/usr/include/CCfits/Image.h is in libccfits-dev 2.4+dfsg-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | // Astrophysics Science Division,
// NASA/ Goddard Space Flight Center
// HEASARC
// http://heasarc.gsfc.nasa.gov
// e-mail: ccfits@legacy.gsfc.nasa.gov
//
// Original author: Ben Dorman
#ifndef IMAGE_H
#define IMAGE_H 1
// functional
#include <functional>
// valarray
#include <valarray>
// vector
#include <vector>
// numeric
#include <numeric>
#ifdef _MSC_VER
#include "MSconfig.h" //form std::min
#endif
#include "CCfits.h"
#include "FitsError.h"
#include "FITSUtil.h"
namespace CCfits {
template <typename T>
class Image
{
public:
Image(const Image< T > &right);
Image (const std::valarray<T>& imageArray = std::valarray<T>());
~Image();
Image< T > & operator=(const Image< T > &right);
// Read data reads the image if readFlag is true and
// optional keywords if supplied. Thus, with no arguments,
// readData() does nothing.
const std::valarray<T>& readImage (fitsfile* fPtr, long first, long nElements, T* nullValue, const std::vector<long>& naxes, bool& nulls);
// Read data reads the image if readFlag is true and
// optional keywords if supplied. Thus, with no arguments,
// readData() does nothing.
const std::valarray<T>& readImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, T* nullValue, const std::vector<long>& naxes, bool& nulls);
// Read data reads the image if readFlag is true and
// optional keywords if supplied. Thus, with no arguments,
// readData() does nothing.
void writeImage (fitsfile* fPtr, long first, long nElements, const std::valarray<T>& inData, const std::vector<long>& naxes, T* nullValue = 0);
// Read data reads the image if readFlag is true and
// optional keywords if supplied. Thus, with no arguments,
// readData() does nothing.
void writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, const std::vector<long>& naxes);
void writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::valarray<T>& inData, const std::vector<long>& naxes);
bool isRead () const;
void isRead (bool value);
const std::valarray< T >& image () const;
void setImage (const std::valarray< T >& value);
const T image (size_t index) const;
void setImage (size_t index, T value);
// Additional Public Declarations
protected:
// Additional Protected Declarations
private:
std::valarray<T>& image ();
void prepareForSubset (const std::vector<long>& naxes, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, std::valarray<T>& subset);
void loop (size_t iDim, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, size_t iPos, const std::vector<size_t>& incr, const std::valarray<T>& inData, size_t& iDat, const std::vector<size_t>& subIncr, std::valarray<T>& subset, size_t iSub);
// Additional Private Declarations
private: //## implementation
// Data Members for Class Attributes
bool m_isRead;
// Data Members for Associations
std::valarray< T > m_image;
// Additional Implementation Declarations
};
// Parameterized Class CCfits::Image
template <typename T>
inline bool Image<T>::isRead () const
{
return m_isRead;
}
template <typename T>
inline void Image<T>::isRead (bool value)
{
m_isRead = value;
}
template <typename T>
inline const std::valarray< T >& Image<T>::image () const
{
return m_image;
}
template <typename T>
inline void Image<T>::setImage (const std::valarray< T >& value)
{
m_image.resize(value.size());
m_image = value;
}
template <typename T>
inline const T Image<T>::image (size_t index) const
{
return m_image[index];
}
template <typename T>
inline void Image<T>::setImage (size_t index, T value)
{
m_image[index] = value;
}
// Parameterized Class CCfits::Image
template <typename T>
Image<T>::Image(const Image<T> &right)
: m_isRead(right.m_isRead),
m_image(right.m_image)
{
}
template <typename T>
Image<T>::Image (const std::valarray<T>& imageArray)
: m_isRead(false),
m_image(imageArray)
{
}
template <typename T>
Image<T>::~Image()
{
}
template <typename T>
Image<T> & Image<T>::operator=(const Image<T> &right)
{
// all stack allocated.
m_isRead = right.m_isRead;
m_image.resize(right.m_image.size());
m_image = right.m_image;
return *this;
}
template <typename T>
const std::valarray<T>& Image<T>::readImage (fitsfile* fPtr, long first, long nElements, T* nullValue, const std::vector<long>& naxes, bool& nulls)
{
const size_t N(naxes.size());
if (N > 0)
{
int status(0);
int any (0);
FITSUtil::MatchType<T> imageType;
unsigned long init(1);
unsigned long nelements(std::accumulate(naxes.begin(),naxes.end(),init,
std::multiplies<long>()));
// truncate to valid array size if too much data asked for.
// note first is 1-based index)
long elementsToRead(std::min(static_cast<unsigned long>(nElements),
nelements - first + 1));
if ( elementsToRead < nElements)
{
std::cerr <<
"***CCfits Warning: data request exceeds image size, truncating\n";
}
FITSUtil::FitsNullValue<T> null;
// initialize m_image to nullValue. resize if necessary.
if (m_image.size() != static_cast<size_t>(elementsToRead))
{
m_image.resize(elementsToRead,null());
}
if (fits_read_img(fPtr,imageType(),first,elementsToRead,
nullValue,&m_image[0],&any,&status) != 0) throw FitsError(status);
nulls = (any != 0);
m_isRead = (first == 1 && nelements == static_cast<unsigned long>(nElements));
}
else
{
m_isRead = true;
m_image.resize(0);
}
return m_image;
}
template <typename T>
const std::valarray<T>& Image<T>::readImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, T* nullValue, const std::vector<long>& naxes, bool& nulls)
{
FITSUtil::CVarray<long> carray;
int any(0);
int status(0);
const size_t N(naxes.size());
size_t arraySize(1);
for (size_t j = 0; j < N; ++j)
{
arraySize *= (lastVertex[j] - firstVertex[j] + 1);
}
FITSUtil::auto_array_ptr<long> pFpixel(carray(firstVertex));
FITSUtil::auto_array_ptr<long> pLpixel(carray(lastVertex));
FITSUtil::auto_array_ptr<long> pStride(carray(stride));
FITSUtil::MatchType<T> imageType;
size_t n(m_image.size());
if (n != arraySize) m_image.resize(arraySize);
if (fits_read_subset(fPtr,imageType(),
pFpixel.get(),pLpixel.get(),
pStride.get(),nullValue,&m_image[0],&any,&status) != 0)
{
throw FitsError(status);
}
nulls = (any != 0);
return m_image;
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, long first, long nElements, const std::valarray<T>& inData, const std::vector<long>& naxes, T* nullValue)
{
int status(0);
size_t init(1);
size_t totalSize= static_cast<size_t>(std::accumulate(naxes.begin(),naxes.end(),init,std::multiplies<long>() ));
FITSUtil::FitsNullValue<T> null;
if (m_image.size() != totalSize) m_image.resize(totalSize,null());
FITSUtil::CAarray<T> convert;
FITSUtil::auto_array_ptr<T> pArray(convert(inData));
T* array = pArray.get();
FITSUtil::MatchType<T> imageType;
long type(imageType());
if (fits_write_imgnull(fPtr,type,first,nElements,array,
nullValue,&status) || fits_flush_file(fPtr,&status) != 0)
{
throw FitsError(status);
}
m_image[std::slice(first-1,nElements,1)] = inData;
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, const std::vector<long>& naxes)
{
// input vectors' size equality will be verified in prepareForSubset.
const size_t nDim = naxes.size();
FITSUtil::auto_array_ptr<long> pFPixel(new long[nDim]);
FITSUtil::auto_array_ptr<long> pLPixel(new long[nDim]);
std::valarray<T> subset;
prepareForSubset(naxes,firstVertex,lastVertex,stride,inData,subset);
long* fPixel = pFPixel.get();
long* lPixel = pLPixel.get();
for (size_t i=0; i<nDim; ++i)
{
fPixel[i] = firstVertex[i];
lPixel[i] = lastVertex[i];
}
FITSUtil::CAarray<T> convert;
FITSUtil::auto_array_ptr<T> pArray(convert(subset));
T* array = pArray.get();
FITSUtil::MatchType<T> imageType;
int status(0);
if ( fits_write_subset(fPtr,imageType(),fPixel,lPixel,array,&status)
|| fits_flush_file(fPtr,&status) != 0) throw FitsError(status);
}
template <typename T>
std::valarray<T>& Image<T>::image ()
{
return m_image;
}
template <typename T>
void Image<T>::prepareForSubset (const std::vector<long>& naxes, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, const std::valarray<T>& inData, std::valarray<T>& subset)
{
// naxes, firstVertex, lastVertex, and stride must all be the same size.
const size_t N = naxes.size();
if (N != firstVertex.size() || N != lastVertex.size() || N != stride.size())
{
string errMsg("*** CCfits Error: Image write function requires that naxes, firstVertex,");
errMsg += " \nlastVertex, and stride vectors all be the same size.\n";
bool silent = false;
throw FitsException(errMsg, silent);
}
for (size_t i=0; i<N; ++i)
{
if (naxes[i] < 1)
{
bool silent = false;
throw FitsException("*** CCfits Error: Invalid naxes value sent to image write function.\n", silent);
}
string rangeErrMsg("*** CCfits Error: Out-of-range value sent to image write function in arg: ");
if (firstVertex[i] < 1 || firstVertex[i] > naxes[i])
{
bool silent = false;
rangeErrMsg += "firstVertex\n";
throw FitsException(rangeErrMsg, silent);
}
if (lastVertex[i] < firstVertex[i] || lastVertex[i] > naxes[i])
{
bool silent = false;
rangeErrMsg += "lastVertex\n";
throw FitsException(rangeErrMsg, silent);
}
if (stride[i] < 1)
{
bool silent = false;
rangeErrMsg += "stride\n";
throw FitsException(rangeErrMsg, silent);
}
}
// nPoints refers to the subset of m_image INCLUDING the zero'ed elements
// resulting from the stride parameter.
// subSizeWithStride refers to the same subset, not counting the zeros.
size_t subSizeWithStride = 1;
size_t nPoints = 1;
std::vector<size_t> subIncr(N);
for (size_t i=0; i<N; ++i)
{
subIncr[i] = nPoints;
nPoints *= static_cast<size_t>(1+lastVertex[i]-firstVertex[i]);
subSizeWithStride *= static_cast<size_t>(1+(lastVertex[i]-firstVertex[i])/stride[i]);
}
FITSUtil::FitsNullValue<T> null;
subset.resize(nPoints, null());
// Trying to avoid at all costs an assignment between 2 valarrays of
// different sizes when m_image gets set below.
if (subSizeWithStride != inData.size())
{
bool silent = false;
string errMsg("*** CCfits Error: Data array size is not consistent with the values");
errMsg += "\n in range and stride vectors sent to the image write function.\n";
throw FitsException(errMsg, silent);
}
size_t startPoint = 0;
size_t dimMult = 1;
std::vector<size_t> incr(N);
for (size_t j = 0; j < N; ++j)
{
startPoint += dimMult*(firstVertex[j]-1);
incr[j] = dimMult;
dimMult *= static_cast<size_t>(naxes[j]);
}
const size_t imageSize = dimMult;
m_image.resize(imageSize,null());
size_t inDataPos = 0;
size_t iSub = 0;
loop(N-1, firstVertex, lastVertex, stride, startPoint, incr, inData, inDataPos, subIncr, subset, iSub);
}
template <typename T>
void Image<T>::loop (size_t iDim, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::vector<long>& stride, size_t iPos, const std::vector<size_t>& incr, const std::valarray<T>& inData, size_t& iDat, const std::vector<size_t>& subIncr, std::valarray<T>& subset, size_t iSub)
{
size_t start = static_cast<size_t>(firstVertex[iDim]);
size_t stop = static_cast<size_t>(lastVertex[iDim]);
size_t skip = static_cast<size_t>(stride[iDim]);
if (iDim == 0)
{
size_t length = stop - start + 1;
for (size_t i=0; i<length; i+=skip)
{
m_image[i+iPos] = inData[iDat];
subset[i+iSub] = inData[iDat++];
}
}
else
{
size_t jump = incr[iDim]*skip;
size_t subJump = subIncr[iDim]*skip;
for (size_t i=start; i<=stop; i+=skip)
{
loop(iDim-1, firstVertex, lastVertex, stride, iPos, incr, inData, iDat, subIncr, subset, iSub);
iPos += jump;
iSub += subJump;
}
}
}
template <typename T>
void Image<T>::writeImage (fitsfile* fPtr, const std::vector<long>& firstVertex, const std::vector<long>& lastVertex, const std::valarray<T>& inData, const std::vector<long>& naxes)
{
std::vector<long> stride(firstVertex.size(), 1);
writeImage(fPtr, firstVertex, lastVertex, stride, inData, naxes);
}
// Additional Declarations
} // namespace CCfits
#endif
|