/usr/include/CLHEP/Vector/RotationX.h is in libclhep-dev 2.1.4.1-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | // -*- C++ -*-
// CLASSDOC OFF
// ---------------------------------------------------------------------------
// CLASSDOC ON
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is the definition of the HepRotationX class for performing rotations
// around the X axis on objects of the Hep3Vector (and HepLorentzVector) class.
//
// HepRotationX is a concrete implementation of Hep3RotationInterface.
//
// .SS See Also
// RotationInterfaces.h
// ThreeVector.h, LorentzVector.h, LorentzRotation.h
//
// .SS Author
// Mark Fischler
#ifndef HEP_ROTATIONX_H
#define HEP_ROTATIONX_H
#ifdef GNUPRAGMA
#pragma interface
#endif
#include "CLHEP/Vector/defs.h"
#include "CLHEP/Vector/RotationInterfaces.h"
namespace CLHEP {
class HepRotationX;
class HepRotation;
class HepBoost;
inline HepRotationX inverseOf(const HepRotationX & r);
// Returns the inverse of a RotationX.
/**
* @author
* @ingroup vector
*/
class HepRotationX {
public:
// ---------- Constructors and Assignment:
inline HepRotationX();
// Default constructor. Gives an identity rotation.
HepRotationX(double delta);
// supply angle of rotation
inline HepRotationX(const HepRotationX & orig);
// Copy constructor.
inline HepRotationX & operator = (const HepRotationX & r);
// Assignment from a Rotation, which must be RotationX
HepRotationX & set ( double delta );
// set angle of rotation
inline ~HepRotationX();
// Trivial destructor.
// ---------- Accessors:
inline Hep3Vector colX() const;
inline Hep3Vector colY() const;
inline Hep3Vector colZ() const;
// orthogonal unit-length column vectors
inline Hep3Vector rowX() const;
inline Hep3Vector rowY() const;
inline Hep3Vector rowZ() const;
// orthogonal unit-length row vectors
inline double xx() const;
inline double xy() const;
inline double xz() const;
inline double yx() const;
inline double yy() const;
inline double yz() const;
inline double zx() const;
inline double zy() const;
inline double zz() const;
// Elements of the rotation matrix (Geant4).
inline HepRep3x3 rep3x3() const;
// 3x3 representation:
// ------------ Euler angles:
inline double getPhi () const;
inline double getTheta() const;
inline double getPsi () const;
double phi () const;
double theta() const;
double psi () const;
HepEulerAngles eulerAngles() const;
// ------------ axis & angle of rotation:
inline double getDelta() const;
inline Hep3Vector getAxis () const;
inline double delta() const;
inline Hep3Vector axis () const;
inline HepAxisAngle axisAngle() const;
inline void getAngleAxis(double & delta, Hep3Vector & axis) const;
// Returns the rotation angle and rotation axis (Geant4).
// ------------- Angles of rotated axes
double phiX() const;
double phiY() const;
double phiZ() const;
double thetaX() const;
double thetaY() const;
double thetaZ() const;
// Return angles (RADS) made by rotated axes against original axes (Geant4).
// ---------- Other accessors treating pure rotation as a 4-rotation
inline HepLorentzVector col1() const;
inline HepLorentzVector col2() const;
inline HepLorentzVector col3() const;
// orthosymplectic 4-vector columns - T component will be zero
inline HepLorentzVector col4() const;
// Will be (0,0,0,1) for this pure Rotation.
inline HepLorentzVector row1() const;
inline HepLorentzVector row2() const;
inline HepLorentzVector row3() const;
// orthosymplectic 4-vector rows - T component will be zero
inline HepLorentzVector row4() const;
// Will be (0,0,0,1) for this pure Rotation.
inline double xt() const;
inline double yt() const;
inline double zt() const;
inline double tx() const;
inline double ty() const;
inline double tz() const;
// Will be zero for this pure Rotation
inline double tt() const;
// Will be one for this pure Rotation
inline HepRep4x4 rep4x4() const;
// 4x4 representation.
// --------- Mutators
void setDelta (double delta);
// change angle of rotation, leaving rotation axis unchanged.
// ---------- Decomposition:
void decompose (HepAxisAngle & rotation, Hep3Vector & boost) const;
void decompose (Hep3Vector & boost, HepAxisAngle & rotation) const;
void decompose (HepRotation & rotation, HepBoost & boost) const;
void decompose (HepBoost & boost, HepRotation & rotation) const;
// These are trivial, as the boost vector is 0.
// ---------- Comparisons:
inline bool isIdentity() const;
// Returns true if the identity matrix (Geant4).
inline int compare( const HepRotationX & r ) const;
// Dictionary-order comparison, in order of delta
// Used in operator<, >, <=, >=
inline bool operator== ( const HepRotationX & r ) const;
inline bool operator!= ( const HepRotationX & r ) const;
inline bool operator< ( const HepRotationX & r ) const;
inline bool operator> ( const HepRotationX & r ) const;
inline bool operator<= ( const HepRotationX & r ) const;
inline bool operator>= ( const HepRotationX & r ) const;
double distance2( const HepRotationX & r ) const;
// 3 - Tr ( this/r )
double distance2( const HepRotation & r ) const;
// 3 - Tr ( this/r ) -- This works with RotationY or Z also
double howNear( const HepRotationX & r ) const;
double howNear( const HepRotation & r ) const;
bool isNear( const HepRotationX & r,
double epsilon=Hep4RotationInterface::tolerance) const;
bool isNear( const HepRotation & r,
double epsilon=Hep4RotationInterface::tolerance) const;
double distance2( const HepBoost & lt ) const;
// 3 - Tr ( this ) + |b|^2 / (1-|b|^2)
double distance2( const HepLorentzRotation & lt ) const;
// 3 - Tr ( this/r ) + |b|^2 / (1-|b|^2) where b is the boost vector of lt
double howNear( const HepBoost & lt ) const;
double howNear( const HepLorentzRotation & lt ) const;
bool isNear( const HepBoost & lt,
double epsilon=Hep4RotationInterface::tolerance) const;
bool isNear( const HepLorentzRotation & lt,
double epsilon=Hep4RotationInterface::tolerance) const;
// ---------- Properties:
double norm2() const;
// distance2 (IDENTITY), which is 3 - Tr ( *this )
inline void rectify();
// non-const but logically moot correction for accumulated roundoff errors
// ---------- Application:
inline Hep3Vector operator() (const Hep3Vector & p) const;
// Rotate a Hep3Vector.
inline Hep3Vector operator * (const Hep3Vector & p) const;
// Multiplication with a Hep3Vector.
inline HepLorentzVector operator()( const HepLorentzVector & w ) const;
// Rotate (the space part of) a HepLorentzVector.
inline HepLorentzVector operator* ( const HepLorentzVector & w ) const;
// Multiplication with a HepLorentzVector.
// ---------- Operations in the group of Rotations
inline HepRotationX operator * (const HepRotationX & rx) const;
// Product of two X rotations: (this) * rx is known to be RotationX.
inline HepRotationX & operator *= (const HepRotationX & r);
inline HepRotationX & transform (const HepRotationX & r);
// Matrix multiplication.
// Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
// However, in this special case, they commute: Both just add deltas.
inline HepRotationX inverse() const;
// Returns the inverse.
friend HepRotationX inverseOf(const HepRotationX & r);
// Returns the inverse of a RotationX.
inline HepRotationX & invert();
// Inverts the Rotation matrix (be negating delta).
// ---------- I/O:
std::ostream & print( std::ostream & os ) const;
// Output, identifying type of rotation and delta.
// ---------- Tolerance
static inline double getTolerance();
static inline double setTolerance(double tol);
protected:
double its_d;
// The angle of rotation.
double its_s;
double its_c;
// Cache the trig functions, for rapid operations.
inline HepRotationX ( double dd, double ss, double cc );
// Unchecked load-the-data-members
static inline double proper (double delta);
// Put an angle into the range of (-PI, PI]. Useful helper method.
}; // HepRotationX
// ---------- Free-function operations in the group of Rotations
inline
std::ostream & operator <<
( std::ostream & os, const HepRotationX & r ) {return r.print(os);}
} // namespace CLHEP
#include "CLHEP/Vector/RotationX.icc"
#ifdef ENABLE_BACKWARDS_COMPATIBILITY
// backwards compatibility will be enabled ONLY in CLHEP 1.9
using namespace CLHEP;
#endif
#endif /* HEP_ROTATIONX_H */
|