis.
The result is an exact number only if <code>z</code> is an exact number.
</p></dd>
</dl>


<hr>
<a name="Transcendental-functions"></a>
<div class="header">
<p>
Next: <a href="#Functions-on-integers" accesskey="n" rel="next">Functions on integers</a>, Previous: <a href="#Roots" accesskey="p" rel="prev">Roots</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Transcendental-functions-1"></a>
<h3 class="section">4.8 Transcendental functions</h3>
<a name="index-transcendental-functions"></a>

<p>The transcendental functions return an exact result if the argument
is exact and the result is exact as well. Otherwise they must return
inexact numbers even if the argument is exact.
For example, <code>cos(0) = 1</code> returns the rational number <code>1</code>.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Exponential-and-logarithmic-functions" accesskey="1">Exponential and logarithmic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Trigonometric-functions" accesskey="2">Trigonometric functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Hyperbolic-functions" accesskey="3">Hyperbolic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Euler-gamma" accesskey="4">Euler gamma</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Riemann-zeta" accesskey="5">Riemann zeta</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Exponential-and-logarithmic-functions"></a>
<div class="header">
<p>
Next: <a href="#Trigonometric-functions" accesskey="n" rel="next">Trigonometric functions</a>, Up: <a href="#Transcendental-functions" accesskey="u" rel="up">Transcendental functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Exponential-and-logarithmic-functions-1"></a>
<h4 class="subsection">4.8.1 Exponential and logarithmic functions</h4>

<dl compact="compact">
<dt><code>cl_R exp (const cl_R&amp; x)</code></dt>
<dd><a name="index-exp-_0028_0029"></a>
</dd>
<dt><code>cl_N exp (const cl_N&amp; x)</code></dt>
<dd><p>Returns the exponential function of <code>x</code>. This is <code>e^x</code> where
<code>e</code> is the base of the natural logarithms. The range of the result
is the entire complex plane excluding 0.
</p>
</dd>
<dt><code>cl_R ln (const cl_R&amp; x)</code></dt>
<dd><a name="index-ln-_0028_0029"></a>
<p><code>x</code> must be &gt; 0. Returns the (natural) logarithm of x.
</p>
</dd>
<dt><code>cl_N log (const cl_N&amp; x)</code></dt>
<dd><a name="index-log-_0028_0029"></a>
<p>Returns the (natural) logarithm of x. If <code>x</code> is real and positive,
this is <code>ln(x)</code>. In general, <code>log(x) = log(abs(x)) + i*phase(x)</code>.
The range of the result is the strip in the complex plane
<code>-pi &lt; imagpart(log(x)) &lt;= pi</code>.
</p>
</dd>
<dt><code>cl_R phase (const cl_N&amp; x)</code></dt>
<dd><a name="index-phase-_0028_0029"></a>
<p>Returns the angle part of <code>x</code> in its polar representation as a
complex number. That is, <code>phase(x) = atan(realpart(x),imagpart(x))</code>.
This is also the imaginary part of <code>log(x)</code>.
The range of the result is the interval <code>-pi &lt; phase(x) &lt;= pi</code>.
The result will be an exact number only if <code>zerop(x)</code> or
if <code>x</code> is real and positive.
</p>
</dd>
<dt><code>cl_R log (const cl_R&amp; a, const cl_R&amp; b)</code></dt>
<dd><p><code>a</code> and <code>b</code> must be &gt; 0. Returns the logarithm of <code>a</code> with
respect to base <code>b</code>. <code>log(a,b) = ln(a)/ln(b)</code>.
The result can be exact only if <code>a = 1</code> or if <code>a</code> and <code>b</code>
are both rational.
</p>
</dd>
<dt><code>cl_N log (const cl_N&amp; a, const cl_N&amp; b)</code></dt>
<dd><p>Returns the logarithm of <code>a</code> with respect to base <code>b</code>.
<code>log(a,b) = log(a)/log(b)</code>.
</p>
</dd>
<dt><code>cl_N expt (const cl_N&amp; x, const cl_N&amp; y)</code></dt>
<dd><a name="index-expt-_0028_0029-1"></a>
<p>Exponentiation: Returns <code>x^y = exp(y*log(x))</code>.
</p></dd>
</dl>

<p>The constant e = exp(1) = 2.71828&hellip; is returned by the following functions:
</p>
<dl compact="compact">
<dt><code>cl_F exp1 (float_format_t f)</code></dt>
<dd><a name="index-exp1-_0028_0029"></a>
<p>Returns e as a float of format <code>f</code>.
</p>
</dd>
<dt><code>cl_F exp1 (const cl_F&amp; y)</code></dt>
<dd><p>Returns e in the float format of <code>y</code>.
</p>
</dd>
<dt><code>cl_F exp1 (void)</code></dt>
<dd><p>Returns e as a float of format <code>default_float_format</code>.
</p></dd>
</dl>


<hr>
<a name="Trigonometric-functions"></a>
<div class="header">
<p>
Next: <a href="#Hyperbolic-functions" accesskey="n" rel="next">Hyperbolic functions</a>, Previous: <a href="#Exponential-and-logarithmic-functions" accesskey="p" rel="prev">Exponential and logarithmic functions</a>, Up: <a href="#Transcendental-functions" accesskey="u" rel="up">Transcendental functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Trigonometric-functions-1"></a>
<h4 class="subsection">4.8.2 Trigonometric functions</h4>

<dl compact="compact">
<dt><code>cl_R sin (const cl_R&amp; x)</code></dt>
<dd><a name="index-sin-_0028_0029"></a>
<p>Returns <code>sin(x)</code>. The range of the result is the interval
<code>-1 &lt;= sin(x) &lt;= 1</code>.
</p>
</dd>
<dt><code>cl_N sin (const cl_N&amp; z)</code></dt>
<dd><p>Returns <code>sin(z)</code>. The range of the result is the entire complex plane.
</p>
</dd>
<dt><code>cl_R cos (const cl_R&amp; x)</code></dt>
<dd><a name="index-cos-_0028_0029"></a>
<p>Returns <code>cos(x)</code>. The range of the result is the interval
<code>-1 &lt;= cos(x) &lt;= 1</code>.
</p>
</dd>
<dt><code>cl_N cos (const cl_N&amp; x)</code></dt>
<dd><p>Returns <code>cos(z)</code>. The range of the result is the entire complex plane.
</p>
</dd>
<dt><code>struct cos_sin_t { cl_R cos; cl_R sin; };</code></dt>
<dd><a name="index-cos_005fsin_005ft"></a>
</dd>
<dt><code>cos_sin_t cos_sin (const cl_R&amp; x)</code></dt>
<dd><p>Returns both <code>sin(x)</code> and <code>cos(x)</code>. This is more efficient than
<a name="index-cos_005fsin-_0028_0029"></a>
computing them separately. The relation <code>cos^2 + sin^2 = 1</code> will
hold only approximately.
</p>
</dd>
<dt><code>cl_R tan (const cl_R&amp; x)</code></dt>
<dd><a name="index-tan-_0028_0029"></a>
</dd>
<dt><code>cl_N tan (const cl_N&amp; x)</code></dt>
<dd><p>Returns <code>tan(x) = sin(x)/cos(x)</code>.
</p>
</dd>
<dt><code>cl_N cis (const cl_R&amp; x)</code></dt>
<dd><a name="index-cis-_0028_0029"></a>
</dd>
<dt><code>cl_N cis (const cl_N&amp; x)</code></dt>
<dd><p>Returns <code>exp(i*x)</code>. The name &lsquo;<samp>cis</samp>&rsquo; means &ldquo;cos + i sin&rdquo;, because
<code>e^(i*x) = cos(x) + i*sin(x)</code>.
</p>
<a name="index-asin"></a>
<a name="index-asin-_0028_0029"></a>
</dd>
<dt><code>cl_N asin (const cl_N&amp; z)</code></dt>
<dd><p>Returns <code>arcsin(z)</code>. This is defined as
<code>arcsin(z) = log(iz+sqrt(1-z^2))/i</code> and satisfies
<code>arcsin(-z) = -arcsin(z)</code>.
The range of the result is the strip in the complex domain
<code>-pi/2 &lt;= realpart(arcsin(z)) &lt;= pi/2</code>, excluding the numbers
with <code>realpart = -pi/2</code> and <code>imagpart &lt; 0</code> and the numbers
with <code>realpart = pi/2</code> and <code>imagpart &gt; 0</code>.
</p>
</dd>
<dt><code>cl_N acos (const cl_N&amp; z)</code></dt>
<dd><a name="index-acos-_0028_0029"></a>
<p>Returns <code>arccos(z)</code>. This is defined as
<code>arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i</code>
and satisfies <code>arccos(-z) = pi - arccos(z)</code>.
The range of the result is the strip in the complex domain
<code>0 &lt;= realpart(arcsin(z)) &lt;= pi</code>, excluding the numbers
with <code>realpart = 0</code> and <code>imagpart &lt; 0</code> and the numbers
with <code>realpart = pi</code> and <code>imagpart &gt; 0</code>.
</p>
<a name="index-atan"></a>
<a name="index-atan-_0028_0029"></a>
</dd>
<dt><code>cl_R atan (const cl_R&amp; x, const cl_R&amp; y)</code></dt>
<dd><p>Returns the angle of the polar representation of the complex number
<code>x+iy</code>. This is <code>atan(y/x)</code> if <code>x&gt;0</code>. The range of
the result is the interval <code>-pi &lt; atan(x,y) &lt;= pi</code>. The result will
be an exact number only if <code>x &gt; 0</code> and <code>y</code> is the exact <code>0</code>.
WARNING: In Common Lisp, this function is called as <code>(atan y x)</code>,
with reversed order of arguments.
</p>
</dd>
<dt><code>cl_R atan (const cl_R&amp; x)</code></dt>
<dd><p>Returns <code>arctan(x)</code>. This is the same as <code>atan(1,x)</code>. The range
of the result is the interval <code>-pi/2 &lt; atan(x) &lt; pi/2</code>. The result
will be an exact number only if <code>x</code> is the exact <code>0</code>.
</p>
</dd>
<dt><code>cl_N atan (const cl_N&amp; z)</code></dt>
<dd><p>Returns <code>arctan(z)</code>. This is defined as
<code>arctan(z) = (log(1+iz)-log(1-iz)) / 2i</code> and satisfies
<code>arctan(-z) = -arctan(z)</code>. The range of the result is
the strip in the complex domain
<code>-pi/2 &lt;= realpart(arctan(z)) &lt;= pi/2</code>, excluding the numbers
with <code>realpart = -pi/2</code> and <code>imagpart &gt;= 0</code> and the numbers
with <code>realpart = pi/2</code> and <code>imagpart &lt;= 0</code>.
</p>
</dd>
</dl>

<a name="index-pi"></a>
<a name="index-Archimedes_0027-constant"></a>
<p>Archimedes&rsquo; constant pi = 3.14&hellip; is returned by the following functions:
</p>
<dl compact="compact">
<dt><code>cl_F pi (float_format_t f)</code></dt>
<dd><a name="index-pi-_0028_0029"></a>
<p>Returns pi as a float of format <code>f</code>.
</p>
</dd>
<dt><code>cl_F pi (const cl_F&amp; y)</code></dt>
<dd><p>Returns pi in the float format of <code>y</code>.
</p>
</dd>
<dt><code>cl_F pi (void)</code></dt>
<dd><p>Returns pi as a float of format <code>default_float_format</code>.
</p></dd>
</dl>


<hr>
<a name="Hyperbolic-functions"></a>
<div class="header">
<p>
Next: <a href="#Euler-gamma" accesskey="n" rel="next">Euler gamma</a>, Previous: <a href="#Trigonometric-functions" accesskey="p" rel="prev">Trigonometric functions</a>, Up: <a href="#Transcendental-functions" accesskey="u" rel="up">Transcendental functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hyperbolic-functions-1"></a>
<h4 class="subsection">4.8.3 Hyperbolic functions</h4>

<dl compact="compact">
<dt><code>cl_R sinh (const cl_R&amp; x)</code></dt>
<dd><a name="index-sinh-_0028_0029"></a>
<p>Returns <code>sinh(x)</code>.
</p>
</dd>
<dt><code>cl_N sinh (const cl_N&amp; z)</code></dt>
<dd><p>Returns <code>sinh(z)</code>. The range of the result is the entire complex plane.
</p>
</dd>
<dt><code>cl_R cosh (const cl_R&amp; x)</code></dt>
<dd><a name="index-cosh-_0028_0029"></a>
<p>Returns <code>cosh(x)</code>. The range of the result is the interval
<code>cosh(x) &gt;= 1</code>.
</p>
</dd>
<dt><code>cl_N cosh (const cl_N&amp; z)</code></dt>
<dd><p>Returns <code>cosh(z)</code>. The range of the result is the entire complex plane.
</p>
</dd>
<dt><code>struct cosh_sinh_t { cl_R cosh; cl_R sinh; };</code></dt>
<dd><a name="index-cosh_005fsinh_005ft"></a>
</dd>
<dt><code>cosh_sinh_t cosh_sinh (const cl_R&amp; x)</code></dt>
<dd><a name="index-cosh_005fsinh-_0028_0029"></a>
<p>Returns both <code>sinh(x)</code> and <code>cosh(x)</code>. This is more efficient than
computing them separately. The relation <code>cosh^2 - sinh^2 = 1</code> will
hold only approximately.
</p>
</dd>
<dt><code>cl_R tanh (const cl_R&amp; x)</code></dt>
<dd><a name="index-tanh-_0028_0029"></a>
</dd>
<dt><code>cl_N tanh (const cl_N&amp; x)</code></dt>
<dd><p>Returns <code>tanh(x) = sinh(x)/cosh(x)</code>.
</p>
</dd>
<dt><code>cl_N asinh (const cl_N&amp; z)</code></dt>
<dd><a name="index-asinh-_0028_0029"></a>
<p>Returns <code>arsinh(z)</code>. This is defined as
<code>arsinh(z) = log(z+sqrt(1+z^2))</code> and satisfies
<code>arsinh(-z) = -arsinh(z)</code>.
The range of the result is the strip in the complex domain
<code>-pi/2 &lt;= imagpart(arsinh(z)) &lt;= pi/2</code>, excluding the numbers
with <code>imagpart = -pi/2</code> and <code>realpart &gt; 0</code> and the numbers
with <code>imagpart = pi/2</code> and <code>realpart &lt; 0</code>.
</p>
</dd>
<dt><code>cl_N acosh (const cl_N&amp; z)</code></dt>
<dd><a name="index-acosh-_0028_0029"></a>
<p>Returns <code>arcosh(z)</code>. This is defined as
<code>arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))</code>.
The range of the result is the half-strip in the complex domain
<code>-pi &lt; imagpart(arcosh(z)) &lt;= pi, realpart(arcosh(z)) &gt;= 0</code>,
excluding the numbers with <code>realpart = 0</code> and <code>-pi &lt; imagpart &lt; 0</code>.
</p>
</dd>
<dt><code>cl_N atanh (const cl_N&amp; z)</code></dt>
<dd><a name="index-atanh-_0028_0029"></a>
<p>Returns <code>artanh(z)</code>. This is defined as
<code>artanh(z) = (log(1+z)-log(1-z)) / 2</code> and satisfies
<code>artanh(-z) = -artanh(z)</code>. The range of the result is
the strip in the complex domain
<code>-pi/2 &lt;= imagpart(artanh(z)) &lt;= pi/2</code>, excluding the numbers
with <code>imagpart = -pi/2</code> and <code>realpart &lt;= 0</code> and the numbers
with <code>imagpart = pi/2</code> and <code>realpart &gt;= 0</code>.
</p></dd>
</dl>


<hr>
<a name="Euler-gamma"></a>
<div class="header">
<p>
Next: <a href="#Riemann-zeta" accesskey="n" rel="next">Riemann zeta</a>, Previous: <a href="#Hyperbolic-functions" accesskey="p" rel="prev">Hyperbolic functions</a>, Up: <a href="#Transcendental-functions" accesskey="u" rel="up">Transcendental functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Euler-gamma-1"></a>
<h4 class="subsection">4.8.4 Euler gamma</h4>
<a name="index-Euler_0027s-constant"></a>

<p>Euler&rsquo;s constant C = 0.577&hellip; is returned by the following functions:
</p>
<dl compact="compact">
<dt><code>cl_F eulerconst (float_format_t f)</code></dt>
<dd><a name="index-eulerconst-_0028_0029"></a>
<p>Returns Euler&rsquo;s constant as a float of format <code>f</code>.
</p>
</dd>
<dt><code>cl_F eulerconst (const cl_F&amp; y)</code></dt>
<dd><p>Returns Euler&rsquo;s constant in the float format of <code>y</code>.
</p>
</dd>
<dt><code>cl_F eulerconst (void)</code></dt>
<dd><p>Returns Euler&rsquo;s constant as a float of format <code>default_float_format</code>.
</p></dd>
</dl>

<p>Catalan&rsquo;s constant G = 0.915&hellip; is returned by the following functions:
<a name="index-Catalan_0027s-constant"></a>
</p>
<dl compact="compact">
<dt><code>cl_F catalanconst (float_format_t f)</code></dt>
<dd><a name="index-catalanconst-_0028_0029"></a>
<p>Returns Catalan&rsquo;s constant as a float of format <code>f</code>.
</p>
</dd>
<dt><code>cl_F catalanconst (const cl_F&amp; y)</code></dt>
<dd><p>Returns Catalan&rsquo;s constant in the float format of <code>y</code>.
</p>
</dd>
<dt><code>cl_F catalanconst (void)</code></dt>
<dd><p>Returns Catalan&rsquo;s constant as a float of format <code>default_float_format</code>.
</p></dd>
</dl>


<hr>
<a name="Riemann-zeta"></a>
<div class="header">
<p>
Previous: <a href="#Euler-gamma" accesskey="p" rel="prev">Euler gamma</a>, Up: <a href="#Transcendental-functions" accesskey="u" rel="up">Transcendental functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Riemann-zeta-1"></a>
<h4 class="subsection">4.8.5 Riemann zeta</h4>
<a name="index-Riemann_0027s-zeta"></a>

<p>Riemann&rsquo;s zeta function at an integral point <code>s&gt;1</code> is returned by the
following functions:
</p>
<dl compact="compact">
<dt><code>cl_F zeta (int s, float_format_t f)</code></dt>
<dd><a name="index-zeta-_0028_0029"></a>
<p>Returns Riemann&rsquo;s zeta function at <code>s</code> as a float of format <code>f</code>.
</p>
</dd>
<dt><code>cl_F zeta (int s, const cl_F&amp; y)</code></dt>
<dd><p>Returns Riemann&rsquo;s zeta function at <code>s</code> in the float format of <code>y</code>.
</p>
</dd>
<dt><code>cl_F zeta (int s)</code></dt>
<dd><p>Returns Riemann&rsquo;s zeta function at <code>s</code> as a float of format
<code>default_float_format</code>.
</p></dd>
</dl>


<hr>
<a name="Functions-on-integers"></a>
<div class="header">
<p>
Next: <a href="#Functions-on-floating_002dpoint-numbers" accesskey="n" rel="next">Functions on floating-point numbers</a>, Previous: <a href="#Transcendental-functions" accesskey="p" rel="prev">Transcendental functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-on-integers-1"></a>
<h3 class="section">4.9 Functions on integers</h3>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Logical-functions" accesskey="1">Logical functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Number-theoretic-functions" accesskey="2">Number theoretic functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Combinatorial-functions" accesskey="3">Combinatorial functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Logical-functions"></a>
<div class="header">
<p>
Next: <a href="#Number-theoretic-functions" accesskey="n" rel="next">Number theoretic functions</a>, Up: <a href="#Functions-on-integers" accesskey="u" rel="up">Functions on integers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Logical-functions-1"></a>
<h4 class="subsection">4.9.1 Logical functions</h4>

<p>Integers, when viewed as in two&rsquo;s complement notation, can be thought as
infinite bit strings where the bits&rsquo; values eventually are constant.
For example,
</p><div class="example">
<pre class="example">    17 = ......00010001
    -6 = ......11111010
</pre></div>

<p>The logical operations view integers as such bit strings and operate
on each of the bit positions in parallel.
</p>
<dl compact="compact">
<dt><code>cl_I lognot (const cl_I&amp; x)</code></dt>
<dd><a name="index-lognot-_0028_0029"></a>
</dd>
<dt><code>cl_I operator ~ (const cl_I&amp; x)</code></dt>
<dd><a name="index-operator-_007e-_0028_0029"></a>
<p>Logical not, like <code>~x</code> in C. This is the same as <code>-1-x</code>.
</p>
</dd>
<dt><code>cl_I logand (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logand-_0028_0029"></a>
</dd>
<dt><code>cl_I operator &amp; (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-operator-_0026-_0028_0029"></a>
<p>Logical and, like <code>x &amp; y</code> in C.
</p>
</dd>
<dt><code>cl_I logior (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logior-_0028_0029"></a>
</dd>
<dt><code>cl_I operator | (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-operator-_007c-_0028_0029"></a>
<p>Logical (inclusive) or, like <code>x | y</code> in C.
</p>
</dd>
<dt><code>cl_I logxor (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logxor-_0028_0029"></a>
</dd>
<dt><code>cl_I operator ^ (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-operator-_005e-_0028_0029"></a>
<p>Exclusive or, like <code>x ^ y</code> in C.
</p>
</dd>
<dt><code>cl_I logeqv (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logeqv-_0028_0029"></a>
<p>Bitwise equivalence, like <code>~(x ^ y)</code> in C.
</p>
</dd>
<dt><code>cl_I lognand (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-lognand-_0028_0029"></a>
<p>Bitwise not and, like <code>~(x &amp; y)</code> in C.
</p>
</dd>
<dt><code>cl_I lognor (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-lognor-_0028_0029"></a>
<p>Bitwise not or, like <code>~(x | y)</code> in C.
</p>
</dd>
<dt><code>cl_I logandc1 (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logandc1-_0028_0029"></a>
<p>Logical and, complementing the first argument, like <code>~x &amp; y</code> in C.
</p>
</dd>
<dt><code>cl_I logandc2 (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logandc2-_0028_0029"></a>
<p>Logical and, complementing the second argument, like <code>x &amp; ~y</code> in C.
</p>
</dd>
<dt><code>cl_I logorc1 (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logorc1-_0028_0029"></a>
<p>Logical or, complementing the first argument, like <code>~x | y</code> in C.
</p>
</dd>
<dt><code>cl_I logorc2 (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logorc2-_0028_0029"></a>
<p>Logical or, complementing the second argument, like <code>x | ~y</code> in C.
</p></dd>
</dl>

<p>These operations are all available though the function
</p><dl compact="compact">
<dt><code>cl_I boole (cl_boole op, const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-boole-_0028_0029"></a>
</dd>
</dl>
<p>where <code>op</code> must have one of the 16 values (each one stands for a function
which combines two bits into one bit): <code>boole_clr</code>, <code>boole_set</code>,
<code>boole_1</code>, <code>boole_2</code>, <code>boole_c1</code>, <code>boole_c2</code>,
<code>boole_and</code>, <code>boole_ior</code>, <code>boole_xor</code>, <code>boole_eqv</code>,
<code>boole_nand</code>, <code>boole_nor</code>, <code>boole_andc1</code>, <code>boole_andc2</code>,
<code>boole_orc1</code>, <code>boole_orc2</code>.
<a name="index-boole_005fclr"></a>
<a name="index-boole_005fset"></a>
<a name="index-boole_005f1"></a>
<a name="index-boole_005f2"></a>
<a name="index-boole_005fc1"></a>
<a name="index-boole_005fc2"></a>
<a name="index-boole_005fand"></a>
<a name="index-boole_005fxor"></a>
<a name="index-boole_005feqv"></a>
<a name="index-boole_005fnand"></a>
<a name="index-boole_005fnor"></a>
<a name="index-boole_005fandc1"></a>
<a name="index-boole_005fandc2"></a>
<a name="index-boole_005forc1"></a>
<a name="index-boole_005forc2"></a>
</p>

<p>Other functions that view integers as bit strings:
</p>
<dl compact="compact">
<dt><code>bool logtest (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-logtest-_0028_0029"></a>
<p>Returns true if some bit is set in both <code>x</code> and <code>y</code>, i.e. if
<code>logand(x,y) != 0</code>.
</p>
</dd>
<dt><code>bool logbitp (const cl_I&amp; n, const cl_I&amp; x)</code></dt>
<dd><a name="index-logbitp-_0028_0029"></a>
<p>Returns true if the <code>n</code>th bit (from the right) of <code>x</code> is set.
Bit 0 is the least significant bit.
</p>
</dd>
<dt><code>uintC logcount (const cl_I&amp; x)</code></dt>
<dd><a name="index-logcount-_0028_0029"></a>
<p>Returns the number of one bits in <code>x</code>, if <code>x</code> &gt;= 0, or
the number of zero bits in <code>x</code>, if <code>x</code> &lt; 0.
</p></dd>
</dl>

<p>The following functions operate on intervals of bits in integers. 
The type
</p><div class="example">
<pre class="example">struct cl_byte { uintC size; uintC position; };
</pre></div>
<a name="index-cl_005fbyte"></a>
<p>represents the bit interval containing the bits
<code>position</code>&hellip;<code>position+size-1</code> of an integer.
The constructor <code>cl_byte(size,position)</code> constructs a <code>cl_byte</code>.
</p>
<dl compact="compact">
<dt><code>cl_I ldb (const cl_I&amp; n, const cl_byte&amp; b)</code></dt>
<dd><a name="index-ldb-_0028_0029"></a>
<p>extracts the bits of <code>n</code> described by the bit interval <code>b</code>
and returns them as a nonnegative integer with <code>b.size</code> bits.
</p>
</dd>
<dt><code>bool ldb_test (const cl_I&amp; n, const cl_byte&amp; b)</code></dt>
<dd><a name="index-ldb_005ftest-_0028_0029"></a>
<p>Returns true if some bit described by the bit interval <code>b</code> is set in
<code>n</code>.
</p>
</dd>
<dt><code>cl_I dpb (const cl_I&amp; newbyte, const cl_I&amp; n, const cl_byte&amp; b)</code></dt>
<dd><a name="index-dpb-_0028_0029"></a>
<p>Returns <code>n</code>, with the bits described by the bit interval <code>b</code>
replaced by <code>newbyte</code>. Only the lowest <code>b.size</code> bits of
<code>newbyte</code> are relevant.
</p></dd>
</dl>

<p>The functions <code>ldb</code> and <code>dpb</code> implicitly shift. The following
functions are their counterparts without shifting:
</p>
<dl compact="compact">
<dt><code>cl_I mask_field (const cl_I&amp; n, const cl_byte&amp; b)</code></dt>
<dd><a name="index-mask_005ffield-_0028_0029"></a>
<p>returns an integer with the bits described by the bit interval <code>b</code>
copied from the corresponding bits in <code>n</code>, the other bits zero.
</p>
</dd>
<dt><code>cl_I deposit_field (const cl_I&amp; newbyte, const cl_I&amp; n, const cl_byte&amp; b)</code></dt>
<dd><a name="index-deposit_005ffield-_0028_0029"></a>
<p>returns an integer where the bits described by the bit interval <code>b</code>
come from <code>newbyte</code> and the other bits come from <code>n</code>.
</p></dd>
</dl>

<p>The following relations hold:
</p>
<ul class="no-bullet">
<li><!-- /@w --> <code>ldb (n, b) = mask_field(n, b) &gt;&gt; b.position</code>,
</li><li><!-- /@w --> <code>dpb (newbyte, n, b) = deposit_field (newbyte &lt;&lt; b.position, n, b)</code>,
</li><li><!-- /@w --> <code>deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)</code>.
</li></ul>

<p>The following operations on integers as bit strings are efficient shortcuts
for common arithmetic operations:
</p>
<dl compact="compact">
<dt><code>bool oddp (const cl_I&amp; x)</code></dt>
<dd><a name="index-oddp-_0028_0029"></a>
<p>Returns true if the least significant bit of <code>x</code> is 1. Equivalent to
<code>mod(x,2) != 0</code>.
</p>
</dd>
<dt><code>bool evenp (const cl_I&amp; x)</code></dt>
<dd><a name="index-evenp-_0028_0029"></a>
<p>Returns true if the least significant bit of <code>x</code> is 0. Equivalent to
<code>mod(x,2) == 0</code>.
</p>
</dd>
<dt><code>cl_I operator &lt;&lt; (const cl_I&amp; x, const cl_I&amp; n)</code></dt>
<dd><a name="index-operator-_003c_003c-_0028_0029"></a>
<p>Shifts <code>x</code> by <code>n</code> bits to the left. <code>n</code> should be &gt;=0.
Equivalent to <code>x * expt(2,n)</code>.
</p>
</dd>
<dt><code>cl_I operator &gt;&gt; (const cl_I&amp; x, const cl_I&amp; n)</code></dt>
<dd><a name="index-operator-_003e_003e-_0028_0029"></a>
<p>Shifts <code>x</code> by <code>n</code> bits to the right. <code>n</code> should be &gt;=0.
Bits shifted out to the right are thrown away.
Equivalent to <code>floor(x / expt(2,n))</code>.
</p>
</dd>
<dt><code>cl_I ash (const cl_I&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-ash-_0028_0029"></a>
<p>Shifts <code>x</code> by <code>y</code> bits to the left (if <code>y</code>&gt;=0) or
by <code>-y</code> bits to the right (if <code>y</code>&lt;=0). In other words, this
returns <code>floor(x * expt(2,y))</code>.
</p>
</dd>
<dt><code>uintC integer_length (const cl_I&amp; x)</code></dt>
<dd><a name="index-integer_005flength-_0028_0029"></a>
<p>Returns the number of bits (excluding the sign bit) needed to represent <code>x</code>
in two&rsquo;s complement notation. This is the smallest n &gt;= 0 such that
-2^n &lt;= x &lt; 2^n. If x &gt; 0, this is the unique n &gt; 0 such that
2^(n-1) &lt;= x &lt; 2^n.
</p>
</dd>
<dt><code>uintC ord2 (const cl_I&amp; x)</code></dt>
<dd><a name="index-ord2-_0028_0029"></a>
<p><code>x</code> must be non-zero. This function returns the number of 0 bits at the
right of <code>x</code> in two&rsquo;s complement notation. This is the largest n &gt;= 0
such that 2^n divides <code>x</code>.
</p>
</dd>
<dt><code>uintC power2p (const cl_I&amp; x)</code></dt>
<dd><a name="index-power2p-_0028_0029"></a>
<p><code>x</code> must be &gt; 0. This function checks whether <code>x</code> is a power of 2.
If <code>x</code> = 2^(n-1), it returns n. Else it returns 0.
(See also the function <code>logp</code>.)
</p></dd>
</dl>


<hr>
<a name="Number-theoretic-functions"></a>
<div class="header">
<p>
Next: <a href="#Combinatorial-functions" accesskey="n" rel="next">Combinatorial functions</a>, Previous: <a href="#Logical-functions" accesskey="p" rel="prev">Logical functions</a>, Up: <a href="#Functions-on-integers" accesskey="u" rel="up">Functions on integers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Number-theoretic-functions-1"></a>
<h4 class="subsection">4.9.2 Number theoretic functions</h4>

<dl compact="compact">
<dt><code>uint32 gcd (unsigned long a, unsigned long b)</code></dt>
<dd><a name="index-gcd-_0028_0029"></a>
</dd>
<dt><code>cl_I gcd (const cl_I&amp; a, const cl_I&amp; b)</code></dt>
<dd><p>This function returns the greatest common divisor of <code>a</code> and <code>b</code>,
normalized to be &gt;= 0.
</p>
</dd>
<dt><code>cl_I xgcd (const cl_I&amp; a, const cl_I&amp; b, cl_I* u, cl_I* v)</code></dt>
<dd><a name="index-xgcd-_0028_0029"></a>
<p>This function (&ldquo;extended gcd&rdquo;) returns the greatest common divisor <code>g</code> of
<code>a</code> and <code>b</code> and at the same time the representation of <code>g</code>
as an integral linear combination of <code>a</code> and <code>b</code>:
<code>u</code> and <code>v</code> with <code>u*a+v*b = g</code>, <code>g</code> &gt;= 0.
<code>u</code> and <code>v</code> will be normalized to be of smallest possible absolute
value, in the following sense: If <code>a</code> and <code>b</code> are non-zero, and
<code>abs(a) != abs(b)</code>, <code>u</code> and <code>v</code> will satisfy the inequalities
<code>abs(u) &lt;= abs(b)/(2*g)</code>, <code>abs(v) &lt;= abs(a)/(2*g)</code>.
</p>
</dd>
<dt><code>cl_I lcm (const cl_I&amp; a, const cl_I&amp; b)</code></dt>
<dd><a name="index-lcm-_0028_0029"></a>
<p>This function returns the least common multiple of <code>a</code> and <code>b</code>,
normalized to be &gt;= 0.
</p>
</dd>
<dt><code>bool logp (const cl_I&amp; a, const cl_I&amp; b, cl_RA* l)</code></dt>
<dd><a name="index-logp-_0028_0029"></a>
</dd>
<dt><code>bool logp (const cl_RA&amp; a, const cl_RA&amp; b, cl_RA* l)</code></dt>
<dd><p><code>a</code> must be &gt; 0. <code>b</code> must be &gt;0 and != 1. If log(a,b) is
rational number, this function returns true and sets *l = log(a,b), else
it returns false.
</p>
</dd>
<dt><code>int jacobi (signed long a, signed long b)</code></dt>
<dd><a name="index-jacobi_0028_0029"></a>
</dd>
<dt><code>int jacobi (const cl_I&amp; a, const cl_I&amp; b)</code></dt>
<dd><p>Returns the Jacobi symbol 
(a/b),
<code>a,b</code> must be integers, <code>b&gt;0</code> and odd. The result is 0
iff gcd(a,b)&gt;1.
</p>
</dd>
<dt><code>bool isprobprime (const cl_I&amp; n)</code></dt>
<dd><a name="index-prime"></a>
<a name="index-isprobprime_0028_0029"></a>
<p>Returns true if <code>n</code> is a small prime or passes the Miller-Rabin 
primality test. The probability of a false positive is 1:10^30.
</p>
</dd>
<dt><code>cl_I nextprobprime (const cl_R&amp; x)</code></dt>
<dd><a name="index-nextprobprime_0028_0029"></a>
<p>Returns the smallest probable prime &gt;=<code>x</code>.
</p></dd>
</dl>


<hr>
<a name="Combinatorial-functions"></a>
<div class="header">
<p>
Previous: <a href="#Number-theoretic-functions" accesskey="p" rel="prev">Number theoretic functions</a>, Up: <a href="#Functions-on-integers" accesskey="u" rel="up">Functions on integers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Combinatorial-functions-1"></a>
<h4 class="subsection">4.9.3 Combinatorial functions</h4>

<dl compact="compact">
<dt><code>cl_I factorial (uintL n)</code></dt>
<dd><a name="index-factorial-_0028_0029"></a>
<p><code>n</code> must be a small integer &gt;= 0. This function returns the factorial
<code>n</code>! = <code>1*2*&hellip;*n</code>.
</p>
</dd>
<dt><code>cl_I doublefactorial (uintL n)</code></dt>
<dd><a name="index-doublefactorial-_0028_0029"></a>
<p><code>n</code> must be a small integer &gt;= 0. This function returns the 
doublefactorial <code>n</code>!! = <code>1*3*&hellip;*n</code> or 
<code>n</code>!! = <code>2*4*&hellip;*n</code>, respectively.
</p>
</dd>
<dt><code>cl_I binomial (uintL n, uintL k)</code></dt>
<dd><a name="index-binomial-_0028_0029"></a>
<p><code>n</code> and <code>k</code> must be small integers &gt;= 0. This function returns the
binomial coefficient
for 0 &lt;= k &lt;= n, 0 else.
</p></dd>
</dl>


<hr>
<a name="Functions-on-floating_002dpoint-numbers"></a>
<div class="header">
<p>
Next: <a href="#Conversion-functions" accesskey="n" rel="next">Conversion functions</a>, Previous: <a href="#Functions-on-integers" accesskey="p" rel="prev">Functions on integers</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-on-floating_002dpoint-numbers-1"></a>
<h3 class="section">4.10 Functions on floating-point numbers</h3>

<p>Recall that a floating-point number consists of a sign <code>s</code>, an
exponent <code>e</code> and a mantissa <code>m</code>. The value of the number is
<code>(-1)^s * 2^e * m</code>.
</p>
<p>Each of the classes
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines the following operations.
</p>
<dl compact="compact">
<dt><code><var>type</var> scale_float (const <var>type</var>&amp; x, sintC delta)</code></dt>
<dd><a name="index-scale_005ffloat-_0028_0029"></a>
</dd>
<dt><code><var>type</var> scale_float (const <var>type</var>&amp; x, const cl_I&amp; delta)</code></dt>
<dd><p>Returns <code>x*2^delta</code>. This is more efficient than an explicit multiplication
because it copies <code>x</code> and modifies the exponent.
</p></dd>
</dl>

<p>The following functions provide an abstract interface to the underlying
representation of floating-point numbers.
</p>
<dl compact="compact">
<dt><code>sintE float_exponent (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fexponent-_0028_0029"></a>
<p>Returns the exponent <code>e</code> of <code>x</code>.
For <code>x = 0.0</code>, this is 0. For <code>x</code> non-zero, this is the unique
integer with <code>2^(e-1) &lt;= abs(x) &lt; 2^e</code>.
</p>
</dd>
<dt><code>sintL float_radix (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fradix-_0028_0029"></a>
<p>Returns the base of the floating-point representation. This is always <code>2</code>.
</p>
</dd>
<dt><code><var>type</var> float_sign (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fsign-_0028_0029"></a>
<p>Returns the sign <code>s</code> of <code>x</code> as a float. The value is 1 for
<code>x</code> &gt;= 0, -1 for <code>x</code> &lt; 0.
</p>
</dd>
<dt><code>uintC float_digits (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fdigits-_0028_0029"></a>
<p>Returns the number of mantissa bits in the floating-point representation
of <code>x</code>, including the hidden bit. The value only depends on the type
of <code>x</code>, not on its value.
</p>
</dd>
<dt><code>uintC float_precision (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-float_005fprecision-_0028_0029"></a>
<p>Returns the number of significant mantissa bits in the floating-point
representation of <code>x</code>. Since denormalized numbers are not supported,
this is the same as <code>float_digits(x)</code> if <code>x</code> is non-zero, and
0 if <code>x</code> = 0.
</p></dd>
</dl>

<p>The complete internal representation of a float is encoded in the type
<a name="index-decoded_005ffloat"></a>
<a name="index-decoded_005fsfloat"></a>
<a name="index-decoded_005fffloat"></a>
<a name="index-decoded_005fdfloat"></a>
<a name="index-decoded_005flfloat"></a>
<code>decoded_float</code> (or <code>decoded_sfloat</code>, <code>decoded_ffloat</code>,
<code>decoded_dfloat</code>, <code>decoded_lfloat</code>, respectively), defined by
</p><div class="example">
<pre class="example">struct decoded_<var>type</var>float {
        <var>type</var> mantissa; cl_I exponent; <var>type</var> sign;
};
</pre></div>

<p>and returned by the function
</p>
<dl compact="compact">
<dt><code>decoded_<var>type</var>float decode_float (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-decode_005ffloat-_0028_0029"></a>
<p>For <code>x</code> non-zero, this returns <code>(-1)^s</code>, <code>e</code>, <code>m</code> with
<code>x = (-1)^s * 2^e * m</code> and <code>0.5 &lt;= m &lt; 1.0</code>. For <code>x</code> = 0,
it returns <code>(-1)^s</code>=1, <code>e</code>=0, <code>m</code>=0.
<code>e</code> is the same as returned by the function <code>float_exponent</code>.
</p></dd>
</dl>

<p>A complete decoding in terms of integers is provided as type
<a name="index-cl_005fidecoded_005ffloat"></a>
</p><div class="example">
<pre class="example">struct cl_idecoded_float {
        cl_I mantissa; cl_I exponent; cl_I sign;
};
</pre></div>
<p>by the following function:
</p>
<dl compact="compact">
<dt><code>cl_idecoded_float integer_decode_float (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-integer_005fdecode_005ffloat-_0028_0029"></a>
<p>For <code>x</code> non-zero, this returns <code>(-1)^s</code>, <code>e</code>, <code>m</code> with
<code>x = (-1)^s * 2^e * m</code> and <code>m</code> an integer with <code>float_digits(x)</code>
bits. For <code>x</code> = 0, it returns <code>(-1)^s</code>=1, <code>e</code>=0, <code>m</code>=0.
WARNING: The exponent <code>e</code> is not the same as the one returned by
the functions <code>decode_float</code> and <code>float_exponent</code>.
</p></dd>
</dl>

<p>Some other function, implemented only for class <code>cl_F</code>:
</p>
<dl compact="compact">
<dt><code>cl_F float_sign (const cl_F&amp; x, const cl_F&amp; y)</code></dt>
<dd><a name="index-float_005fsign-_0028_0029-1"></a>
<p>This returns a floating point number whose precision and absolute value
is that of <code>y</code> and whose sign is that of <code>x</code>. If <code>x</code> is
zero, it is treated as positive. Same for <code>y</code>.
</p></dd>
</dl>


<hr>
<a name="Conversion-functions"></a>
<div class="header">
<p>
Next: <a href="#Random-number-generators" accesskey="n" rel="next">Random number generators</a>, Previous: <a href="#Functions-on-floating_002dpoint-numbers" accesskey="p" rel="prev">Functions on floating-point numbers</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conversion-functions-1"></a>
<h3 class="section">4.11 Conversion functions</h3>
<a name="index-conversion-1"></a>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Conversion-to-floating_002dpoint-numbers" accesskey="1">Conversion to floating-point numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Conversion-to-rational-numbers" accesskey="2">Conversion to rational numbers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Conversion-to-floating_002dpoint-numbers"></a>
<div class="header">
<p>
Next: <a href="#Conversion-to-rational-numbers" accesskey="n" rel="next">Conversion to rational numbers</a>, Up: <a href="#Conversion-functions" accesskey="u" rel="up">Conversion functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conversion-to-floating_002dpoint-numbers-1"></a>
<h4 class="subsection">4.11.1 Conversion to floating-point numbers</h4>

<p>The type <code>float_format_t</code> describes a floating-point format.
<a name="index-float_005fformat_005ft"></a>
</p>
<dl compact="compact">
<dt><code>float_format_t float_format (uintE n)</code></dt>
<dd><a name="index-float_005fformat-_0028_0029"></a>
<p>Returns the smallest float format which guarantees at least <code>n</code>
decimal digits in the mantissa (after the decimal point).
</p>
</dd>
<dt><code>float_format_t float_format (const cl_F&amp; x)</code></dt>
<dd><p>Returns the floating point format of <code>x</code>.
</p>
</dd>
<dt><code>float_format_t default_float_format</code></dt>
<dd><a name="index-default_005ffloat_005fformat"></a>
<p>Global variable: the default float format used when converting rational numbers
to floats.
</p></dd>
</dl>

<p>To convert a real number to a float, each of the types
<code>cl_R</code>, <code>cl_F</code>, <code>cl_I</code>, <code>cl_RA</code>,
<code>int</code>, <code>unsigned int</code>, <code>float</code>, <code>double</code>
defines the following operations:
</p>
<dl compact="compact">
<dt><code>cl_F cl_float (const <var>type</var>&amp;x, float_format_t f)</code></dt>
<dd><a name="index-cl_005ffloat-_0028_0029"></a>
<p>Returns <code>x</code> as a float of format <code>f</code>.
</p></dd>
<dt><code>cl_F cl_float (const <var>type</var>&amp;x, const cl_F&amp; y)</code></dt>
<dd><p>Returns <code>x</code> in the float format of <code>y</code>.
</p></dd>
<dt><code>cl_F cl_float (const <var>type</var>&amp;x)</code></dt>
<dd><p>Returns <code>x</code> as a float of format <code>default_float_format</code> if
it is an exact number, or <code>x</code> itself if it is already a float.
</p></dd>
</dl>

<p>Of course, converting a number to a float can lose precision.
</p>
<p>Every floating-point format has some characteristic numbers:
</p>
<dl compact="compact">
<dt><code>cl_F most_positive_float (float_format_t f)</code></dt>
<dd><a name="index-most_005fpositive_005ffloat-_0028_0029"></a>
<p>Returns the largest (most positive) floating point number in float format <code>f</code>.
</p>
</dd>
<dt><code>cl_F most_negative_float (float_format_t f)</code></dt>
<dd><a name="index-most_005fnegative_005ffloat-_0028_0029"></a>
<p>Returns the smallest (most negative) floating point number in float format <code>f</code>.
</p>
</dd>
<dt><code>cl_F least_positive_float (float_format_t f)</code></dt>
<dd><a name="index-least_005fpositive_005ffloat-_0028_0029"></a>
<p>Returns the least positive floating point number (i.e. &gt; 0 but closest to 0)
in float format <code>f</code>.
</p>
</dd>
<dt><code>cl_F least_negative_float (float_format_t f)</code></dt>
<dd><a name="index-least_005fnegative_005ffloat-_0028_0029"></a>
<p>Returns the least negative floating point number (i.e. &lt; 0 but closest to 0)
in float format <code>f</code>.
</p>
</dd>
<dt><code>cl_F float_epsilon (float_format_t f)</code></dt>
<dd><a name="index-float_005fepsilon-_0028_0029"></a>
<p>Returns the smallest floating point number e &gt; 0 such that <code>1+e != 1</code>.
</p>
</dd>
<dt><code>cl_F float_negative_epsilon (float_format_t f)</code></dt>
<dd><a name="index-float_005fnegative_005fepsilon-_0028_0029"></a>
<p>Returns the smallest floating point number e &gt; 0 such that <code>1-e != 1</code>.
</p></dd>
</dl>


<hr>
<a name="Conversion-to-rational-numbers"></a>
<div class="header">
<p>
Previous: <a href="#Conversion-to-floating_002dpoint-numbers" accesskey="p" rel="prev">Conversion to floating-point numbers</a>, Up: <a href="#Conversion-functions" accesskey="u" rel="up">Conversion functions</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conversion-to-rational-numbers-1"></a>
<h4 class="subsection">4.11.2 Conversion to rational numbers</h4>

<p>Each of the classes <code>cl_R</code>, <code>cl_RA</code>, <code>cl_F</code>
defines the following operation:
</p>
<dl compact="compact">
<dt><code>cl_RA rational (const <var>type</var>&amp; x)</code></dt>
<dd><a name="index-rational-_0028_0029"></a>
<p>Returns the value of <code>x</code> as an exact number. If <code>x</code> is already
an exact number, this is <code>x</code>. If <code>x</code> is a floating-point number,
the value is a rational number whose denominator is a power of 2.
</p></dd>
</dl>

<p>In order to convert back, say, <code>(cl_F)(cl_R)&quot;1/3&quot;</code> to <code>1/3</code>, there is
the function
</p>
<dl compact="compact">
<dt><code>cl_RA rationalize (const cl_R&amp; x)</code></dt>
<dd><a name="index-rationalize-_0028_0029"></a>
<p>If <code>x</code> is a floating-point number, it actually represents an interval
of real numbers, and this function returns the rational number with
smallest denominator (and smallest numerator, in magnitude)
which lies in this interval.
If <code>x</code> is already an exact number, this function returns <code>x</code>.
</p></dd>
</dl>

<p>If <code>x</code> is any float, one has
</p>
<ul class="no-bullet">
<li><!-- /@w --> <code>cl_float(rational(x),x) = x</code>
</li><li><!-- /@w --> <code>cl_float(rationalize(x),x) = x</code>
</li></ul>


<hr>
<a name="Random-number-generators"></a>
<div class="header">
<p>
Next: <a href="#Modifying-operators" accesskey="n" rel="next">Modifying operators</a>, Previous: <a href="#Conversion-functions" accesskey="p" rel="prev">Conversion functions</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Random-number-generators-1"></a>
<h3 class="section">4.12 Random number generators</h3>


<p>A random generator is a machine which produces (pseudo-)random numbers.
The include file <code>&lt;cln/random.h&gt;</code> defines a class <code>random_state</code>
which contains the state of a random generator. If you make a copy
of the random number generator, the original one and the copy will produce
the same sequence of random numbers.
</p>
<p>The following functions return (pseudo-)random numbers in different formats.
Calling one of these modifies the state of the random number generator in
a complicated but deterministic way.
</p>
<p>The global variable
<a name="index-random_005fstate"></a>
<a name="index-default_005frandom_005fstate"></a>
</p><div class="example">
<pre class="example">random_state default_random_state
</pre></div>
<p>contains a default random number generator. It is used when the functions
below are called without <code>random_state</code> argument.
</p>
<dl compact="compact">
<dt><code>uint32 random32 (random_state&amp; randomstate)</code></dt>
<dt><code>uint32 random32 ()</code></dt>
<dd><a name="index-random32-_0028_0029"></a>
<p>Returns a random unsigned 32-bit number. All bits are equally random.
</p>
</dd>
<dt><code>cl_I random_I (random_state&amp; randomstate, const cl_I&amp; n)</code></dt>
<dt><code>cl_I random_I (const cl_I&amp; n)</code></dt>
<dd><a name="index-random_005fI-_0028_0029"></a>
<p><code>n</code> must be an integer &gt; 0. This function returns a random integer <code>x</code>
in the range <code>0 &lt;= x &lt; n</code>.
</p>
</dd>
<dt><code>cl_F random_F (random_state&amp; randomstate, const cl_F&amp; n)</code></dt>
<dt><code>cl_F random_F (const cl_F&amp; n)</code></dt>
<dd><a name="index-random_005fF-_0028_0029"></a>
<p><code>n</code> must be a float &gt; 0. This function returns a random floating-point
number of the same format as <code>n</code> in the range <code>0 &lt;= x &lt; n</code>.
</p>
</dd>
<dt><code>cl_R random_R (random_state&amp; randomstate, const cl_R&amp; n)</code></dt>
<dt><code>cl_R random_R (const cl_R&amp; n)</code></dt>
<dd><a name="index-random_005fR-_0028_0029"></a>
<p>Behaves like <code>random_I</code> if <code>n</code> is an integer and like <code>random_F</code>
if <code>n</code> is a float.
</p></dd>
</dl>


<hr>
<a name="Modifying-operators"></a>
<div class="header">
<p>
Previous: <a href="#Random-number-generators" accesskey="p" rel="prev">Random number generators</a>, Up: <a href="#Functions-on-numbers" accesskey="u" rel="up">Functions on numbers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Modifying-operators-1"></a>
<h3 class="section">4.13 Modifying operators</h3>
<a name="index-modifying-operators"></a>

<p>The modifying C/C++ operators <code>+=</code>, <code>-=</code>, <code>*=</code>, <code>/=</code>,
<code>&amp;=</code>, <code>|=</code>, <code>^=</code>, <code>&lt;&lt;=</code>, <code>&gt;&gt;=</code>
are all available.
</p>
<p>For the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>:
</p>
<dl compact="compact">
<dt><code><var>type</var>&amp; operator += (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002b_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator -= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002d_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator *= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002a_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator /= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_002f_003d-_0028_0029"></a>
</dd>
</dl>

<p>For the class <code>cl_I</code>:
</p>
<dl compact="compact">
<dt><code><var>type</var>&amp; operator += (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dt><code><var>type</var>&amp; operator -= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dt><code><var>type</var>&amp; operator *= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dt><code><var>type</var>&amp; operator &amp;= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_0026_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator |= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_007c_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator ^= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_005e_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator &lt;&lt;= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003c_003c_003d-_0028_0029"></a>
</dd>
<dt><code><var>type</var>&amp; operator &gt;&gt;= (<var>type</var>&amp;, const <var>type</var>&amp;)</code></dt>
<dd><a name="index-operator-_003e_003e_003d-_0028_0029"></a>
</dd>
</dl>

<p>For the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>:
</p>
<dl compact="compact">
<dt><code><var>type</var>&amp; operator ++ (<var>type</var>&amp; x)</code></dt>
<dd><a name="index-operator-_002b_002b-_0028_0029"></a>
<p>The prefix operator <code>++x</code>.
</p>
</dd>
<dt><code>void operator ++ (<var>type</var>&amp; x, int)</code></dt>
<dd><p>The postfix operator <code>x++</code>.
</p>
</dd>
<dt><code><var>type</var>&amp; operator -- (<var>type</var>&amp; x)</code></dt>
<dd><a name="index-operator-_002d_002d-_0028_0029"></a>
<p>The prefix operator <code>--x</code>.
</p>
</dd>
<dt><code>void operator -- (<var>type</var>&amp; x, int)</code></dt>
<dd><p>The postfix operator <code>x--</code>.
</p></dd>
</dl>

<p>Note that by using these modifying operators, you don&rsquo;t gain efficiency:
In CLN &lsquo;<samp>x += y;</samp>&rsquo; is exactly the same as  &lsquo;<samp>x = x+y;</samp>&rsquo;, not more
efficient.
</p>

<hr>
<a name="Input_002fOutput"></a>
<div class="header">
<p>
Next: <a href="#Rings" accesskey="n" rel="next">Rings</a>, Previous: <a href="#Functions-on-numbers" accesskey="p" rel="prev">Functions on numbers</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Input_002fOutput-1"></a>
<h2 class="chapter">5 Input/Output</h2>
<a name="index-Input_002fOutput"></a>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Internal-and-printed-representation" accesskey="1">Internal and printed representation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Input-functions" accesskey="2">Input functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Output-functions" accesskey="3">Output functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Internal-and-printed-representation"></a>
<div class="header">
<p>
Next: <a href="#Input-functions" accesskey="n" rel="next">Input functions</a>, Up: <a href="#Input_002fOutput" accesskey="u" rel="up">Input/Output</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Internal-and-printed-representation-1"></a>
<h3 class="section">5.1 Internal and printed representation</h3>
<a name="index-representation"></a>

<p>All computations deal with the internal representations of the numbers.
</p>
<p>Every number has an external representation as a sequence of ASCII characters.
Several external representations may denote the same number, for example,
&quot;20.0&quot; and &quot;20.000&quot;.
</p>
<p>Converting an internal to an external representation is called &ldquo;printing&rdquo;,
<a name="index-printing"></a>
converting an external to an internal representation is called &ldquo;reading&rdquo;.
<a name="index-reading"></a>
In CLN, it is always true that conversion of an internal to an external
representation and then back to an internal representation will yield the
same internal representation. Symbolically: <code>read(print(x)) == x</code>.
This is called &ldquo;print-read consistency&rdquo;. 
</p>
<p>Different types of numbers have different external representations (case
is insignificant):
</p>
<dl compact="compact">
<dt>Integers</dt>
<dd><p>External representation: <var>sign</var>{<var>digit</var>}+. The reader also accepts the
Common Lisp syntaxes <var>sign</var>{<var>digit</var>}+<code>.</code> with a trailing dot
for decimal integers
and the <code>#<var>n</var>R</code>, <code>#b</code>, <code>#o</code>, <code>#x</code> prefixes.
</p>
</dd>
<dt>Rational numbers</dt>
<dd><p>External representation: <var>sign</var>{<var>digit</var>}+<code>/</code>{<var>digit</var>}+.
The <code>#<var>n</var>R</code>, <code>#b</code>, <code>#o</code>, <code>#x</code> prefixes are allowed
here as well.
</p>
</dd>
<dt>Floating-point numbers</dt>
<dd><p>External representation: <var>sign</var>{<var>digit</var>}*<var>exponent</var> or
<var>sign</var>{<var>digit</var>}*<code>.</code>{<var>digit</var>}*<var>exponent</var> or
<var>sign</var>{<var>digit</var>}*<code>.</code>{<var>digit</var>}+. A precision specifier
of the form _<var>prec</var> may be appended. There must be at least
one digit in the non-exponent part. The exponent has the syntax
<var>expmarker</var> <var>expsign</var> {<var>digit</var>}+.
The exponent marker is
</p>
<ul class="no-bullet">
<li><!-- /@w --> &lsquo;<samp>s</samp>&rsquo; for short-floats,
</li><li><!-- /@w --> &lsquo;<samp>f</samp>&rsquo; for single-floats,
</li><li><!-- /@w --> &lsquo;<samp>d</samp>&rsquo; for double-floats,
</li><li><!-- /@w --> &lsquo;<samp>L</samp>&rsquo; for long-floats,
</li></ul>

<p>or &lsquo;<samp>e</samp>&rsquo;, which denotes a default float format. The precision specifying
suffix has the syntax _<var>prec</var> where <var>prec</var> denotes the number of
valid mantissa digits (in decimal, excluding leading zeroes), cf. also
function &lsquo;<samp>float_format</samp>&rsquo;.
</p>
</dd>
<dt>Complex numbers</dt>
<dd><p>External representation:
</p><ul class="no-bullet">
<li><!-- /@w --> In algebraic notation: <code><var>realpart</var>+<var>imagpart</var>i</code>. Of course,
if <var>imagpart</var> is negative, its printed representation begins with
a &lsquo;<samp>-</samp>&rsquo;, and the &lsquo;<samp>+</samp>&rsquo; between <var>realpart</var> and <var>imagpart</var>
may be omitted. Note that this notation cannot be used when the <var>imagpart</var>
is rational and the rational number&rsquo;s base is &gt;18, because the &lsquo;<samp>i</samp>&rsquo;
is then read as a digit.
</li><li><!-- /@w --> In Common Lisp notation: <code>#C(<var>realpart</var> <var>imagpart</var>)</code>.
</li></ul>
</dd>
</dl>


<hr>
<a name="Input-functions"></a>
<div class="header">
<p>
Next: <a href="#Output-functions" accesskey="n" rel="next">Output functions</a>, Previous: <a href="#Internal-and-printed-representation" accesskey="p" rel="prev">Internal and printed representation</a>, Up: <a href="#Input_002fOutput" accesskey="u" rel="up">Input/Output</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Input-functions-1"></a>
<h3 class="section">5.2 Input functions</h3>

<p>Including <code>&lt;cln/io.h&gt;</code> defines flexible input functions:
</p>
<dl compact="compact">
<dt><code>cl_N read_complex (std::istream&amp; stream, const cl_read_flags&amp; flags)</code></dt>
<dt><code>cl_R read_real (std::istream&amp; stream, const cl_read_flags&amp; flags)</code></dt>
<dt><code>cl_F read_float (std::istream&amp; stream, const cl_read_flags&amp; flags)</code></dt>
<dt><code>cl_RA read_rational (std::istream&amp; stream, const cl_read_flags&amp; flags)</code></dt>
<dt><code>cl_I read_integer (std::istream&amp; stream, const cl_read_flags&amp; flags)</code></dt>
<dd><p>Reads a number from <code>stream</code>. The <code>flags</code> are parameters which
affect the input syntax. Whitespace before the number is silently skipped.
</p>
</dd>
<dt><code>cl_N read_complex (const cl_read_flags&amp; flags, const char * string, const char * string_limit, const char * * end_of_parse)</code></dt>
<dt><code>cl_R read_real (const cl_read_flags&amp; flags, const char * string, const char * string_limit, const char * * end_of_parse)</code></dt>
<dt><code>cl_F read_float (const cl_read_flags&amp; flags, const char * string, const char * string_limit, const char * * end_of_parse)</code></dt>
<dt><code>cl_RA read_rational (const cl_read_flags&amp; flags, const char * string, const char * string_limit, const char * * end_of_parse)</code></dt>
<dt><code>cl_I read_integer (const cl_read_flags&amp; flags, const char * string, const char * string_limit, const char * * end_of_parse)</code></dt>
<dd><p>Reads a number from a string in memory. The <code>flags</code> are parameters which
affect the input syntax. The string starts at <code>string</code> and ends at
<code>string_limit</code> (exclusive limit). <code>string_limit</code> may also be
<code>NULL</code>, denoting the entire string, i.e. equivalent to
<code>string_limit = string + strlen(string)</code>. If <code>end_of_parse</code> is
<code>NULL</code>, the string in memory must contain exactly one number and nothing
more, else an exception will be thrown. If <code>end_of_parse</code>
is not <code>NULL</code>, <code>*end_of_parse</code> will be assigned a pointer past
the last parsed character (i.e. <code>string_limit</code> if nothing came after
the number). Whitespace is not allowed.
</p></dd>
</dl>

<p>The structure <code>cl_read_flags</code> contains the following fields:
</p>
<dl compact="compact">
<dt><code>cl_read_syntax_t syntax</code></dt>
<dd><p>The possible results of the read operation. Possible values are
<code>syntax_number</code>, <code>syntax_real</code>, <code>syntax_rational</code>,
<code>syntax_integer</code>, <code>syntax_float</code>, <code>syntax_sfloat</code>,
<code>syntax_ffloat</code>, <code>syntax_dfloat</code>, <code>syntax_lfloat</code>.
</p>
</dd>
<dt><code>cl_read_lsyntax_t lsyntax</code></dt>
<dd><p>Specifies the language-dependent syntax variant for the read operation.
Possible values are
</p>
<dl compact="compact">
<dt><code>lsyntax_standard</code></dt>
<dd><p>accept standard algebraic notation only, no complex numbers,
</p></dd>
<dt><code>lsyntax_algebraic</code></dt>
<dd><p>accept the algebraic notation <code><var>x</var>+<var>y</var>i</code> for complex numbers,
</p></dd>
<dt><code>lsyntax_commonlisp</code></dt>
<dd><p>accept the <code>#b</code>, <code>#o</code>, <code>#x</code> syntaxes for binary, octal,
hexadecimal numbers,
<code>#<var>base</var>R</code> for rational numbers in a given base,
<code>#c(<var>realpart</var> <var>imagpart</var>)</code> for complex numbers,
</p></dd>
<dt><code>lsyntax_all</code></dt>
<dd><p>accept all of these extensions.
</p></dd>
</dl>

</dd>
<dt><code>unsigned int rational_base</code></dt>
<dd><p>The base in which rational numbers are read.
</p>
</dd>
<dt><code>float_format_t float_flags.default_float_format</code></dt>
<dd><p>The float format used when reading floats with exponent marker &lsquo;<samp>e</samp>&rsquo;.
</p>
</dd>
<dt><code>float_format_t float_flags.default_lfloat_format</code></dt>
<dd><p>The float format used when reading floats with exponent marker &lsquo;<samp>l</samp>&rsquo;.
</p>
</dd>
<dt><code>bool float_flags.mantissa_dependent_float_format</code></dt>
<dd><p>When this flag is true, floats specified with more digits than corresponding
to the exponent marker they contain, but without <var>_nnn</var> suffix, will get a
precision corresponding to their number of significant digits.
</p></dd>
</dl>


<hr>
<a name="Output-functions"></a>
<div class="header">
<p>
Previous: <a href="#Input-functions" accesskey="p" rel="prev">Input functions</a>, Up: <a href="#Input_002fOutput" accesskey="u" rel="up">Input/Output</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Output-functions-1"></a>
<h3 class="section">5.3 Output functions</h3>

<p>Including <code>&lt;cln/io.h&gt;</code> defines a number of simple output functions
that write to <code>std::ostream&amp;</code>:
</p>
<dl compact="compact">
<dt><code>void fprintchar (std::ostream&amp; stream, char c)</code></dt>
<dd><p>Prints the character <code>x</code> literally on the <code>stream</code>.
</p>
</dd>
<dt><code>void fprint (std::ostream&amp; stream, const char * string)</code></dt>
<dd><p>Prints the <code>string</code> literally on the <code>stream</code>.
</p>
</dd>
<dt><code>void fprintdecimal (std::ostream&amp; stream, int x)</code></dt>
<dt><code>void fprintdecimal (std::ostream&amp; stream, const cl_I&amp; x)</code></dt>
<dd><p>Prints the integer <code>x</code> in decimal on the <code>stream</code>.
</p>
</dd>
<dt><code>void fprintbinary (std::ostream&amp; stream, const cl_I&amp; x)</code></dt>
<dd><p>Prints the integer <code>x</code> in binary (base 2, without prefix)
on the <code>stream</code>.
</p>
</dd>
<dt><code>void fprintoctal (std::ostream&amp; stream, const cl_I&amp; x)</code></dt>
<dd><p>Prints the integer <code>x</code> in octal (base 8, without prefix)
on the <code>stream</code>.
</p>
</dd>
<dt><code>void fprinthexadecimal (std::ostream&amp; stream, const cl_I&amp; x)</code></dt>
<dd><p>Prints the integer <code>x</code> in hexadecimal (base 16, without prefix)
on the <code>stream</code>.
</p></dd>
</dl>

<p>Each of the classes <code>cl_N</code>, <code>cl_R</code>, <code>cl_RA</code>, <code>cl_I</code>,
<code>cl_F</code>, <code>cl_SF</code>, <code>cl_FF</code>, <code>cl_DF</code>, <code>cl_LF</code>
defines, in <code>&lt;cln/<var>type</var>_io.h&gt;</code>, the following output functions:
</p>
<dl compact="compact">
<dt><code>void fprint (std::ostream&amp; stream, const <var>type</var>&amp; x)</code></dt>
<dt><code>std::ostream&amp; operator&lt;&lt; (std::ostream&amp; stream, const <var>type</var>&amp; x)</code></dt>
<dd><p>Prints the number <code>x</code> on the <code>stream</code>. The output may depend
on the global printer settings in the variable <code>default_print_flags</code>.
The <code>ostream</code> flags and settings (flags, width and locale) are
ignored.
</p></dd>
</dl>

<p>The most flexible output function, defined in <code>&lt;cln/<var>type</var>_io.h&gt;</code>,
are the following:
</p><div class="example">
<pre class="example">void print_complex  (std::ostream&amp; stream, const cl_print_flags&amp; flags,
                     const cl_N&amp; z);
void print_real     (std::ostream&amp; stream, const cl_print_flags&amp; flags,
                     const cl_R&amp; z);
void print_float    (std::ostream&amp; stream, const cl_print_flags&amp; flags,
                     const cl_F&amp; z);
void print_rational (std::ostream&amp; stream, const cl_print_flags&amp; flags,
                     const cl_RA&amp; z);
void print_integer  (std::ostream&amp; stream, const cl_print_flags&amp; flags,
                     const cl_I&amp; z);
</pre></div>
<p>Prints the number <code>x</code> on the <code>stream</code>. The <code>flags</code> are
parameters which affect the output.
</p>
<p>The structure type <code>cl_print_flags</code> contains the following fields:
</p>
<dl compact="compact">
<dt><code>unsigned int rational_base</code></dt>
<dd><p>The base in which rational numbers are printed. Default is <code>10</code>.
</p>
</dd>
<dt><code>bool rational_readably</code></dt>
<dd><p>If this flag is true, rational numbers are printed with radix specifiers in
Common Lisp syntax (<code>#<var>n</var>R</code> or <code>#b</code> or <code>#o</code> or <code>#x</code>
prefixes, trailing dot). Default is false.
</p>
</dd>
<dt><code>bool float_readably</code></dt>
<dd><p>If this flag is true, type specific exponent markers have precedence over &rsquo;E&rsquo;.
Default is false.
</p>
</dd>
<dt><code>float_format_t default_float_format</code></dt>
<dd><p>Floating point numbers of this format will be printed using the &rsquo;E&rsquo; exponent
marker. Default is <code>float_format_ffloat</code>.
</p>
</dd>
<dt><code>bool complex_readably</code></dt>
<dd><p>If this flag is true, complex numbers will be printed using the Common Lisp
syntax <code>#C(<var>realpart</var> <var>imagpart</var>)</code>. Default is false.
</p>
</dd>
<dt><code>cl_string univpoly_varname</code></dt>
<dd><p>Univariate polynomials with no explicit indeterminate name will be printed
using this variable name. Default is <code>&quot;x&quot;</code>.
</p></dd>
</dl>

<p>The global variable <code>default_print_flags</code> contains the default values,
used by the function <code>fprint</code>.
</p>

<hr>
<a name="Rings"></a>
<div class="header">
<p>
Next: <a href="#Modular-integers" accesskey="n" rel="next">Modular integers</a>, Previous: <a href="#Input_002fOutput" accesskey="p" rel="prev">Input/Output</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Rings-1"></a>
<h2 class="chapter">6 Rings</h2>

<p>CLN has a class of abstract rings.
</p>
<div class="example">
<pre class="example">                         Ring
                       cl_ring
                     &lt;cln/ring.h&gt;
</pre></div>

<p>Rings can be compared for equality:
</p>
<dl compact="compact">
<dt><code>bool operator== (const cl_ring&amp;, const cl_ring&amp;)</code></dt>
<dt><code>bool operator!= (const cl_ring&amp;, const cl_ring&amp;)</code></dt>
<dd><p>These compare two rings for equality.
</p></dd>
</dl>

<p>Given a ring <code>R</code>, the following members can be used.
</p>
<dl compact="compact">
<dt><code>void R-&gt;fprint (std::ostream&amp; stream, const cl_ring_element&amp; x)</code></dt>
<dd><a name="index-fprint-_0028_0029"></a>
</dd>
<dt><code>bool R-&gt;equal (const cl_ring_element&amp; x, const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-equal-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;zero ()</code></dt>
<dd><a name="index-zero-_0028_0029"></a>
</dd>
<dt><code>bool R-&gt;zerop (const cl_ring_element&amp; x)</code></dt>
<dd><a name="index-zerop-_0028_0029-1"></a>
</dd>
<dt><code>cl_ring_element R-&gt;plus (const cl_ring_element&amp; x, const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-plus-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;minus (const cl_ring_element&amp; x, const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-minus-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;uminus (const cl_ring_element&amp; x)</code></dt>
<dd><a name="index-uminus-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;one ()</code></dt>
<dd><a name="index-one-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;canonhom (const cl_I&amp; x)</code></dt>
<dd><a name="index-canonhom-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;mul (const cl_ring_element&amp; x, const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-mul-_0028_0029"></a>
</dd>
<dt><code>cl_ring_element R-&gt;square (const cl_ring_element&amp; x)</code></dt>
<dd><a name="index-square-_0028_0029-1"></a>
</dd>
<dt><code>cl_ring_element R-&gt;expt_pos (const cl_ring_element&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt_005fpos-_0028_0029-1"></a>
</dd>
</dl>

<p>The following rings are built-in.
</p>
<dl compact="compact">
<dt><code>cl_null_ring cl_0_ring</code></dt>
<dd><p>The null ring, containing only zero.
</p>
</dd>
<dt><code>cl_complex_ring cl_C_ring</code></dt>
<dd><p>The ring of complex numbers. This corresponds to the type <code>cl_N</code>.
</p>
</dd>
<dt><code>cl_real_ring cl_R_ring</code></dt>
<dd><p>The ring of real numbers. This corresponds to the type <code>cl_R</code>.
</p>
</dd>
<dt><code>cl_rational_ring cl_RA_ring</code></dt>
<dd><p>The ring of rational numbers. This corresponds to the type <code>cl_RA</code>.
</p>
</dd>
<dt><code>cl_integer_ring cl_I_ring</code></dt>
<dd><p>The ring of integers. This corresponds to the type <code>cl_I</code>.
</p></dd>
</dl>

<p>Type tests can be performed for any of <code>cl_C_ring</code>, <code>cl_R_ring</code>,
<code>cl_RA_ring</code>, <code>cl_I_ring</code>:
</p>
<dl compact="compact">
<dt><code>bool instanceof (const cl_number&amp; x, const cl_number_ring&amp; R)</code></dt>
<dd><a name="index-instanceof-_0028_0029"></a>
<p>Tests whether the given number is an element of the number ring R.
</p></dd>
</dl>


<hr>
<a name="Modular-integers"></a>
<div class="header">
<p>
Next: <a href="#Symbolic-data-types" accesskey="n" rel="next">Symbolic data types</a>, Previous: <a href="#Rings" accesskey="p" rel="prev">Rings</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Modular-integers-1"></a>
<h2 class="chapter">7 Modular integers</h2>
<a name="index-modular-integer"></a>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Modular-integer-rings" accesskey="1">Modular integer rings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-modular-integers" accesskey="2">Functions on modular integers</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Modular-integer-rings"></a>
<div class="header">
<p>
Next: <a href="#Functions-on-modular-integers" accesskey="n" rel="next">Functions on modular integers</a>, Up: <a href="#Modular-integers" accesskey="u" rel="up">Modular integers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Modular-integer-rings-1"></a>
<h3 class="section">7.1 Modular integer rings</h3>
<a name="index-ring"></a>

<p>CLN implements modular integers, i.e. integers modulo a fixed integer N.
The modulus is explicitly part of every modular integer. CLN doesn&rsquo;t
allow you to (accidentally) mix elements of different modular rings,
e.g. <code>(3 mod 4) + (2 mod 5)</code> will result in a runtime error.
(Ideally one would imagine a generic data type <code>cl_MI(N)</code>, but C++
doesn&rsquo;t have generic types. So one has to live with runtime checks.)
</p>
<p>The class of modular integer rings is
</p>
<div class="example">
<pre class="example">                         Ring
                       cl_ring
                     &lt;cln/ring.h&gt;
                          |
                          |
                 Modular integer ring
                    cl_modint_ring
                  &lt;cln/modinteger.h&gt;
</pre></div>
<a name="index-cl_005fmodint_005fring"></a>

<p>and the class of all modular integers (elements of modular integer rings) is
</p>
<div class="example">
<pre class="example">                    Modular integer
                         cl_MI
                   &lt;cln/modinteger.h&gt;
</pre></div>

<p>Modular integer rings are constructed using the function
</p>
<dl compact="compact">
<dt><code>cl_modint_ring find_modint_ring (const cl_I&amp; N)</code></dt>
<dd><a name="index-find_005fmodint_005fring-_0028_0029"></a>
<p>This function returns the modular ring &lsquo;<samp>Z/NZ</samp>&rsquo;. It takes care
of finding out about special cases of <code>N</code>, like powers of two
and odd numbers for which Montgomery multiplication will be a win,
<a name="index-Montgomery-multiplication"></a>
and precomputes any necessary auxiliary data for computing modulo <code>N</code>.
There is a cache table of rings, indexed by <code>N</code> (or, more precisely,
by <code>abs(N)</code>). This ensures that the precomputation costs are reduced
to a minimum.
</p></dd>
</dl>

<p>Modular integer rings can be compared for equality:
</p>
<dl compact="compact">
<dt><code>bool operator== (const cl_modint_ring&amp;, const cl_modint_ring&amp;)</code></dt>
<dd><a name="index-operator-_003d_003d-_0028_0029-1"></a>
</dd>
<dt><code>bool operator!= (const cl_modint_ring&amp;, const cl_modint_ring&amp;)</code></dt>
<dd><a name="index-operator-_0021_003d-_0028_0029-1"></a>
<p>These compare two modular integer rings for equality. Two different calls
to <code>find_modint_ring</code> with the same argument necessarily return the
same ring because it is memoized in the cache table.
</p></dd>
</dl>

<hr>
<a name="Functions-on-modular-integers"></a>
<div class="header">
<p>
Previous: <a href="#Modular-integer-rings" accesskey="p" rel="prev">Modular integer rings</a>, Up: <a href="#Modular-integers" accesskey="u" rel="up">Modular integers</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-on-modular-integers-1"></a>
<h3 class="section">7.2 Functions on modular integers</h3>

<p>Given a modular integer ring <code>R</code>, the following members can be used.
</p>
<dl compact="compact">
<dt><code>cl_I R-&gt;modulus</code></dt>
<dd><a name="index-modulus"></a>
<p>This is the ring&rsquo;s modulus, normalized to be nonnegative: <code>abs(N)</code>.
</p>
</dd>
<dt><code>cl_MI R-&gt;zero()</code></dt>
<dd><a name="index-zero-_0028_0029-1"></a>
<p>This returns <code>0 mod N</code>.
</p>
</dd>
<dt><code>cl_MI R-&gt;one()</code></dt>
<dd><a name="index-one-_0028_0029-1"></a>
<p>This returns <code>1 mod N</code>.
</p>
</dd>
<dt><code>cl_MI R-&gt;canonhom (const cl_I&amp; x)</code></dt>
<dd><a name="index-canonhom-_0028_0029-1"></a>
<p>This returns <code>x mod N</code>.
</p>
</dd>
<dt><code>cl_I R-&gt;retract (const cl_MI&amp; x)</code></dt>
<dd><a name="index-retract-_0028_0029"></a>
<p>This is a partial inverse function to <code>R-&gt;canonhom</code>. It returns the
standard representative (<code>&gt;=0</code>, <code>&lt;N</code>) of <code>x</code>.
</p>
</dd>
<dt><code>cl_MI R-&gt;random(random_state&amp; randomstate)</code></dt>
<dt><code>cl_MI R-&gt;random()</code></dt>
<dd><a name="index-random-_0028_0029"></a>
<p>This returns a random integer modulo <code>N</code>.
</p></dd>
</dl>

<p>The following operations are defined on modular integers.
</p>
<dl compact="compact">
<dt><code>cl_modint_ring x.ring ()</code></dt>
<dd><a name="index-ring-_0028_0029"></a>
<p>Returns the ring to which the modular integer <code>x</code> belongs.
</p>
</dd>
<dt><code>cl_MI operator+ (const cl_MI&amp;, const cl_MI&amp;)</code></dt>
<dd><a name="index-operator-_002b-_0028_0029-1"></a>
<p>Returns the sum of two modular integers. One of the arguments may also
be a plain integer.
</p>
</dd>
<dt><code>cl_MI operator- (const cl_MI&amp;, const cl_MI&amp;)</code></dt>
<dd><a name="index-operator-_002d-_0028_0029-1"></a>
<p>Returns the difference of two modular integers. One of the arguments may also
be a plain integer.
</p>
</dd>
<dt><code>cl_MI operator- (const cl_MI&amp;)</code></dt>
<dd><p>Returns the negative of a modular integer.
</p>
</dd>
<dt><code>cl_MI operator* (const cl_MI&amp;, const cl_MI&amp;)</code></dt>
<dd><a name="index-operator-_002a-_0028_0029-1"></a>
<p>Returns the product of two modular integers. One of the arguments may also
be a plain integer.
</p>
</dd>
<dt><code>cl_MI square (const cl_MI&amp;)</code></dt>
<dd><a name="index-square-_0028_0029-2"></a>
<p>Returns the square of a modular integer.
</p>
</dd>
<dt><code>cl_MI recip (const cl_MI&amp; x)</code></dt>
<dd><a name="index-recip-_0028_0029-1"></a>
<p>Returns the reciprocal <code>x^-1</code> of a modular integer <code>x</code>. <code>x</code>
must be coprime to the modulus, otherwise an error message is issued.
</p>
</dd>
<dt><code>cl_MI div (const cl_MI&amp; x, const cl_MI&amp; y)</code></dt>
<dd><a name="index-div-_0028_0029"></a>
<p>Returns the quotient <code>x*y^-1</code> of two modular integers <code>x</code>, <code>y</code>.
<code>y</code> must be coprime to the modulus, otherwise an error message is issued.
</p>
</dd>
<dt><code>cl_MI expt_pos (const cl_MI&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt_005fpos-_0028_0029-2"></a>
<p><code>y</code> must be &gt; 0. Returns <code>x^y</code>.
</p>
</dd>
<dt><code>cl_MI expt (const cl_MI&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt-_0028_0029-2"></a>
<p>Returns <code>x^y</code>. If <code>y</code> is negative, <code>x</code> must be coprime to the
modulus, else an error message is issued.
</p>
</dd>
<dt><code>cl_MI operator&lt;&lt; (const cl_MI&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-operator-_003c_003c-_0028_0029-1"></a>
<p>Returns <code>x*2^y</code>.
</p>
</dd>
<dt><code>cl_MI operator&gt;&gt; (const cl_MI&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-operator-_003e_003e-_0028_0029-1"></a>
<p>Returns <code>x*2^-y</code>. When <code>y</code> is positive, the modulus must be odd,
or an error message is issued.
</p>
</dd>
<dt><code>bool operator== (const cl_MI&amp;, const cl_MI&amp;)</code></dt>
<dd><a name="index-operator-_003d_003d-_0028_0029-2"></a>
</dd>
<dt><code>bool operator!= (const cl_MI&amp;, const cl_MI&amp;)</code></dt>
<dd><a name="index-operator-_0021_003d-_0028_0029-2"></a>
<p>Compares two modular integers, belonging to the same modular integer ring,
for equality.
</p>
</dd>
<dt><code>bool zerop (const cl_MI&amp; x)</code></dt>
<dd><a name="index-zerop-_0028_0029-2"></a>
<p>Returns true if <code>x</code> is <code>0 mod N</code>.
</p></dd>
</dl>

<p>The following output functions are defined (see also the chapter on
input/output).
</p>
<dl compact="compact">
<dt><code>void fprint (std::ostream&amp; stream, const cl_MI&amp; x)</code></dt>
<dd><a name="index-fprint-_0028_0029-1"></a>
</dd>
<dt><code>std::ostream&amp; operator&lt;&lt; (std::ostream&amp; stream, const cl_MI&amp; x)</code></dt>
<dd><a name="index-operator-_003c_003c-_0028_0029-2"></a>
<p>Prints the modular integer <code>x</code> on the <code>stream</code>. The output may depend
on the global printer settings in the variable <code>default_print_flags</code>.
</p></dd>
</dl>


<hr>
<a name="Symbolic-data-types"></a>
<div class="header">
<p>
Next: <a href="#Univariate-polynomials" accesskey="n" rel="next">Univariate polynomials</a>, Previous: <a href="#Modular-integers" accesskey="p" rel="prev">Modular integers</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Symbolic-data-types-1"></a>
<h2 class="chapter">8 Symbolic data types</h2>
<a name="index-symbolic-type"></a>

<p>CLN implements two symbolic (non-numeric) data types: strings and symbols.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Strings" accesskey="1">Strings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Symbols" accesskey="2">Symbols</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Strings"></a>
<div class="header">
<p>
Next: <a href="#Symbols" accesskey="n" rel="next">Symbols</a>, Up: <a href="#Symbolic-data-types" accesskey="u" rel="up">Symbolic data types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Strings-1"></a>
<h3 class="section">8.1 Strings</h3>
<a name="index-string"></a>
<a name="index-cl_005fstring"></a>

<p>The class
</p>
<div class="example">
<pre class="example">                      String
                     cl_string
                   &lt;cln/string.h&gt;
</pre></div>

<p>implements immutable strings.
</p>
<p>Strings are constructed through the following constructors:
</p>
<dl compact="compact">
<dt><code>cl_string (const char * s)</code></dt>
<dd><p>Returns an immutable copy of the (zero-terminated) C string <code>s</code>.
</p>
</dd>
<dt><code>cl_string (const char * ptr, unsigned long len)</code></dt>
<dd><p>Returns an immutable copy of the <code>len</code> characters at
<code>ptr[0]</code>, &hellip;, <code>ptr[len-1]</code>. NUL characters are allowed.
</p></dd>
</dl>

<p>The following functions are available on strings:
</p>
<dl compact="compact">
<dt><code>operator =</code></dt>
<dd><p>Assignment from <code>cl_string</code> and <code>const char *</code>.
</p>
</dd>
<dt><code>s.size()</code></dt>
<dd><a name="index-size_0028_0029"></a>
</dd>
<dt><code>strlen(s)</code></dt>
<dd><a name="index-strlen-_0028_0029"></a>
<p>Returns the length of the string <code>s</code>.
</p>
</dd>
<dt><code>s[i]</code></dt>
<dd><a name="index-operator-_005b_005d-_0028_0029"></a>
<p>Returns the <code>i</code>th character of the string <code>s</code>.
<code>i</code> must be in the range <code>0 &lt;= i &lt; s.size()</code>.
</p>
</dd>
<dt><code>bool equal (const cl_string&amp; s1, const cl_string&amp; s2)</code></dt>
<dd><a name="index-equal-_0028_0029-1"></a>
<p>Compares two strings for equality. One of the arguments may also be a
plain <code>const char *</code>.
</p></dd>
</dl>

<hr>
<a name="Symbols"></a>
<div class="header">
<p>
Previous: <a href="#Strings" accesskey="p" rel="prev">Strings</a>, Up: <a href="#Symbolic-data-types" accesskey="u" rel="up">Symbolic data types</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Symbols-1"></a>
<h3 class="section">8.2 Symbols</h3>
<a name="index-symbol"></a>
<a name="index-cl_005fsymbol"></a>

<p>Symbols are uniquified strings: all symbols with the same name are shared.
This means that comparison of two symbols is fast (effectively just a pointer
comparison), whereas comparison of two strings must in the worst case walk
both strings until their end.
Symbols are used, for example, as tags for properties, as names of variables
in polynomial rings, etc.
</p>
<p>Symbols are constructed through the following constructor:
</p>
<dl compact="compact">
<dt><code>cl_symbol (const cl_string&amp; s)</code></dt>
<dd><p>Looks up or creates a new symbol with a given name.
</p></dd>
</dl>

<p>The following operations are available on symbols:
</p>
<dl compact="compact">
<dt><code>cl_string (const cl_symbol&amp; sym)</code></dt>
<dd><p>Conversion to <code>cl_string</code>: Returns the string which names the symbol
<code>sym</code>.
</p>
</dd>
<dt><code>bool equal (const cl_symbol&amp; sym1, const cl_symbol&amp; sym2)</code></dt>
<dd><a name="index-equal-_0028_0029-2"></a>
<p>Compares two symbols for equality. This is very fast.
</p></dd>
</dl>


<hr>
<a name="Univariate-polynomials"></a>
<div class="header">
<p>
Next: <a href="#Internals" accesskey="n" rel="next">Internals</a>, Previous: <a href="#Symbolic-data-types" accesskey="p" rel="prev">Symbolic data types</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Univariate-polynomials-1"></a>
<h2 class="chapter">9 Univariate polynomials</h2>
<a name="index-polynomial"></a>
<a name="index-univariate-polynomial"></a>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Univariate-polynomial-rings" accesskey="1">Univariate polynomial rings</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Functions-on-univariate-polynomials" accesskey="2">Functions on univariate polynomials</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Special-polynomials" accesskey="3">Special polynomials</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Univariate-polynomial-rings"></a>
<div class="header">
<p>
Next: <a href="#Functions-on-univariate-polynomials" accesskey="n" rel="next">Functions on univariate polynomials</a>, Up: <a href="#Univariate-polynomials" accesskey="u" rel="up">Univariate polynomials</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Univariate-polynomial-rings-1"></a>
<h3 class="section">9.1 Univariate polynomial rings</h3>

<p>CLN implements univariate polynomials (polynomials in one variable) over an
arbitrary ring. The indeterminate variable may be either unnamed (and will be
printed according to <code>default_print_flags.univpoly_varname</code>, which
defaults to &lsquo;<samp>x</samp>&rsquo;) or carry a given name. The base ring and the
indeterminate are explicitly part of every polynomial. CLN doesn&rsquo;t allow you to
(accidentally) mix elements of different polynomial rings, e.g.
<code>(a^2+1) * (b^3-1)</code> will result in a runtime error. (Ideally this should
return a multivariate polynomial, but they are not yet implemented in CLN.)
</p>
<p>The classes of univariate polynomial rings are
</p>
<div class="example">
<pre class="example">                           Ring
                         cl_ring
                       &lt;cln/ring.h&gt;
                            |
                            |
                 Univariate polynomial ring
                      cl_univpoly_ring
                      &lt;cln/univpoly.h&gt;
                            |
           +----------------+-------------------+
           |                |                   |
 Complex polynomial ring    |    Modular integer polynomial ring
 cl_univpoly_complex_ring   |        cl_univpoly_modint_ring
 &lt;cln/univpoly_complex.h&gt;   |        &lt;cln/univpoly_modint.h&gt;
                            |
           +----------------+
           |                |
   Real polynomial ring     |
   cl_univpoly_real_ring    |
   &lt;cln/univpoly_real.h&gt;    |
                            |
           +----------------+
           |                |
 Rational polynomial ring   |
 cl_univpoly_rational_ring  |
 &lt;cln/univpoly_rational.h&gt;  |
                            |
           +----------------+
           |
 Integer polynomial ring
 cl_univpoly_integer_ring
 &lt;cln/univpoly_integer.h&gt;
</pre></div>

<p>and the corresponding classes of univariate polynomials are
</p>
<div class="example">
<pre class="example">                   Univariate polynomial
                          cl_UP
                      &lt;cln/univpoly.h&gt;
                            |
           +----------------+-------------------+
           |                |                   |
   Complex polynomial       |      Modular integer polynomial
        cl_UP_N             |                cl_UP_MI
 &lt;cln/univpoly_complex.h&gt;   |        &lt;cln/univpoly_modint.h&gt;
                            |
           +----------------+
           |                |
     Real polynomial        |
        cl_UP_R             |
  &lt;cln/univpoly_real.h&gt;     |
                            |
           +----------------+
           |                |
   Rational polynomial      |
        cl_UP_RA            |
 &lt;cln/univpoly_rational.h&gt;  |
                            |
           +----------------+
           |
   Integer polynomial
        cl_UP_I
 &lt;cln/univpoly_integer.h&gt;
</pre></div>

<p>Univariate polynomial rings are constructed using the functions
</p>
<dl compact="compact">
<dt><code>cl_univpoly_ring find_univpoly_ring (const cl_ring&amp; R)</code></dt>
<dt><code>cl_univpoly_ring find_univpoly_ring (const cl_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dd><p>This function returns the polynomial ring &lsquo;<samp>R[X]</samp>&rsquo;, unnamed or named.
<code>R</code> may be an arbitrary ring. This function takes care of finding out
about special cases of <code>R</code>, such as the rings of complex numbers,
real numbers, rational numbers, integers, or modular integer rings.
There is a cache table of rings, indexed by <code>R</code> and <code>varname</code>.
This ensures that two calls of this function with the same arguments will
return the same polynomial ring.
</p>
</dd>
<dt><code>cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring&amp; R)</code></dt>
<dd><a name="index-find_005funivpoly_005fring-_0028_0029"></a>
</dd>
<dt><code>cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dt><code>cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring&amp; R)</code></dt>
<dt><code>cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dt><code>cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring&amp; R)</code></dt>
<dt><code>cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dt><code>cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring&amp; R)</code></dt>
<dt><code>cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dt><code>cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring&amp; R)</code></dt>
<dt><code>cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring&amp; R, const cl_symbol&amp; varname)</code></dt>
<dd><p>These functions are equivalent to the general <code>find_univpoly_ring</code>,
only the return type is more specific, according to the base ring&rsquo;s type.
</p></dd>
</dl>

<hr>
<a name="Functions-on-univariate-polynomials"></a>
<div class="header">
<p>
Next: <a href="#Special-polynomials" accesskey="n" rel="next">Special polynomials</a>, Previous: <a href="#Univariate-polynomial-rings" accesskey="p" rel="prev">Univariate polynomial rings</a>, Up: <a href="#Univariate-polynomials" accesskey="u" rel="up">Univariate polynomials</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-on-univariate-polynomials-1"></a>
<h3 class="section">9.2 Functions on univariate polynomials</h3>

<p>Given a univariate polynomial ring <code>R</code>, the following members can be used.
</p>
<dl compact="compact">
<dt><code>cl_ring R-&gt;basering()</code></dt>
<dd><a name="index-basering-_0028_0029"></a>
<p>This returns the base ring, as passed to &lsquo;<samp>find_univpoly_ring</samp>&rsquo;.
</p>
</dd>
<dt><code>cl_UP R-&gt;zero()</code></dt>
<dd><a name="index-zero-_0028_0029-2"></a>
<p>This returns <code>0 in R</code>, a polynomial of degree -1.
</p>
</dd>
<dt><code>cl_UP R-&gt;one()</code></dt>
<dd><a name="index-one-_0028_0029-2"></a>
<p>This returns <code>1 in R</code>, a polynomial of degree == 0.
</p>
</dd>
<dt><code>cl_UP R-&gt;canonhom (const cl_I&amp; x)</code></dt>
<dd><a name="index-canonhom-_0028_0029-2"></a>
<p>This returns <code>x in R</code>, a polynomial of degree &lt;= 0.
</p>
</dd>
<dt><code>cl_UP R-&gt;monomial (const cl_ring_element&amp; x, uintL e)</code></dt>
<dd><a name="index-monomial-_0028_0029"></a>
<p>This returns a sparse polynomial: <code>x * X^e</code>, where <code>X</code> is the
indeterminate.
</p>
</dd>
<dt><code>cl_UP R-&gt;create (sintL degree)</code></dt>
<dd><a name="index-create-_0028_0029"></a>
<p>Creates a new polynomial with a given degree. The zero polynomial has degree
<code>-1</code>. After creating the polynomial, you should put in the coefficients,
using the <code>set_coeff</code> member function, and then call the <code>finalize</code>
member function.
</p></dd>
</dl>

<p>The following are the only destructive operations on univariate polynomials.
</p>
<dl compact="compact">
<dt><code>void set_coeff (cl_UP&amp; x, uintL index, const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-set_005fcoeff-_0028_0029"></a>
<p>This changes the coefficient of <code>X^index</code> in <code>x</code> to be <code>y</code>.
After changing a polynomial and before applying any &quot;normal&quot; operation on it,
you should call its <code>finalize</code> member function.
</p>
</dd>
<dt><code>void finalize (cl_UP&amp; x)</code></dt>
<dd><a name="index-finalize-_0028_0029"></a>
<p>This function marks the endpoint of destructive modifications of a polynomial.
It normalizes the internal representation so that subsequent computations have
less overhead. Doing normal computations on unnormalized polynomials may
produce wrong results or crash the program.
</p></dd>
</dl>

<p>The following operations are defined on univariate polynomials.
</p>
<dl compact="compact">
<dt><code>cl_univpoly_ring x.ring ()</code></dt>
<dd><a name="index-ring-_0028_0029-1"></a>
<p>Returns the ring to which the univariate polynomial <code>x</code> belongs.
</p>
</dd>
<dt><code>cl_UP operator+ (const cl_UP&amp;, const cl_UP&amp;)</code></dt>
<dd><a name="index-operator-_002b-_0028_0029-2"></a>
<p>Returns the sum of two univariate polynomials.
</p>
</dd>
<dt><code>cl_UP operator- (const cl_UP&amp;, const cl_UP&amp;)</code></dt>
<dd><a name="index-operator-_002d-_0028_0029-2"></a>
<p>Returns the difference of two univariate polynomials.
</p>
</dd>
<dt><code>cl_UP operator- (const cl_UP&amp;)</code></dt>
<dd><p>Returns the negative of a univariate polynomial.
</p>
</dd>
<dt><code>cl_UP operator* (const cl_UP&amp;, const cl_UP&amp;)</code></dt>
<dd><a name="index-operator-_002a-_0028_0029-2"></a>
<p>Returns the product of two univariate polynomials. One of the arguments may
also be a plain integer or an element of the base ring.
</p>
</dd>
<dt><code>cl_UP square (const cl_UP&amp;)</code></dt>
<dd><a name="index-square-_0028_0029-3"></a>
<p>Returns the square of a univariate polynomial.
</p>
</dd>
<dt><code>cl_UP expt_pos (const cl_UP&amp; x, const cl_I&amp; y)</code></dt>
<dd><a name="index-expt_005fpos-_0028_0029-3"></a>
<p><code>y</code> must be &gt; 0. Returns <code>x^y</code>.
</p>
</dd>
<dt><code>bool operator== (const cl_UP&amp;, const cl_UP&amp;)</code></dt>
<dd><a name="index-operator-_003d_003d-_0028_0029-3"></a>
</dd>
<dt><code>bool operator!= (const cl_UP&amp;, const cl_UP&amp;)</code></dt>
<dd><a name="index-operator-_0021_003d-_0028_0029-3"></a>
<p>Compares two univariate polynomials, belonging to the same univariate
polynomial ring, for equality.
</p>
</dd>
<dt><code>bool zerop (const cl_UP&amp; x)</code></dt>
<dd><a name="index-zerop-_0028_0029-3"></a>
<p>Returns true if <code>x</code> is <code>0 in R</code>.
</p>
</dd>
<dt><code>sintL degree (const cl_UP&amp; x)</code></dt>
<dd><a name="index-degree-_0028_0029"></a>
<p>Returns the degree of the polynomial. The zero polynomial has degree <code>-1</code>.
</p>
</dd>
<dt><code>sintL ldegree (const cl_UP&amp; x)</code></dt>
<dd><a name="index-degree-_0028_0029-1"></a>
<p>Returns the low degree of the polynomial. This is the degree of the first
non-vanishing polynomial coefficient. The zero polynomial has ldegree <code>-1</code>.
</p>
</dd>
<dt><code>cl_ring_element coeff (const cl_UP&amp; x, uintL index)</code></dt>
<dd><a name="index-coeff-_0028_0029"></a>
<p>Returns the coefficient of <code>X^index</code> in the polynomial <code>x</code>.
</p>
</dd>
<dt><code>cl_ring_element x (const cl_ring_element&amp; y)</code></dt>
<dd><a name="index-operator-_0028_0029-_0028_0029"></a>
<p>Evaluation: If <code>x</code> is a polynomial and <code>y</code> belongs to the base ring,
then &lsquo;<samp>x(y)</samp>&rsquo; returns the value of the substitution of <code>y</code> into
<code>x</code>.
</p>
</dd>
<dt><code>cl_UP deriv (const cl_UP&amp; x)</code></dt>
<dd><a name="index-deriv-_0028_0029"></a>
<p>Returns the derivative of the polynomial <code>x</code> with respect to the
indeterminate <code>X</code>.
</p></dd>
</dl>

<p>The following output functions are defined (see also the chapter on
input/output).
</p>
<dl compact="compact">
<dt><code>void fprint (std::ostream&amp; stream, const cl_UP&amp; x)</code></dt>
<dd><a name="index-fprint-_0028_0029-2"></a>
</dd>
<dt><code>std::ostream&amp; operator&lt;&lt; (std::ostream&amp; stream, const cl_UP&amp; x)</code></dt>
<dd><a name="index-operator-_003c_003c-_0028_0029-3"></a>
<p>Prints the univariate polynomial <code>x</code> on the <code>stream</code>. The output may
depend on the global printer settings in the variable
<code>default_print_flags</code>.
</p></dd>
</dl>

<hr>
<a name="Special-polynomials"></a>
<div class="header">
<p>
Previous: <a href="#Functions-on-univariate-polynomials" accesskey="p" rel="prev">Functions on univariate polynomials</a>, Up: <a href="#Univariate-polynomials" accesskey="u" rel="up">Univariate polynomials</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Special-polynomials-1"></a>
<h3 class="section">9.3 Special polynomials</h3>

<p>The following functions return special polynomials.
</p>
<dl compact="compact">
<dt><code>cl_UP_I tschebychev (sintL n)</code></dt>
<dd><a name="index-tschebychev-_0028_0029"></a>
<a name="index-Chebyshev-polynomial"></a>
<p>Returns the n-th Chebyshev polynomial (n &gt;= 0).
</p>
</dd>
<dt><code>cl_UP_I hermite (sintL n)</code></dt>
<dd><a name="index-hermite-_0028_0029"></a>
<a name="index-Hermite-polynomial"></a>
<p>Returns the n-th Hermite polynomial (n &gt;= 0).
</p>
</dd>
<dt><code>cl_UP_RA legendre (sintL n)</code></dt>
<dd><a name="index-legendre-_0028_0029"></a>
<a name="index-Legende-polynomial"></a>
<p>Returns the n-th Legendre polynomial (n &gt;= 0).
</p>
</dd>
<dt><code>cl_UP_I laguerre (sintL n)</code></dt>
<dd><a name="index-laguerre-_0028_0029"></a>
<a name="index-Laguerre-polynomial"></a>
<p>Returns the n-th Laguerre polynomial (n &gt;= 0).
</p></dd>
</dl>

<p>Information how to derive the differential equation satisfied by each
of these polynomials from their definition can be found in the
<code>doc/polynomial/</code> directory.
</p>

<hr>
<a name="Internals"></a>
<div class="header">
<p>
Next: <a href="#Using-the-library" accesskey="n" rel="next">Using the library</a>, Previous: <a href="#Univariate-polynomials" accesskey="p" rel="prev">Univariate polynomials</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Internals-1"></a>
<h2 class="chapter">10 Internals</h2>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Why-C_002b_002b-_003f" accesskey="1">Why C++ ?</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Memory-efficiency" accesskey="2">Memory efficiency</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Speed-efficiency" accesskey="3">Speed efficiency</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Garbage-collection" accesskey="4">Garbage collection</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Why-C_002b_002b-_003f"></a>
<div class="header">
<p>
Next: <a href="#Memory-efficiency" accesskey="n" rel="next">Memory efficiency</a>, Up: <a href="#Internals" accesskey="u" rel="up">Internals</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Why-C_002b_002b-_003f-1"></a>
<h3 class="section">10.1 Why C++ ?</h3>
<a name="index-advocacy"></a>

<p>Using C++ as an implementation language provides
</p>
<ul>
<li> Efficiency: It compiles to machine code.

</li><li> <a name="index-portability"></a>
Portability: It runs on all platforms supporting a C++ compiler. Because
of the availability of GNU C++, this includes all currently used 32-bit and
64-bit platforms, independently of the quality of the vendor&rsquo;s C++ compiler.

</li><li> Type safety: The C++ compilers knows about the number types and complains if,
for example, you try to assign a float to an integer variable. However,
a drawback is that C++ doesn&rsquo;t know about generic types, hence a restriction
like that <code>operator+ (const cl_MI&amp;, const cl_MI&amp;)</code> requires that both
arguments belong to the same modular ring cannot be expressed as a compile-time
information.

</li><li> Algebraic syntax: The elementary operations <code>+</code>, <code>-</code>, <code>*</code>,
<code>=</code>, <code>==</code>, ... can be used in infix notation, which is more
convenient than Lisp notation &lsquo;<samp>(+ x y)</samp>&rsquo; or C notation &lsquo;<samp>add(x,y,&amp;z)</samp>&rsquo;.
</li></ul>

<p>With these language features, there is no need for two separate languages,
one for the implementation of the library and one in which the library&rsquo;s users
can program. This means that a prototype implementation of an algorithm
can be integrated into the library immediately after it has been tested and
debugged. No need to rewrite it in a low-level language after having prototyped
in a high-level language.
</p>

<hr>
<a name="Memory-efficiency"></a>
<div class="header">
<p>
Next: <a href="#Speed-efficiency" accesskey="n" rel="next">Speed efficiency</a>, Previous: <a href="#Why-C_002b_002b-_003f" accesskey="p" rel="prev">Why C++ ?</a>, Up: <a href="#Internals" accesskey="u" rel="up">Internals</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Memory-efficiency-1"></a>
<h3 class="section">10.2 Memory efficiency</h3>

<p>In order to save memory allocations, CLN implements:
</p>
<ul>
<li> Object sharing: An operation like <code>x+0</code> returns <code>x</code> without copying
it.
</li><li> <a name="index-garbage-collection"></a>
<a name="index-reference-counting"></a>
Garbage collection: A reference counting mechanism makes sure that any
number object&rsquo;s storage is freed immediately when the last reference to the
object is gone.
</li><li> <a name="index-immediate-numbers-1"></a>
Small integers are represented as immediate values instead of pointers
to heap allocated storage. This means that integers <code>&gt;= -2^29</code>,
<code>&lt; 2^29</code> don&rsquo;t consume heap memory, unless they were explicitly allocated
on the heap.
</li></ul>


<hr>
<a name="Speed-efficiency"></a>
<div class="header">
<p>
Next: <a href="#Garbage-collection" accesskey="n" rel="next">Garbage collection</a>, Previous: <a href="#Memory-efficiency" accesskey="p" rel="prev">Memory efficiency</a>, Up: <a href="#Internals" accesskey="u" rel="up">Internals</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Speed-efficiency-1"></a>
<h3 class="section">10.3 Speed efficiency</h3>

<p>Speed efficiency is obtained by the combination of the following tricks
and algorithms:
</p>
<ul>
<li> Small integers, being represented as immediate values, don&rsquo;t require
memory access, just a couple of instructions for each elementary operation.
</li><li> The kernel of CLN has been written in assembly language for some CPUs
(<code>i386</code>, <code>m68k</code>, <code>sparc</code>, <code>mips</code>, <code>arm</code>).
</li><li> On all CPUs, CLN may be configured to use the superefficient low-level
routines from GNU GMP version 3.
</li><li> For large numbers, CLN uses, instead of the standard <code>O(N^2)</code>
algorithm, the Karatsuba multiplication, which is an
algorithm.
</li><li> For very large numbers (more than 12000 decimal digits), CLN uses
multiplication, which is an asymptotically optimal multiplication 
algorithm.
</li><li> These fast multiplication algorithms also give improvements in the speed
of division and radix conversion.
</li></ul>


<hr>
<a name="Garbage-collection"></a>
<div class="header">
<p>
Previous: <a href="#Speed-efficiency" accesskey="p" rel="prev">Speed efficiency</a>, Up: <a href="#Internals" accesskey="u" rel="up">Internals</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Garbage-collection-1"></a>
<h3 class="section">10.4 Garbage collection</h3>
<a name="index-garbage-collection-1"></a>

<p>All the number classes are reference count classes: They only contain a pointer
to an object in the heap. Upon construction, assignment and destruction of
number objects, only the objects&rsquo; reference count are manipulated.
</p>
<p>Memory occupied by number objects are automatically reclaimed as soon as
their reference count drops to zero.
</p>
<p>For number rings, another strategy is implemented: There is a cache of,
for example, the modular integer rings. A modular integer ring is destroyed
only if its reference count dropped to zero and the cache is about to be
resized. The effect of this strategy is that recently used rings remain
cached, whereas undue memory consumption through cached rings is avoided.
</p>

<hr>
<a name="Using-the-library"></a>
<div class="header">
<p>
Next: <a href="#Customizing" accesskey="n" rel="next">Customizing</a>, Previous: <a href="#Internals" accesskey="p" rel="prev">Internals</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-the-library-1"></a>
<h2 class="chapter">11 Using the library</h2>

<p>For the following discussion, we will assume that you have installed
the CLN source in <code>$CLN_DIR</code> and built it in <code>$CLN_TARGETDIR</code>.
For example, for me it&rsquo;s <code>CLN_DIR=&quot;$HOME/cln&quot;</code> and
<code>CLN_TARGETDIR=&quot;$HOME/cln/linuxelf&quot;</code>. You might define these as
environment variables, or directly substitute the appropriate values.
</p>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Compiler-options" accesskey="1">Compiler options</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Include-files" accesskey="2">Include files</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#An-Example" accesskey="3">An Example</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Debugging-support" accesskey="4">Debugging support</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Reporting-Problems" accesskey="5">Reporting Problems</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Compiler-options"></a>
<div class="header">
<p>
Next: <a href="#Include-files" accesskey="n" rel="next">Include files</a>, Up: <a href="#Using-the-library" accesskey="u" rel="up">Using the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Compiler-options-1"></a>
<h3 class="section">11.1 Compiler options</h3>
<a name="index-compiler-options"></a>

<p>Until you have installed CLN in a public place, the following options are
needed:
</p>
<p>When you compile CLN application code, add the flags
</p><div class="example">
<pre class="example">   -I$CLN_DIR/include -I$CLN_TARGETDIR/include
</pre></div>
<p>to the C++ compiler&rsquo;s command line (<code>make</code> variable CFLAGS or CXXFLAGS).
When you link CLN application code to form an executable, add the flags
</p><div class="example">
<pre class="example">   $CLN_TARGETDIR/src/libcln.a
</pre></div>
<p>to the C/C++ compiler&rsquo;s command line (<code>make</code> variable LIBS).
</p>
<p>If you did a <code>make install</code>, the include files are installed in a
public directory (normally <code>/usr/local/include</code>), hence you don&rsquo;t
need special flags for compiling. The library has been installed to a
public directory as well (normally <code>/usr/local/lib</code>), hence when
linking a CLN application it is sufficient to give the flag <code>-lcln</code>.
</p>
<a name="index-pkg_002dconfig"></a>
<p>To make the creation of software packages that use CLN easier, the
<code>pkg-config</code> utility can be used.  CLN provides all the necessary
metainformation in a file called <code>cln.pc</code> (installed in
<code>/usr/local/lib/pkgconfig</code> by default).  A program using CLN can
be compiled and linked using <a name="DOCF1" href="#FOOT1"><sup>1</sup></a>
</p><div class="example">
<pre class="example">g++ `pkg-config --libs cln` `pkg-config --cflags cln` prog.cc -o prog
</pre></div>

<p>Software using GNU autoconf can check for CLN with the 
<code>PKG_CHECK_MODULES</code> macro supplied with <code>pkg-config</code>.
</p><div class="example">
<pre class="example">PKG_CHECK_MODULES([CLN], [cln &gt;= <var>MIN-VERSION</var>])
</pre></div>
<p>This will check for CLN version at least <var>MIN-VERSION</var>.  If the
required version was found, the variables <var>CLN_CFLAGS</var> and
<var>CLN_LIBS</var> are set.  Otherwise the configure script aborts.  If this
is not the desired behaviour, use the following code instead
<a name="DOCF2" href="#FOOT2"><sup>2</sup></a>
</p><div class="example">
<pre class="example">PKG_CHECK_MODULES([CLN], [cln &gt;= <var>MIN-VERSION</var>], [],
 [AC_MSG_WARNING([No suitable version of CLN can be found])])
</pre></div>


<hr>
<a name="Include-files"></a>
<div class="header">
<p>
Next: <a href="#An-Example" accesskey="n" rel="next">An Example</a>, Previous: <a href="#Compiler-options" accesskey="p" rel="prev">Compiler options</a>, Up: <a href="#Using-the-library" accesskey="u" rel="up">Using the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Include-files-1"></a>
<h3 class="section">11.2 Include files</h3>
<a name="index-include-files"></a>
<a name="index-header-files"></a>

<p>Here is a summary of the include files and their contents.
</p>
<dl compact="compact">
<dt><code>&lt;cln/object.h&gt;</code></dt>
<dd><p>General definitions, reference counting, garbage collection.
</p></dd>
<dt><code>&lt;cln/number.h&gt;</code></dt>
<dd><p>The class cl_number.
</p></dd>
<dt><code>&lt;cln/complex.h&gt;</code></dt>
<dd><p>Functions for class cl_N, the complex numbers.
</p></dd>
<dt><code>&lt;cln/real.h&gt;</code></dt>
<dd><p>Functions for class cl_R, the real numbers.
</p></dd>
<dt><code>&lt;cln/float.h&gt;</code></dt>
<dd><p>Functions for class cl_F, the floats.
</p></dd>
<dt><code>&lt;cln/sfloat.h&gt;</code></dt>
<dd><p>Functions for class cl_SF, the short-floats.
</p></dd>
<dt><code>&lt;cln/ffloat.h&gt;</code></dt>
<dd><p>Functions for class cl_FF, the single-floats.
</p></dd>
<dt><code>&lt;cln/dfloat.h&gt;</code></dt>
<dd><p>Functions for class cl_DF, the double-floats.
</p></dd>
<dt><code>&lt;cln/lfloat.h&gt;</code></dt>
<dd><p>Functions for class cl_LF, the long-floats.
</p></dd>
<dt><code>&lt;cln/rational.h&gt;</code></dt>
<dd><p>Functions for class cl_RA, the rational numbers.
</p></dd>
<dt><code>&lt;cln/integer.h&gt;</code></dt>
<dd><p>Functions for class cl_I, the integers.
</p></dd>
<dt><code>&lt;cln/io.h&gt;</code></dt>
<dd><p>Input/Output.
</p></dd>
<dt><code>&lt;cln/complex_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_N, the complex numbers.
</p></dd>
<dt><code>&lt;cln/real_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_R, the real numbers.
</p></dd>
<dt><code>&lt;cln/float_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_F, the floats.
</p></dd>
<dt><code>&lt;cln/sfloat_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_SF, the short-floats.
</p></dd>
<dt><code>&lt;cln/ffloat_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_FF, the single-floats.
</p></dd>
<dt><code>&lt;cln/dfloat_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_DF, the double-floats.
</p></dd>
<dt><code>&lt;cln/lfloat_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_LF, the long-floats.
</p></dd>
<dt><code>&lt;cln/rational_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_RA, the rational numbers.
</p></dd>
<dt><code>&lt;cln/integer_io.h&gt;</code></dt>
<dd><p>Input/Output for class cl_I, the integers.
</p></dd>
<dt><code>&lt;cln/input.h&gt;</code></dt>
<dd><p>Flags for customizing input operations.
</p></dd>
<dt><code>&lt;cln/output.h&gt;</code></dt>
<dd><p>Flags for customizing output operations.
</p></dd>
<dt><code>&lt;cln/malloc.h&gt;</code></dt>
<dd><p><code>malloc_hook</code>, <code>free_hook</code>.
</p></dd>
<dt><code>&lt;cln/exception.h&gt;</code></dt>
<dd><p>Exception base class.
</p></dd>
<dt><code>&lt;cln/condition.h&gt;</code></dt>
<dd><p>Conditions.
</p></dd>
<dt><code>&lt;cln/string.h&gt;</code></dt>
<dd><p>Strings.
</p></dd>
<dt><code>&lt;cln/symbol.h&gt;</code></dt>
<dd><p>Symbols.
</p></dd>
<dt><code>&lt;cln/proplist.h&gt;</code></dt>
<dd><p>Property lists.
</p></dd>
<dt><code>&lt;cln/ring.h&gt;</code></dt>
<dd><p>General rings.
</p></dd>
<dt><code>&lt;cln/null_ring.h&gt;</code></dt>
<dd><p>The null ring.
</p></dd>
<dt><code>&lt;cln/complex_ring.h&gt;</code></dt>
<dd><p>The ring of complex numbers.
</p></dd>
<dt><code>&lt;cln/real_ring.h&gt;</code></dt>
<dd><p>The ring of real numbers.
</p></dd>
<dt><code>&lt;cln/rational_ring.h&gt;</code></dt>
<dd><p>The ring of rational numbers.
</p></dd>
<dt><code>&lt;cln/integer_ring.h&gt;</code></dt>
<dd><p>The ring of integers.
</p></dd>
<dt><code>&lt;cln/numtheory.h&gt;</code></dt>
<dd><p>Number threory functions.
</p></dd>
<dt><code>&lt;cln/modinteger.h&gt;</code></dt>
<dd><p>Modular integers.
</p></dd>
<dt><code>&lt;cln/V.h&gt;</code></dt>
<dd><p>Vectors.
</p></dd>
<dt><code>&lt;cln/GV.h&gt;</code></dt>
<dd><p>General vectors.
</p></dd>
<dt><code>&lt;cln/GV_number.h&gt;</code></dt>
<dd><p>General vectors over cl_number.
</p></dd>
<dt><code>&lt;cln/GV_complex.h&gt;</code></dt>
<dd><p>General vectors over cl_N.
</p></dd>
<dt><code>&lt;cln/GV_real.h&gt;</code></dt>
<dd><p>General vectors over cl_R.
</p></dd>
<dt><code>&lt;cln/GV_rational.h&gt;</code></dt>
<dd><p>General vectors over cl_RA.
</p></dd>
<dt><code>&lt;cln/GV_integer.h&gt;</code></dt>
<dd><p>General vectors over cl_I.
</p></dd>
<dt><code>&lt;cln/GV_modinteger.h&gt;</code></dt>
<dd><p>General vectors of modular integers.
</p></dd>
<dt><code>&lt;cln/SV.h&gt;</code></dt>
<dd><p>Simple vectors.
</p></dd>
<dt><code>&lt;cln/SV_number.h&gt;</code></dt>
<dd><p>Simple vectors over cl_number.
</p></dd>
<dt><code>&lt;cln/SV_complex.h&gt;</code></dt>
<dd><p>Simple vectors over cl_N.
</p></dd>
<dt><code>&lt;cln/SV_real.h&gt;</code></dt>
<dd><p>Simple vectors over cl_R.
</p></dd>
<dt><code>&lt;cln/SV_rational.h&gt;</code></dt>
<dd><p>Simple vectors over cl_RA.
</p></dd>
<dt><code>&lt;cln/SV_integer.h&gt;</code></dt>
<dd><p>Simple vectors over cl_I.
</p></dd>
<dt><code>&lt;cln/SV_ringelt.h&gt;</code></dt>
<dd><p>Simple vectors of general ring elements.
</p></dd>
<dt><code>&lt;cln/univpoly.h&gt;</code></dt>
<dd><p>Univariate polynomials.
</p></dd>
<dt><code>&lt;cln/univpoly_integer.h&gt;</code></dt>
<dd><p>Univariate polynomials over the integers.
</p></dd>
<dt><code>&lt;cln/univpoly_rational.h&gt;</code></dt>
<dd><p>Univariate polynomials over the rational numbers.
</p></dd>
<dt><code>&lt;cln/univpoly_real.h&gt;</code></dt>
<dd><p>Univariate polynomials over the real numbers.
</p></dd>
<dt><code>&lt;cln/univpoly_complex.h&gt;</code></dt>
<dd><p>Univariate polynomials over the complex numbers.
</p></dd>
<dt><code>&lt;cln/univpoly_modint.h&gt;</code></dt>
<dd><p>Univariate polynomials over modular integer rings.
</p></dd>
<dt><code>&lt;cln/timing.h&gt;</code></dt>
<dd><p>Timing facilities.
</p></dd>
<dt><code>&lt;cln/cln.h&gt;</code></dt>
<dd><p>Includes all of the above.
</p></dd>
</dl>


<hr>
<a name="An-Example"></a>
<div class="header">
<p>
Next: <a href="#Debugging-support" accesskey="n" rel="next">Debugging support</a>, Previous: <a href="#Include-files" accesskey="p" rel="prev">Include files</a>, Up: <a href="#Using-the-library" accesskey="u" rel="up">Using the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="An-Example-1"></a>
<h3 class="section">11.3 An Example</h3>

<p>A function which computes the nth Fibonacci number can be written as follows.
<a name="index-Fibonacci-number"></a>
</p>
<div class="example">
<pre class="example">#include &lt;cln/integer.h&gt;
#include &lt;cln/real.h&gt;
using namespace cln;

// Returns F_n, computed as the nearest integer to
// ((1+sqrt(5))/2)^n/sqrt(5). Assume n&gt;=0.
const cl_I fibonacci (int n)
{
        // Need a precision of ((1+sqrt(5))/2)^-n.
        float_format_t prec = float_format((int)(0.208987641*n+5));
        cl_R sqrt5 = sqrt(cl_float(5,prec));
        cl_R phi = (1+sqrt5)/2;
        return round1( expt(phi,n)/sqrt5 );
}
</pre></div>

<p>Let&rsquo;s explain what is going on in detail.
</p>
<p>The include file <code>&lt;cln/integer.h&gt;</code> is necessary because the type
<code>cl_I</code> is used in the function, and the include file <code>&lt;cln/real.h&gt;</code>
is needed for the type <code>cl_R</code> and the floating point number functions.
The order of the include files does not matter.  In order not to write
out <code>cln::</code><var>foo</var> in this simple example we can safely import
the whole namespace <code>cln</code>.
</p>
<p>Then comes the function declaration. The argument is an <code>int</code>, the
result an integer. The return type is defined as &lsquo;<samp>const cl_I</samp>&rsquo;, not
simply &lsquo;<samp>cl_I</samp>&rsquo;, because that allows the compiler to detect typos like
&lsquo;<samp>fibonacci(n) = 100</samp>&rsquo;. It would be possible to declare the return
type as <code>const cl_R</code> (real number) or even <code>const cl_N</code> (complex
number). We use the most specialized possible return type because functions
which call &lsquo;<samp>fibonacci</samp>&rsquo; will be able to profit from the compiler&rsquo;s type
analysis: Adding two integers is slightly more efficient than adding the
same objects declared as complex numbers, because it needs less type
dispatch. Also, when linking to CLN as a non-shared library, this minimizes
the size of the resulting executable program.
</p>
<p>The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
integer. In order to get a correct result, the absolute error should be less
than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
To this end, the first line computes a floating point precision for sqrt(5)
and phi.
</p>
<p>Then sqrt(5) is computed by first converting the integer 5 to a floating point
number and than taking the square root. The converse, first taking the square
root of 5, and then converting to the desired precision, would not work in
CLN: The square root would be computed to a default precision (normally
single-float precision), and the following conversion could not help about
the lacking accuracy. This is because CLN is not a symbolic computer algebra
system and does not represent sqrt(5) in a non-numeric way.
</p>
<p>The type <code>cl_R</code> for sqrt5 and, in the following line, phi is the only
possible choice. You cannot write <code>cl_F</code> because the C++ compiler can
only infer that <code>cl_float(5,prec)</code> is a real number. You cannot write
<code>cl_N</code> because a &lsquo;<samp>round1</samp>&rsquo; does not exist for general complex
numbers.
</p>
<p>When the function returns, all the local variables in the function are
automatically reclaimed (garbage collected). Only the result survives and
gets passed to the caller.
</p>
<p>The file <code>fibonacci.cc</code> in the subdirectory <code>examples</code>
contains this implementation together with an even faster algorithm.
</p>
<hr>
<a name="Debugging-support"></a>
<div class="header">
<p>
Next: <a href="#Reporting-Problems" accesskey="n" rel="next">Reporting Problems</a>, Previous: <a href="#An-Example" accesskey="p" rel="prev">An Example</a>, Up: <a href="#Using-the-library" accesskey="u" rel="up">Using the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Debugging-support-1"></a>
<h3 class="section">11.4 Debugging support</h3>
<a name="index-debugging"></a>

<p>When debugging a CLN application with GNU <code>gdb</code>, two facilities are
available from the library:
</p>
<ul>
<li> The library does type checks, range checks, consistency checks at
many places. When one of these fails, an exception of a type derived from
<code>runtime_exception</code> is thrown. When an exception is cought, the stack
has already been unwound, so it is may not be possible to tell at which
point the exception was thrown. For debugging, it is best to set up a
catchpoint at the event of throwning a C++ exception:
<div class="example">
<pre class="example">(gdb) catch throw
</pre></div>
<p>When this catchpoint is hit, look at the stack&rsquo;s backtrace:
</p><div class="example">
<pre class="example">(gdb) where
</pre></div>
<p>When control over the type of exception is required, it may be possible
to set a breakpoint at the <code>g++</code> runtime library function
<code>__raise_exception</code>. Refer to the documentation of GNU <code>gdb</code>
for details.
</p>
</li><li> The debugger&rsquo;s normal <code>print</code> command doesn&rsquo;t know about
CLN&rsquo;s types and therefore prints mostly useless hexadecimal addresses.
CLN offers a function <code>cl_print</code>, callable from the debugger,
for printing number objects. In order to get this function, you have
to define the macro &lsquo;<samp>CL_DEBUG</samp>&rsquo; and then include all the header files
for which you want <code>cl_print</code> debugging support. For example:
<a name="index-CL_005fDEBUG"></a>
<div class="example">
<pre class="example">#define CL_DEBUG
#include &lt;cln/string.h&gt;
</pre></div>
<p>Now, if you have in your program a variable <code>cl_string s</code>, and
inspect it under <code>gdb</code>, the output may look like this:
</p><div class="example">
<pre class="example">(gdb) print s
$7 = {&lt;cl_gcpointer&gt; = { = {pointer = 0x8055b60, heappointer = 0x8055b60,
  word = 134568800}}, }
(gdb) call cl_print(s)
(cl_string) &quot;&quot;
$8 = 134568800
</pre></div>
<p>Note that the output of <code>cl_print</code> goes to the program&rsquo;s error output,
not to gdb&rsquo;s standard output.
</p>
<p>Note, however, that the above facility does not work with all CLN types,
only with number objects and similar. Therefore CLN offers a member function
<code>debug_print()</code> on all CLN types. The same macro &lsquo;<samp>CL_DEBUG</samp>&rsquo;
is needed for this member function to be implemented. Under <code>gdb</code>,
you call it like this:
<a name="index-debug_005fprint-_0028_0029"></a>
</p><div class="example">
<pre class="example">(gdb) print s
$7 = {&lt;cl_gcpointer&gt; = { = {pointer = 0x8055b60, heappointer = 0x8055b60,
  word = 134568800}}, }
(gdb) call s.debug_print()
(cl_string) &quot;&quot;
(gdb) define cprint
&gt;call ($1).debug_print()
&gt;end
(gdb) cprint s
(cl_string) &quot;&quot;
</pre></div>
<p>Unfortunately, this feature does not seem to work under all circumstances.
</p></li></ul>

<hr>
<a name="Reporting-Problems"></a>
<div class="header">
<p>
Previous: <a href="#Debugging-support" accesskey="p" rel="prev">Debugging support</a>, Up: <a href="#Using-the-library" accesskey="u" rel="up">Using the library</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Reporting-Problems-1"></a>
<h3 class="section">11.5 Reporting Problems</h3>
<a name="index-bugreports"></a>
<a name="index-mailing-list"></a>

<p>If you encounter any problem, please don&rsquo;t hesitate to send a detailed
bugreport to the <code>cln-list@ginac.de</code> mailing list. Please think
about your bug: consider including a short description of your operating
system and compilation environment with corresponding version numbers. A
description of your configuration options may also be helpful. Also, a
short test program together with the output you get and the output you
expect will help us to reproduce it quickly. Finally, do not forget to
report the version number of CLN.
</p>

<hr>
<a name="Customizing"></a>
<div class="header">
<p>
Next: <a href="#Index" accesskey="n" rel="next">Index</a>, Previous: <a href="#Using-the-library" accesskey="p" rel="prev">Using the library</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Customizing-1"></a>
<h2 class="chapter">12 Customizing</h2>
<a name="index-customizing"></a>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="#Error-handling" accesskey="1">Error handling</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Floating_002dpoint-underflow" accesskey="2">Floating-point underflow</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Customizing-I_002fO" accesskey="3">Customizing I/O</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="#Customizing-the-memory-allocator" accesskey="4">Customizing the memory allocator</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<a name="Error-handling"></a>
<div class="header">
<p>
Next: <a href="#Floating_002dpoint-underflow" accesskey="n" rel="next">Floating-point underflow</a>, Up: <a href="#Customizing" accesskey="u" rel="up">Customizing</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Error-handling-1"></a>
<h3 class="section">12.1 Error handling</h3>
<a name="index-exception"></a>
<a name="index-error-handling"></a>

<a name="index-runtime_005fexception"></a>
<p>CLN signals abnormal situations by throwning exceptions. All exceptions
thrown by the library are of type <code>runtime_exception</code> or of a
derived type. Class <code>cln::runtime_exception</code> in turn is derived
from the C++ standard library class <code>std::runtime_error</code> and
inherits the <code>.what()</code> member function that can be used to query
details about the cause of error.
</p>
<p>The most important classes thrown by the library are
</p>
<a name="index-floating_005fpoint_005fexception"></a>
<a name="index-read_005fnumber_005fexception"></a>
<div class="example">
<pre class="example">                  Exception base class
                    runtime_exception
                    &lt;cln/exception.h&gt;
                            | 
           +----------------+----------------+
           |                                 |
 Malformed number input             Floating-point error
 read_number_exception            floating_poing_exception
   &lt;cln/number_io.h&gt;                   &lt;cln/float.h&gt;
</pre></div>

<p>CLN has many more exception classes that allow for more fine-grained
control but I refrain from documenting them all here. They are all
declared in the public header files and they are all subclasses of the
above exceptions, so catching those you are always on the safe side.
</p>

<hr>
<a name="Floating_002dpoint-underflow"></a>
<div class="header">
<p>
Next: <a href="#Customizing-I_002fO" accesskey="n" rel="next">Customizing I/O</a>, Previous: <a href="#Error-handling" accesskey="p" rel="prev">Error handling</a>, Up: <a href="#Customizing" accesskey="u" rel="up">Customizing</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Floating_002dpoint-underflow-1"></a>
<h3 class="section">12.2 Floating-point underflow</h3>
<a name="index-underflow"></a>

<a name="index-floating_005fpoint_005funderflow_005fexception"></a>
<p>Floating point underflow denotes the situation when a floating-point
number is to be created which is so close to <code>0</code> that its exponent
is too low to be represented internally. By default, this causes the
exception <code>floating_point_underflow_exception</code> (subclass of
<code>floating_point_exception</code>) to be thrown. If you set the global
variable
</p><div class="example">
<pre class="example">bool cl_inhibit_floating_point_underflow
</pre></div>
<p>to <code>true</code>, the exception will be inhibited, and a floating-point
zero will be generated instead.  The default value of 
<code>cl_inhibit_floating_point_underflow</code> is <code>false</code>.
</p>

<hr>
<a name="Customizing-I_002fO"></a>
<div class="header">
<p>
Next: <a href="#Customizing-the-memory-allocator" accesskey="n" rel="next">Customizing the memory allocator</a>, Previous: <a href="#Floating_002dpoint-underflow" accesskey="p" rel="prev">Floating-point underflow</a>, Up: <a href="#Customizing" accesskey="u" rel="up">Customizing</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Customizing-I_002fO-1"></a>
<h3 class="section">12.3 Customizing I/O</h3>

<p>The output of the function <code>fprint</code> may be customized by changing the
value of the global variable <code>default_print_flags</code>.
<a name="index-default_005fprint_005fflags"></a>
</p>

<hr>
<a name="Customizing-the-memory-allocator"></a>
<div class="header">
<p>
Previous: <a href="#Customizing-I_002fO" accesskey="p" rel="prev">Customizing I/O</a>, Up: <a href="#Customizing" accesskey="u" rel="up">Customizing</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Customizing-the-memory-allocator-1"></a>
<h3 class="section">12.4 Customizing the memory allocator</h3>

<p>Every memory allocation of CLN is done through the function pointer
<code>malloc_hook</code>. Freeing of this memory is done through the function
pointer <code>free_hook</code>. The default versions of these functions,
provided in the library, call <code>malloc</code> and <code>free</code> and check
the <code>malloc</code> result against <code>NULL</code>.
If you want to provide another memory allocator, you need to define
the variables <code>malloc_hook</code> and <code>free_hook</code> yourself,
like this:
</p><div class="example">
<pre class="example">#include &lt;cln/malloc.h&gt;
namespace cln {
        void* (*malloc_hook) (size_t size) = &hellip;;
        void (*free_hook) (void* ptr)      = &hellip;;
}
</pre></div>
<a name="index-malloc_005fhook-_0028_0029"></a>
<a name="index-free_005fhook-_0028_0029"></a>
<p>The <code>cl_malloc_hook</code> function must not return a <code>NULL</code> pointer.
</p>
<p>It is not possible to change the memory allocator at runtime, because
it is already called at program startup by the constructors of some
global variables.
</p>




<hr>
<a name="Index"></a>
<div class="header">
<p>
Previous: <a href="#Customizing" accesskey="p" rel="prev">Customizing</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Index-1"></a>
<h2 class="unnumbered">Index</h2>

<table><tr><th valign="top">Jump to: &nbsp; </th><td><a class="summary-letter" href="#Index_my_letter-A"><b>A</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-B"><b>B</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-C"><b>C</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-D"><b>D</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-E"><b>E</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-F"><b>F</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-G"><b>G</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-H"><b>H</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-I"><b>I</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-J"><b>J</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-L"><b>L</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-M"><b>M</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-N"><b>N</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-O"><b>O</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-P"><b>P</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-R"><b>R</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-S"><b>S</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-T"><b>T</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-U"><b>U</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-X"><b>X</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-Z"><b>Z</b></a>
 &nbsp; 
</td></tr></table>
<table class="index-my" border="0">
<tr><td></td><th align="left">Index Entry</th><td>&nbsp;</td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-abs-_0028_0029"><code>abs ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-abstract-class">abstract class</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acos-_0028_0029"><code>acos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-acosh-_0028_0029"><code>acosh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-advocacy">advocacy</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Why-C_002b_002b-_003f">Why C++ ?</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Archimedes_0027-constant">Archimedes&rsquo; constant</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-As_0028_0029_0028_0029"><code>As()()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ash-_0028_0029"><code>ash ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asin"><code>asin</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asin-_0028_0029"><code>asin ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asinh-_0028_0029"><code>asinh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan"><code>atan</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atan-_0028_0029"><code>atan ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-atanh-_0028_0029"><code>atanh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-basering-_0028_0029"><code>basering ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-binary-splitting">binary splitting</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Introduction">Introduction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-binomial-_0028_0029"><code>binomial ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Combinatorial-functions">Combinatorial functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole-_0028_0029"><code>boole ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005f1"><code>boole_1</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005f2"><code>boole_2</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fand"><code>boole_and</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fandc1"><code>boole_andc1</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fandc2"><code>boole_andc2</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fc1"><code>boole_c1</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fc2"><code>boole_c2</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fclr"><code>boole_clr</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005feqv"><code>boole_eqv</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fnand"><code>boole_nand</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fnor"><code>boole_nor</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005forc1"><code>boole_orc1</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005forc2"><code>boole_orc2</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fset"><code>boole_set</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-boole_005fxor"><code>boole_xor</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bugreports">bugreports</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Reporting-Problems">Reporting Problems</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-canonhom-_0028_0029"><code>canonhom ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-canonhom-_0028_0029-1"><code>canonhom ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-canonhom-_0028_0029-2"><code>canonhom ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cast">cast</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Catalan_0027s-constant">Catalan&rsquo;s constant</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Euler-gamma">Euler gamma</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-catalanconst-_0028_0029"><code>catalanconst ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Euler-gamma">Euler gamma</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ceiling1-_0028_0029"><code>ceiling1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ceiling2-_0028_0029"><code>ceiling2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Chebyshev-polynomial">Chebyshev polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cis-_0028_0029"><code>cis ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fbyte"><code>cl_byte</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CL_005fDEBUG"><code>CL_DEBUG</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Debugging-support">Debugging support</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fDF"><code>cl_DF</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fDF_005ffdiv_005ft"><code>cl_DF_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fF"><code>cl_F</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fF-1"><code>cl_F</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fFF"><code>cl_FF</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fFF_005ffdiv_005ft"><code>cl_FF_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005ffloat-_0028_0029"><code>cl_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fF_005ffdiv_005ft"><code>cl_F_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fidecoded_005ffloat"><code>cl_idecoded_float</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fI_005fto_005fint-_0028_0029"><code>cl_I_to_int ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fI_005fto_005flong-_0028_0029"><code>cl_I_to_long ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fI_005fto_005fuint-_0028_0029"><code>cl_I_to_uint ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fI_005fto_005fulong-_0028_0029"><code>cl_I_to_ulong ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fLF"><code>cl_LF</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fLF_005ffdiv_005ft"><code>cl_LF_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fmodint_005fring"><code>cl_modint_ring</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fN"><code>cl_N</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fnumber"><code>cl_number</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fR"><code>cl_R</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fRA"><code>cl_RA</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fR_005ffdiv_005ft"><code>cl_R_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fSF"><code>cl_SF</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fSF_005ffdiv_005ft"><code>cl_SF_fdiv_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fstring"><code>cl_string</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cl_005fsymbol"><code>cl_symbol</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Symbols">Symbols</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-coeff-_0028_0029"><code>coeff ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compare-_0028_0029"><code>compare ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-comparison">comparison</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-compiler-options">compiler options</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Compiler-options">Compiler options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-complex-_0028_0029"><code>complex ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-complex-functions">Elementary complex functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-complex-number">complex number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-complex-number-1">complex number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Complex-numbers">Complex numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conjugate-_0028_0029"><code>conjugate ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-complex-functions">Elementary complex functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conversion">conversion</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conversion-1">conversion</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-functions">Conversion functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cos-_0028_0029"><code>cos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosh-_0028_0029"><code>cosh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosh_005fsinh-_0028_0029"><code>cosh_sinh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cosh_005fsinh_005ft"><code>cosh_sinh_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cos_005fsin-_0028_0029"><code>cos_sin ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cos_005fsin_005ft"><code>cos_sin_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-create-_0028_0029"><code>create ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-customizing">customizing</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Customizing">Customizing</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-debugging">debugging</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Debugging-support">Debugging support</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-debug_005fprint-_0028_0029"><code>debug_print ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Debugging-support">Debugging support</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decoded_005fdfloat"><code>decoded_dfloat</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decoded_005fffloat"><code>decoded_ffloat</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decoded_005ffloat"><code>decoded_float</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decoded_005flfloat"><code>decoded_lfloat</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decoded_005fsfloat"><code>decoded_sfloat</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-decode_005ffloat-_0028_0029"><code>decode_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-default_005ffloat_005fformat"><code>default_float_format</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-default_005fprint_005fflags"><code>default_print_flags</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Customizing-I_002fO">Customizing I/O</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-default_005frandom_005fstate"><code>default_random_state</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-degree-_0028_0029"><code>degree ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-degree-_0028_0029-1"><code>degree ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-denominator-_0028_0029"><code>denominator ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-rational-functions">Elementary rational functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deposit_005ffield-_0028_0029"><code>deposit_field ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deriv-_0028_0029"><code>deriv ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-div-_0028_0029"><code>div ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-doublefactorial-_0028_0029"><code>doublefactorial ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Combinatorial-functions">Combinatorial functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-double_005fapprox-_0028_0029"><code>double_approx ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dpb-_0028_0029"><code>dpb ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-equal-_0028_0029"><code>equal ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-equal-_0028_0029-1"><code>equal ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-equal-_0028_0029-2"><code>equal ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Symbols">Symbols</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-equal_005fhashcode-_0028_0029"><code>equal_hashcode ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-error-handling">error handling</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Error-handling">Error handling</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Euler_0027s-constant">Euler&rsquo;s constant</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Euler-gamma">Euler gamma</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eulerconst-_0028_0029"><code>eulerconst ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Euler-gamma">Euler gamma</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-evenp-_0028_0029"><code>evenp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exact-number">exact number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exact-numbers">Exact numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exception">exception</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Error-handling">Error handling</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp-_0028_0029"><code>exp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exp1-_0028_0029"><code>exp1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt-_0028_0029"><code>expt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt-_0028_0029-1"><code>expt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt-_0028_0029-2"><code>expt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt_005fpos-_0028_0029"><code>expt_pos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt_005fpos-_0028_0029-1"><code>expt_pos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt_005fpos-_0028_0029-2"><code>expt_pos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expt_005fpos-_0028_0029-3"><code>expt_pos ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-exquo-_0028_0029"><code>exquo ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-F">F</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-factorial-_0028_0029"><code>factorial ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Combinatorial-functions">Combinatorial functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fceiling-_0028_0029"><code>fceiling ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fceiling2-_0028_0029"><code>fceiling2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffloor-_0028_0029"><code>ffloor ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ffloor2-_0028_0029"><code>ffloor2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Fibonacci-number">Fibonacci number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#An-Example">An Example</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-finalize-_0028_0029"><code>finalize ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-find_005fmodint_005fring-_0028_0029"><code>find_modint_ring ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-find_005funivpoly_005fring-_0028_0029"><code>find_univpoly_ring ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Univariate-polynomial-rings">Univariate polynomial rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floating_002dpoint-number">floating-point number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floating_005fpoint_005fexception"><code>floating_point_exception</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Error-handling">Error handling</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floating_005fpoint_005funderflow_005fexception"><code>floating_point_underflow_exception</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-underflow">Floating-point underflow</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fapprox-_0028_0029"><code>float_approx ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fdigits-_0028_0029"><code>float_digits ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fepsilon-_0028_0029"><code>float_epsilon ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fexponent-_0028_0029"><code>float_exponent ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fformat-_0028_0029"><code>float_format ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fformat_005ft"><code>float_format_t</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fnegative_005fepsilon-_0028_0029"><code>float_negative_epsilon ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fprecision-_0028_0029"><code>float_precision ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fradix-_0028_0029"><code>float_radix ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fsign-_0028_0029"><code>float_sign ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-float_005fsign-_0028_0029-1"><code>float_sign ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floor1-_0028_0029"><code>floor1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-floor2-_0028_0029"><code>floor2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprint-_0028_0029"><code>fprint ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprint-_0028_0029-1"><code>fprint ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fprint-_0028_0029-2"><code>fprint ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-free_005fhook-_0028_0029"><code>free_hook ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Customizing-the-memory-allocator">Customizing the memory allocator</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fround-_0028_0029"><code>fround ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fround2-_0028_0029"><code>fround2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftruncate-_0028_0029"><code>ftruncate ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ftruncate2-_0028_0029"><code>ftruncate2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-garbage-collection">garbage collection</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Memory-efficiency">Memory efficiency</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-garbage-collection-1">garbage collection</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Garbage-collection">Garbage collection</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcd-_0028_0029"><code>gcd ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GMP">GMP</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Introduction">Introduction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GMP-1">GMP</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Using-the-GNU-MP-Library">Using the GNU MP Library</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-H">H</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-header-files">header files</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Include-files">Include files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hermite-_0028_0029"><code>hermite ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Hermite-polynomial">Hermite polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-I">I</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-imagpart-_0028_0029"><code>imagpart ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-complex-functions">Elementary complex functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-immediate-numbers">immediate numbers</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exact-numbers">Exact numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-immediate-numbers-1">immediate numbers</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Memory-efficiency">Memory efficiency</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-include-files">include files</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Include-files">Include files</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Input_002fOutput">Input/Output</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Input_002fOutput">Input/Output</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-installation">installation</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Installing-the-library">Installing the library</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-instanceof-_0028_0029"><code>instanceof ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-integer">integer</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-integer_005fdecode_005ffloat-_0028_0029"><code>integer_decode_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-integer_005flength-_0028_0029"><code>integer_length ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isprobprime_0028_0029"><code>isprobprime()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-isqrt-_0028_0029"><code>isqrt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Roots">Roots</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-J">J</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-jacobi_0028_0029"><code>jacobi()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-L">L</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-laguerre-_0028_0029"><code>laguerre ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Laguerre-polynomial">Laguerre polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lcm-_0028_0029"><code>lcm ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ldb-_0028_0029"><code>ldb ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ldb_005ftest-_0028_0029"><code>ldb_test ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-least_005fnegative_005ffloat-_0028_0029"><code>least_negative_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-least_005fpositive_005ffloat-_0028_0029"><code>least_positive_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Legende-polynomial">Legende polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-legendre-_0028_0029"><code>legendre ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ln-_0028_0029"><code>ln ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-log-_0028_0029"><code>log ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logand-_0028_0029"><code>logand ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logandc1-_0028_0029"><code>logandc1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logandc2-_0028_0029"><code>logandc2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logbitp-_0028_0029"><code>logbitp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logcount-_0028_0029"><code>logcount ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logeqv-_0028_0029"><code>logeqv ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logior-_0028_0029"><code>logior ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lognand-_0028_0029"><code>lognand ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lognor-_0028_0029"><code>lognor ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-lognot-_0028_0029"><code>lognot ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logorc1-_0028_0029"><code>logorc1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logorc2-_0028_0029"><code>logorc2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logp-_0028_0029"><code>logp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logtest-_0028_0029"><code>logtest ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-logxor-_0028_0029"><code>logxor ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-mailing-list">mailing list</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Reporting-Problems">Reporting Problems</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-make"><code>make</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Make-utility">Make utility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-malloc_005fhook-_0028_0029"><code>malloc_hook ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Customizing-the-memory-allocator">Customizing the memory allocator</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mask_005ffield-_0028_0029"><code>mask_field ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-max-_0028_0029"><code>max ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-min-_0028_0029"><code>min ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minus-_0028_0029"><code>minus ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minus1-_0028_0029"><code>minus1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-minusp-_0028_0029"><code>minusp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mod-_0028_0029"><code>mod ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modifying-operators">modifying operators</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modular-integer">modular integer</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integers">Modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-modulus"><code>modulus</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-monomial-_0028_0029"><code>monomial ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Montgomery-multiplication">Montgomery multiplication</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-most_005fnegative_005ffloat-_0028_0029"><code>most_negative_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-most_005fpositive_005ffloat-_0028_0029"><code>most_positive_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-floating_002dpoint-numbers">Conversion to floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mul-_0028_0029"><code>mul ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-namespace">namespace</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Introduction">Introduction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nextprobprime_0028_0029"><code>nextprobprime()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-numerator-_0028_0029"><code>numerator ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-rational-functions">Elementary rational functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-oddp-_0028_0029"><code>oddp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-one-_0028_0029"><code>one ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-one-_0028_0029-1"><code>one ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-one-_0028_0029-2"><code>one ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0021_003d-_0028_0029"><code>operator != ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0021_003d-_0028_0029-1"><code>operator != ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0021_003d-_0028_0029-2"><code>operator != ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0021_003d-_0028_0029-3"><code>operator != ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0026-_0028_0029"><code>operator &amp; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0026_003d-_0028_0029"><code>operator &amp;= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_0028_0029-_0028_0029"><code>operator () ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002a-_0028_0029"><code>operator * ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002a-_0028_0029-1"><code>operator * ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002a-_0028_0029-2"><code>operator * ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002a_003d-_0028_0029"><code>operator *= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002b-_0028_0029"><code>operator + ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002b-_0028_0029-1"><code>operator + ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002b-_0028_0029-2"><code>operator + ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002b_002b-_0028_0029"><code>operator ++ ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002b_003d-_0028_0029"><code>operator += ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002d-_0028_0029"><code>operator - ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002d-_0028_0029-1"><code>operator - ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002d-_0028_0029-2"><code>operator - ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002d_002d-_0028_0029"><code>operator -- ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002d_003d-_0028_0029"><code>operator -= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002f-_0028_0029"><code>operator / ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_002f_003d-_0028_0029"><code>operator /= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c-_0028_0029"><code>operator &lt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003c-_0028_0029"><code>operator &lt;&lt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003c-_0028_0029-1"><code>operator &lt;&lt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003c-_0028_0029-2"><code>operator &lt;&lt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003c-_0028_0029-3"><code>operator &lt;&lt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003c_003d-_0028_0029"><code>operator &lt;&lt;= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003c_003d-_0028_0029"><code>operator &lt;= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003d_003d-_0028_0029"><code>operator == ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003d_003d-_0028_0029-1"><code>operator == ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003d_003d-_0028_0029-2"><code>operator == ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003d_003d-_0028_0029-3"><code>operator == ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003e-_0028_0029"><code>operator &gt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003e_003d-_0028_0029"><code>operator &gt;= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003e_003e-_0028_0029"><code>operator &gt;&gt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003e_003e-_0028_0029-1"><code>operator &gt;&gt; ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_003e_003e_003d-_0028_0029"><code>operator &gt;&gt;= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_005b_005d-_0028_0029"><code>operator [] ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_005e-_0028_0029"><code>operator ^ ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_005e_003d-_0028_0029"><code>operator ^= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_007c-_0028_0029"><code>operator | ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_007c_003d-_0028_0029"><code>operator |= ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modifying-operators">Modifying operators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-operator-_007e-_0028_0029"><code>operator ~ ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ord2-_0028_0029"><code>ord2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-phase-_0028_0029"><code>phase ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Exponential-and-logarithmic-functions">Exponential and logarithmic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pi">pi</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pi-_0028_0029"><code>pi ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pkg_002dconfig"><code>pkg-config</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Compiler-options">Compiler options</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plus-_0028_0029"><code>plus ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plus1-_0028_0029"><code>plus1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-plusp-_0028_0029"><code>plusp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-polynomial">polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Univariate-polynomials">Univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-portability">portability</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Why-C_002b_002b-_003f">Why C++ ?</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-power2p-_0028_0029"><code>power2p ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Logical-functions">Logical functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-prime">prime</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-printing">printing</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Internal-and-printed-representation">Internal and printed representation</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-random-_0028_0029"><code>random ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-random32-_0028_0029"><code>random32 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-random_005fF-_0028_0029"><code>random_F ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-random_005fI-_0028_0029"><code>random_I ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-random_005fR-_0028_0029"><code>random_R ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-random_005fstate"><code>random_state</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Random-number-generators">Random number generators</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rational-_0028_0029"><code>rational ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-rational-numbers">Conversion to rational numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rational-number">rational number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rationalize-_0028_0029"><code>rationalize ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversion-to-rational-numbers">Conversion to rational numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reading">reading</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Internal-and-printed-representation">Internal and printed representation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-read_005fnumber_005fexception"><code>read_number_exception</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Error-handling">Error handling</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-real-number">real number</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Ordinary-number-types">Ordinary number types</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-realpart-_0028_0029"><code>realpart ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-complex-functions">Elementary complex functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-recip-_0028_0029"><code>recip ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-recip-_0028_0029-1"><code>recip ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-reference-counting">reference counting</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Memory-efficiency">Memory efficiency</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rem-_0028_0029"><code>rem ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-representation">representation</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Internal-and-printed-representation">Internal and printed representation</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-retract-_0028_0029"><code>retract ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Riemann_0027s-zeta">Riemann&rsquo;s zeta</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Riemann-zeta">Riemann zeta</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ring">ring</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Modular-integer-rings">Modular integer rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ring-_0028_0029"><code>ring ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ring-_0028_0029-1"><code>ring ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rootp-_0028_0029"><code>rootp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Roots">Roots</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-round1-_0028_0029"><code>round1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-round2-_0028_0029"><code>round2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rounding">rounding</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rounding-error">rounding error</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-numbers">Floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Rubik_0027s-cube">Rubik&rsquo;s cube</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-runtime_005fexception"><code>runtime_exception</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Error-handling">Error handling</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-scale_005ffloat-_0028_0029"><code>scale_float ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-floating_002dpoint-numbers">Functions on floating-point numbers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sed"><code>sed</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Sed-utility">Sed utility</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-set_005fcoeff-_0028_0029"><code>set_coeff ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-signum-_0028_0029"><code>signum ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sin-_0028_0029"><code>sin ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sinh-_0028_0029"><code>sinh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-size_0028_0029"><code>size()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrt-_0028_0029"><code>sqrt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Roots">Roots</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrt-_0028_0029-1"><code>sqrt ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Roots">Roots</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sqrtp-_0028_0029"><code>sqrtp ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Roots">Roots</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-square-_0028_0029"><code>square ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Elementary-functions">Elementary functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-square-_0028_0029-1"><code>square ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-square-_0028_0029-2"><code>square ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-square-_0028_0029-3"><code>square ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-string">string</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-strlen-_0028_0029"><code>strlen ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Strings">Strings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-symbol">symbol</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Symbols">Symbols</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-symbolic-type">symbolic type</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Symbolic-data-types">Symbolic data types</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-tan-_0028_0029"><code>tan ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Trigonometric-functions">Trigonometric functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tanh-_0028_0029"><code>tanh ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Hyperbolic-functions">Hyperbolic functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-The_0028_0029_0028_0029"><code>The()()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Conversions">Conversions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-transcendental-functions">transcendental functions</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Transcendental-functions">Transcendental functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-truncate1-_0028_0029"><code>truncate1 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-truncate2-_0028_0029"><code>truncate2 ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rounding-functions">Rounding functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-tschebychev-_0028_0029"><code>tschebychev ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Special-polynomials">Special polynomials</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-uminus-_0028_0029"><code>uminus ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-underflow">underflow</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Floating_002dpoint-underflow">Floating-point underflow</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-univariate-polynomial">univariate polynomial</a>:</td><td>&nbsp;</td><td valign="top"><a href="#Univariate-polynomials">Univariate polynomials</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-X">X</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-xgcd-_0028_0029"><code>xgcd ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Number-theoretic-functions">Number theoretic functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_my_letter-Z">Z</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-zero-_0028_0029"><code>zero ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zero-_0028_0029-1"><code>zero ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zero-_0028_0029-2"><code>zero ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zerop-_0028_0029"><code>zerop ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Comparisons">Comparisons</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zerop-_0028_0029-1"><code>zerop ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Rings">Rings</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zerop-_0028_0029-2"><code>zerop ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-modular-integers">Functions on modular integers</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zerop-_0028_0029-3"><code>zerop ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Functions-on-univariate-polynomials">Functions on univariate polynomials</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-zeta-_0028_0029"><code>zeta ()</code></a>:</td><td>&nbsp;</td><td valign="top"><a href="#Riemann-zeta">Riemann zeta</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: &nbsp; </th><td><a class="summary-letter" href="#Index_my_letter-A"><b>A</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-B"><b>B</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-C"><b>C</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-D"><b>D</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-E"><b>E</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-F"><b>F</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-G"><b>G</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-H"><b>H</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-I"><b>I</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-J"><b>J</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-L"><b>L</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-M"><b>M</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-N"><b>N</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-O"><b>O</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-P"><b>P</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-R"><b>R</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-S"><b>S</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-T"><b>T</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-U"><b>U</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-X"><b>X</b></a>
 &nbsp; 
<a class="summary-letter" href="#Index_my_letter-Z"><b>Z</b></a>
 &nbsp; 
</td></tr></table>


<div class="footnote">
<hr>
<h4 class="footnotes-heading">Footnotes</h4>

<h3><a name="FOOT1" href="#DOCF1">(1)</a></h3>
<p>If you installed CLN to
non-standard location <var>prefix</var>, you need to set the
<code>PKG_CONFIG_PATH</code> environment variable to <var>prefix</var>/lib/pkgconfig
for this to work.</p>
<h3><a name="FOOT2" href="#DOCF2">(2)</a></h3>
<p>See the <code>pkg-config</code> documentation for more details.</p>
</div>
<hr>



</body>
</html>