/usr/include/CCfits/ColumnVectorData.h is in libccfits-dev 2.4+dfsg-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 | // Astrophysics Science Division,
// NASA/ Goddard Space Flight Center
// HEASARC
// http://heasarc.gsfc.nasa.gov
// e-mail: ccfits@legacy.gsfc.nasa.gov
//
// Original author: Ben Dorman
#ifndef COLUMNVECTORDATA_H
#define COLUMNVECTORDATA_H 1
#ifdef _MSC_VER
#include "MSconfig.h"
#endif
#include "CCfits.h"
// valarray
#include <valarray>
// vector
#include <vector>
// Column
#include "Column.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef SSTREAM_DEFECT
#include <strstream>
#else
#include <sstream>
#endif
#include <memory>
#include <numeric>
namespace CCfits {
class Table;
}
#include "FITS.h"
#include "FITSUtil.h"
using std::complex;
namespace CCfits {
template <typename T>
class ColumnVectorData : public Column //## Inherits: <unnamed>%38BAD1D4D370
{
public:
ColumnVectorData(const ColumnVectorData< T > &right);
ColumnVectorData (Table* p = 0);
ColumnVectorData (int columnIndex, const string &columnName, ValueType type, const string &format, const string &unit, Table* p, int rpt = 1, long w = 1, const string &comment = "");
~ColumnVectorData();
virtual void readData (long firstrow, long nelements, long firstelem = 1);
virtual ColumnVectorData<T>* clone () const;
virtual void setDimen ();
void setDataLimits (T* limits);
const T minLegalValue () const;
void minLegalValue (T value);
const T maxLegalValue () const;
void maxLegalValue (T value);
const T minDataValue () const;
void minDataValue (T value);
const T maxDataValue () const;
void maxDataValue (T value);
const std::vector<std::valarray<T> >& data () const;
void setData (const std::vector<std::valarray<T> >& value);
const std::valarray<T>& data (int i) const;
void data (int i, const std::valarray<T>& value);
// Additional Public Declarations
friend class Column;
protected:
// Additional Protected Declarations
private:
ColumnVectorData< T > & operator=(const ColumnVectorData< T > &right);
virtual bool compare (const Column &right) const;
void resizeDataObject (const std::vector<std::valarray<T> >& indata, size_t firstRow);
// Reads a specified number of column rows.
//
// There are no default arguments. The function
// Column::read(firstrow,firstelem,nelements)
// is designed for reading the whole column.
virtual void readColumnData (long first, long last, T* nullValue = 0);
virtual std::ostream& put (std::ostream& s) const;
void writeData (const std::valarray<T>& indata, long numRows, long firstRow = 1, T* nullValue = 0);
void writeData (const std::vector<std::valarray<T> >& indata, long firstRow = 1, T* nullValue = 0);
// Reads a specified number of column rows.
//
// There are no default arguments. The function
// Column::read(firstrow,firstelem,nelements)
// is designed for reading the whole column.
virtual void readRow (size_t row, T* nullValue = 0);
// Reads a variable row..
virtual void readVariableRow (size_t row, T* nullValue = 0);
void readColumnData (long firstrow, long nelements, long firstelem, T* nullValue = 0);
void writeData (const std::valarray<T>& indata, const std::vector<long>& vectorLengths, long firstRow = 1, T* nullValue = 0);
void writeFixedRow (const std::valarray<T>& data, long row, long firstElem = 1, T* nullValue = 0);
void writeFixedArray (T* data, long nElements, long nRows, long firstRow, T* nullValue = 0);
// Insert one or more blank rows into a FITS column.
virtual void insertRows (long first, long number = 1);
virtual void deleteRows (long first, long number = 1);
void doWrite (T* array, long row, long rowSize, long firstElem, T* nullValue);
// Additional Private Declarations
private: //## implementation
// Data Members for Class Attributes
T m_minLegalValue;
T m_maxLegalValue;
T m_minDataValue;
T m_maxDataValue;
// Data Members for Associations
std::vector<std::valarray<T> > m_data;
// Additional Implementation Declarations
};
// Parameterized Class CCfits::ColumnVectorData
template <typename T>
inline void ColumnVectorData<T>::readData (long firstrow, long nelements, long firstelem)
{
readColumnData(firstrow,nelements,firstelem,static_cast<T*>(0));
}
template <typename T>
inline const T ColumnVectorData<T>::minLegalValue () const
{
return m_minLegalValue;
}
template <typename T>
inline void ColumnVectorData<T>::minLegalValue (T value)
{
m_minLegalValue = value;
}
template <typename T>
inline const T ColumnVectorData<T>::maxLegalValue () const
{
return m_maxLegalValue;
}
template <typename T>
inline void ColumnVectorData<T>::maxLegalValue (T value)
{
m_maxLegalValue = value;
}
template <typename T>
inline const T ColumnVectorData<T>::minDataValue () const
{
return m_minDataValue;
}
template <typename T>
inline void ColumnVectorData<T>::minDataValue (T value)
{
m_minDataValue = value;
}
template <typename T>
inline const T ColumnVectorData<T>::maxDataValue () const
{
return m_maxDataValue;
}
template <typename T>
inline void ColumnVectorData<T>::maxDataValue (T value)
{
m_maxDataValue = value;
}
template <typename T>
inline const std::vector<std::valarray<T> >& ColumnVectorData<T>::data () const
{
return m_data;
}
template <typename T>
inline void ColumnVectorData<T>::setData (const std::vector<std::valarray<T> >& value)
{
m_data = value;
}
template <typename T>
inline const std::valarray<T>& ColumnVectorData<T>::data (int i) const
{
return m_data[i - 1];
}
template <typename T>
inline void ColumnVectorData<T>::data (int i, const std::valarray<T>& value)
{
if (m_data[i-1].size() != value.size())
m_data[i-1].resize(value.size());
m_data[i - 1] = value;
}
// Parameterized Class CCfits::ColumnVectorData
template <typename T>
ColumnVectorData<T>::ColumnVectorData(const ColumnVectorData<T> &right)
:Column(right),
m_minLegalValue(right.m_minLegalValue),
m_maxLegalValue(right.m_maxLegalValue),
m_minDataValue(right.m_minDataValue),
m_maxDataValue(right.m_maxDataValue),
m_data(right.m_data)
{
}
template <typename T>
ColumnVectorData<T>::ColumnVectorData (Table* p)
: Column(p),
m_minLegalValue(0),
m_maxLegalValue(0),
m_minDataValue(0),
m_maxDataValue(0),
m_data()
{
}
template <typename T>
ColumnVectorData<T>::ColumnVectorData (int columnIndex, const string &columnName, ValueType type, const string &format, const string &unit, Table* p, int rpt, long w, const string &comment)
: Column(columnIndex,columnName,type,format,unit,p,rpt,w,comment),
m_minLegalValue(0),
m_maxLegalValue(0),
m_minDataValue(0),
m_maxDataValue(0),
m_data()
{
}
template <typename T>
ColumnVectorData<T>::~ColumnVectorData()
{
// valarray destructor should do all the work.
}
template <typename T>
bool ColumnVectorData<T>::compare (const Column &right) const
{
if ( !Column::compare(right) ) return false;
const ColumnVectorData<T>& that = static_cast<const ColumnVectorData<T>&>(right);
size_t n = m_data.size();
// m_data is of type valarray<T>.
if ( that.m_data.size() != n ) return false;
for (size_t i = 0; i < n ; i++)
{
size_t nn = m_data[i].size();
// first check size (also, == on 2 valarrays is only defined if they
// are equal in size).
if (that.m_data[i].size() != nn ) return false;
std::valarray<bool> test = (m_data[i] == that.m_data[i]);
for (size_t j = 0; j < nn ; j++ ) if ( !test[j] ) return false;
}
return true;
}
template <typename T>
ColumnVectorData<T>* ColumnVectorData<T>::clone () const
{
return new ColumnVectorData<T>(*this);
}
template <typename T>
void ColumnVectorData<T>::resizeDataObject (const std::vector<std::valarray<T> >& indata, size_t firstRow)
{
// the rows() call is the value before updating.
// the updateRows() call at the end sets the call to return the
// value from the fits pointer - which is changed by writeFixedArray
// or writeFixedRow.
const size_t lastInputRow(indata.size() + firstRow - 1);
const size_t newLastRow = std::max(lastInputRow,static_cast<size_t>(rows()));
// if the write instruction increases the rows, we need to add
// rows to the data member and preserve its current contents.
// rows() >= origNRows since it is the value for entire table,
// not just this column.
const size_t origNRows(m_data.size());
// This will always be an expansion. vector.resize() doesn't
// invalidate any data on an expansion.
if (newLastRow > origNRows) m_data.resize(newLastRow);
if (varLength())
{
// The incoming data will determine each row size, thus
// no need to preserve any existing values in the row.
// Each value will eventually be overwritten.
for (size_t iRow = firstRow-1; iRow < lastInputRow; ++iRow)
{
std::valarray<T>& current = m_data[iRow];
const size_t newSize = indata[iRow - (firstRow-1)].size();
if (current.size() != newSize)
current.resize(newSize);
}
}
else
{
// All row sizes in m_data should ALWAYS be either repeat(),
// or 0 if they haven't been initialized. This is true regardless
// of the incoming data row size.
// Perform LAZY initialization of m_data rows. Only
// expand a row valarray when it is first needed.
for (size_t iRow = firstRow-1; iRow < lastInputRow; ++iRow)
{
if (m_data[iRow].size() != repeat())
m_data[iRow].resize(repeat());
}
}
}
template <typename T>
void ColumnVectorData<T>::setDimen ()
{
int status(0);
FITSUtil:: auto_array_ptr<char> dimValue (new char[FLEN_VALUE]);
#ifdef SSTREAM_DEFECT
std::ostrstream key;
#else
std::ostringstream key;
#endif
key << "TDIM" << index();
#ifdef SSTREAM_DEFECT
fits_read_key_str(fitsPointer(), key.str(), dimValue.get(),0,&status);
#else
fits_read_key_str(fitsPointer(),const_cast<char*>(key.str().c_str()),dimValue.get(),0,&status);
#endif
if (status == 0)
{
dimen(String(dimValue.get()));
}
}
template <typename T>
void ColumnVectorData<T>::readColumnData (long first, long last, T* nullValue)
{
makeHDUCurrent();
if ( rows() < last )
{
std::cerr << "CCfits: More data requested than contained in table. ";
std::cerr << "Extracting complete column.\n";
last = rows();
}
long nelements = (last - first + 1)*repeat();
readColumnData(first,nelements,1,nullValue);
if (first <= 1 && last == rows()) isRead(true);
}
template <typename T>
std::ostream& ColumnVectorData<T>::put (std::ostream& s) const
{
// output header information
Column::put(s);
if ( FITS::verboseMode() )
{
s << " Column Legal limits: ( " << m_minLegalValue << "," << m_maxLegalValue << " )\n"
<< " Column Data limits: ( " << m_minDataValue << "," << m_maxDataValue << " )\n";
}
if (!m_data.empty())
{
for (size_t j = 0; j < m_data.size(); j++)
{
size_t n = m_data[j].size();
if ( n )
{
s << "Row " << j + 1 << " Vector Size " << n << '\n';
for (size_t k = 0; k < n - 1; k++)
{
s << m_data[j][k] << '\t';
}
s << m_data[j][n - 1] << '\n';
}
}
}
return s;
}
template <typename T>
void ColumnVectorData<T>::writeData (const std::valarray<T>& indata, long numRows, long firstRow, T* nullValue)
{
// This version of writeData is called by Column write functions which
// can only write the same number of elements to each row.
// For fixed width columns, this must be equal to the repeat value
// or an exception is thrown. For variable width, it only requires
// that indata.size()/numRows is an int.
// won't do anything if < 0, and will give divide check if == 0.
if (numRows <= 0) throw InvalidNumberOfRows(numRows);
#ifdef SSTREAM_DEFECT
std::ostrstream msgStr;
#else
std::ostringstream msgStr;
#endif
if (indata.size() % static_cast<size_t>(numRows))
{
msgStr << "To use this write function, input array size"
<<"\n must be exactly divisible by requested num rows: "
<< numRows;
throw InsufficientElements(msgStr.str());
}
const size_t cellsize = indata.size()/static_cast<size_t>(numRows);
if (!varLength() && cellsize != repeat() )
{
msgStr << "column: " << name()
<< "\n input data size: " << indata.size()
<< " required: " << numRows*repeat();
String msg(msgStr.str());
throw InsufficientElements(msg);
}
std::vector<std::valarray<T> > internalFormat(numRows);
// support writing equal row lengths to variable columns.
for (long j = 0; j < numRows; ++j)
{
internalFormat[j].resize(cellsize);
internalFormat[j] = indata[std::slice(cellsize*j,cellsize,1)];
}
// change the size of m_data based on the first row to be written
// and on the input data vector sizes.
writeData(internalFormat,firstRow,nullValue);
}
template <typename T>
void ColumnVectorData<T>::writeData (const std::vector<std::valarray<T> >& indata, long firstRow, T* nullValue)
{
// This is called directly by Column's writeArrays functions, and indirectly
// by both categories of write functions, ie. those which allow differing
// lengths per row and those that don't.
const size_t nInputRows(indata.size());
using std::valarray;
resizeDataObject(indata,firstRow);
// After the above call, can assume all m_data arrays to be written to
// have been properly resized whether we're dealing with fixed or
// variable length.
if (varLength())
{
// firstRow is 1-based, but all these internal row variables
// will be 0-based.
const size_t endRow = nInputRows + firstRow-1;
for (size_t iRow = firstRow-1; iRow < endRow; ++iRow)
{
m_data[iRow] = indata[iRow - (firstRow-1)];
// doWrite wants 1-based rows.
doWrite(&m_data[iRow][0], iRow+1, m_data[iRow].size(), 1, nullValue);
}
parent()->updateRows();
}
else
{
// Check for simplest case of all valarrays of size repeat().
// If any are greater, throw an error.
const size_t colRepeat = repeat();
bool allEqualRepeat = true;
for (size_t i=0; i<nInputRows; ++i)
{
const size_t sz = indata[i].size();
if (sz > colRepeat)
{
#ifdef SSTREAM_DEFECT
std::ostrstream oss;
#else
std::ostringstream oss;
#endif
oss << " vector column length " << colRepeat
<<", input valarray length " << sz;
throw InvalidRowParameter(oss.str());
}
if (sz < colRepeat)
allEqualRepeat = false;
}
if (allEqualRepeat)
{
// concatenate the valarrays and write.
const size_t nElements (colRepeat*nInputRows);
FITSUtil::CVAarray<T> convert;
FITSUtil::auto_array_ptr<T> pArray(convert(indata));
T* array = pArray.get();
// if T is complex, then CVAarray returns a
// C-array of complex objects. But FITS requires an array of complex's
// value_type.
// This writes to the file and also calls updateRows.
writeFixedArray(array,nElements,nInputRows,firstRow,nullValue);
for (size_t j = 0; j < nInputRows ; ++j)
{
const valarray<T>& input = indata[j];
valarray<T>& current = m_data[j + firstRow - 1];
// current should be resized by resizeDataObject.
current = input;
}
}
else
{
// Some input arrays have fewer than colRepeat elements.
const size_t endRow = nInputRows + firstRow-1;
for (size_t iRow = firstRow-1; iRow<endRow; ++iRow)
{
// resizeDataObject should already have resized all
// corresponding m_data rows to repeat().
const valarray<T>& input = indata[iRow-(firstRow-1)];
writeFixedRow(input, iRow, 1, nullValue);
}
parent()->updateRows();
}
} // end if !varLength
}
template <typename T>
void ColumnVectorData<T>::readRow (size_t row, T* nullValue)
{
makeHDUCurrent();
if ( row > static_cast<size_t>(rows()) )
{
#ifdef SSTREAM_DEFECT
std::ostrstream msg;
#else
std::ostringstream msg;
#endif
msg << " row requested: " << row << " row range: 1 - " << rows();
#ifdef SSTREAM_DEFECT
msg << std::ends;
#endif
throw Column::InvalidRowNumber(msg.str());
}
// this is really for documentation purposes. I expect the optimizer will
// remove this redundant definition .
bool variable(type() < 0);
long nelements(repeat());
if (variable)
{
readVariableRow(row,nullValue);
}
else
{
readColumnData(row,nelements,1,nullValue);
}
}
template <typename T>
void ColumnVectorData<T>::readVariableRow (size_t row, T* nullValue)
{
int status(0);
long offset(0);
long repeat(0);
if (fits_read_descript(fitsPointer(),index(),static_cast<long>(row),
&repeat,&offset,&status)) throw FitsError(status);
readColumnData(row,repeat,1,nullValue);
}
template <typename T>
void ColumnVectorData<T>::readColumnData (long firstrow, long nelements, long firstelem, T* nullValue)
{
int status=0;
FITSUtil::auto_array_ptr<T> pArray(new T[nelements]);
T* array = pArray.get();
int anynul(0);
if (fits_read_col(fitsPointer(), abs(type()),index(), firstrow, firstelem,
nelements, nullValue, array, &anynul, &status) != 0)
throw FitsError(status);
size_t countRead = 0;
const size_t ONE = 1;
if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
size_t vectorSize(0);
if (!varLength())
{
vectorSize = std::max(repeat(),ONE); // safety check.
}
else
{
// assume that the user specified the correct length for
// variable columns. This should be ok since readVariableColumns
// uses fits_read_descripts to return this information from the
// fits pointer, and this is passed as nelements here.
vectorSize = nelements;
}
size_t n = nelements;
int i = firstrow;
int ii = i - 1;
while ( countRead < n)
{
std::valarray<T>& current = m_data[ii];
if (current.size() != vectorSize) current.resize(vectorSize);
int elementsInFirstRow = vectorSize-firstelem + 1;
bool lastRow = ( (nelements - countRead) < vectorSize);
if (lastRow)
{
int elementsInLastRow = nelements - countRead;
std::valarray<T> ttmp(array + vectorSize*(ii-firstrow) + elementsInFirstRow,
elementsInLastRow);
for (int kk = 0; kk < elementsInLastRow; kk++) current[kk] = ttmp[kk];
countRead += elementsInLastRow;
}
// what to do with complete rows
else
{
if (firstelem == 1 || (firstelem > 1 && i > firstrow) )
{
std::valarray<T> ttmp(array + vectorSize*(ii - firstrow) +
elementsInFirstRow,vectorSize);
current = ttmp;
ii++;
i++;
countRead += vectorSize;
}
else
{
if (i == firstrow)
{
std::valarray<T> ttmp(array,elementsInFirstRow);
for (size_t kk = firstelem ; kk < vectorSize ; kk++)
current[kk] = ttmp[kk-firstelem];
countRead += elementsInFirstRow;
i++;
ii++;
}
}
}
}
}
template <typename T>
void ColumnVectorData<T>::writeData (const std::valarray<T>& indata, const std::vector<long>& vectorLengths, long firstRow, T* nullValue)
{
// Called from Column write functions which allow differing lengths
// for each row.
using namespace std;
const size_t N(vectorLengths.size());
vector<long> sums(N);
// pre-calculate partial sums of vector lengths for use as array offsets.
partial_sum(vectorLengths.begin(),vectorLengths.end(),sums.begin());
// check that sufficient data have been supplied to carry out the entire operation.
if (indata.size() < static_cast<size_t>(sums[N-1]) )
{
#ifdef SSTREAM_DEFECT
ostrstream msgStr;
#else
ostringstream msgStr;
#endif
msgStr << " input data size: " << indata.size() << " vector length sum: " << sums[N-1];
#ifdef SSTREAM_DEFECT
msgStr << std::ends;
#endif
String msg(msgStr.str());
throw InsufficientElements(msg);
}
vector<valarray<T> > vvArray(N);
long& last = sums[0];
vvArray[0].resize(last);
for (long jj = 0; jj < last; ++jj) vvArray[0][jj] = indata[jj];
for (size_t j = 1; j < N; ++j)
{
valarray<T>& __tmp = vvArray[j];
// these make the code much more readable
long& first = sums[j-1];
long& jlast = sums[j];
__tmp.resize(jlast - first);
for (long k = first; k < jlast; ++k)
{
__tmp[k - first] = indata[k];
}
}
writeData(vvArray,firstRow,nullValue);
}
template <typename T>
void ColumnVectorData<T>::writeFixedRow (const std::valarray<T>& data, long row, long firstElem, T* nullValue)
{
// This is to be called only for FIXED length vector columns. It will
// throw if data.size()+firstElem goes beyond the repeat value.
// If data.size() is less than repeat, it leaves the remaining values
// undisturbed both in the file and in m_data storage.
#ifdef SSTREAM_DEFECT
std::ostrstream msgStr;
#else
std::ostringstream msgStr;
#endif
if (varLength())
{
msgStr <<"Calling ColumnVectorData::writeFixedRow for a variable length column.\n";
throw FitsFatal(msgStr.str());
}
std::valarray<T>& storedRow = m_data[row];
long inputSize = static_cast<long>(data.size());
long storedSize(storedRow.size());
if (storedSize != static_cast<long>(repeat()))
{
msgStr<<"stored array size vs. column width mismatch in ColumnVectorData::writeFixedRow.\n";
throw FitsFatal(msgStr.str());
}
if (inputSize + firstElem - 1 > storedSize)
{
msgStr << " requested write " << firstElem << " to "
<< firstElem + inputSize - 1 << " exceeds vector length " << repeat();
throw InvalidRowParameter(msgStr.str());
}
// CANNOT give a strong exception safety guarantee because writing
// data changes the file. Any corrective action that could be taken
// [e.g. holding initial contents of the row and writing it back after
// an exception is thrown] could in principle throw the same exception
// we are trying to protect from.
// routine does however give the weak guarantee (no resource leaks).
// It's never a good thing to cast away a const, but doWrite calls the
// CFITSIO write functions which take a non-const pointer (though
// it shouldn't actually modify the array), and I'd rather not
// copy the entire valarray just to avoid this problem.
std::valarray<T>& lvData = const_cast<std::valarray<T>&>(data);
T* inPointer = &lvData[0];
doWrite(inPointer, row+1, inputSize, firstElem, nullValue);
// Writing to disk was successful, now update FITS object and return.
const size_t offset = static_cast<size_t>(firstElem) - 1;
for (size_t iElem=0; iElem < static_cast<size_t>(inputSize); ++iElem)
{
// This doesn't require inPointer's non-constness. It's just
// used here to speed things up a bit.
storedRow[iElem + offset] = inPointer[iElem];
}
}
template <typename T>
void ColumnVectorData<T>::writeFixedArray (T* data, long nElements, long nRows, long firstRow, T* nullValue)
{
int status(0);
// check for sanity of inputs, then write to file.
// this function writes only complete rows to a table with
// fixed width rows.
if ( nElements < nRows*static_cast<long>(repeat()) )
{
#ifdef SSTREAM_DEFECT
std::ostrstream msgStr;
#else
std::ostringstream msgStr;
#endif
msgStr << " input array size: " << nElements << " required " << nRows*repeat();
String msg(msgStr.str());
throw Column::InsufficientElements(msg);
}
if (nullValue)
{
if (fits_write_colnull(fitsPointer(),abs(type()),index(),firstRow,
1,nElements,data,nullValue,&status)) throw FitsError(status);
}
else
{
if (fits_write_col(fitsPointer(),abs(type()),index(),firstRow,
1,nElements,data,&status)) throw FitsError(status);
}
parent()->updateRows();
}
template <typename T>
void ColumnVectorData<T>::insertRows (long first, long number)
{
typename std::vector<std::valarray<T> >::iterator in;
if (first !=0)
{
in = m_data.begin()+first;
}
else
{
in = m_data.begin();
}
// non-throwing operations.
m_data.insert(in,number,std::valarray<T>(T(),0));
}
template <typename T>
void ColumnVectorData<T>::deleteRows (long first, long number)
{
// the following is an ugly workaround for a bug in g++ v3.0 that
// does not erase vector elements cleanly in this case.
long N = static_cast<long>(m_data.size());
size_t newSize = static_cast<size_t>(N - number);
std::vector<std::valarray<T> > __tmp(newSize);
long lastDeleted( number + first - 1 );
long firstDeleted(first);
long count(0);
{
for (long j = 1; j <= N; ++j)
{
if ( (j - firstDeleted)*(lastDeleted - j) >= 0 )
{ ++count;
}
else
{
__tmp[j - 1 - count].resize(m_data[j - 1].size());
__tmp[j - 1 - count] = m_data[j - 1];
}
}
}
m_data.clear();
m_data.resize(newSize);
{
for (size_t j = 0; j < newSize; ++j)
{
m_data[j].resize(__tmp[j].size());
m_data[j] = __tmp[j];
}
}
}
template <typename T>
void ColumnVectorData<T>::setDataLimits (T* limits)
{
m_minLegalValue = limits[0];
m_maxLegalValue = limits[1];
m_minDataValue = std::max(limits[2],limits[0]);
m_maxDataValue = std::min(limits[3],limits[1]);
}
template <typename T>
void ColumnVectorData<T>::doWrite (T* array, long row, long rowSize, long firstElem, T* nullValue)
{
int status(0);
// internal functioning of write_colnull forbids its use for writing
// variable width columns. If a nullvalue argument was supplied it will
// be ignored.
if ( !varLength())
{
if (fits_write_colnull(fitsPointer(),type(),index(),row, firstElem, rowSize,
array, nullValue,&status)) throw FitsError(status);
}
else
{
if (fits_write_col(fitsPointer(),abs(type()),index(),row,firstElem,rowSize,
array,&status)) throw FitsError(status);
}
}
// Additional Declarations
// all functions that operate on complex data that call cfitsio
// need to be specialized. The signature containing complex<T>* objects
// is unfortunate, perhaps, for this purpose, but the user will access
// rw operations through standard library containers.
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<float> >::setDataLimits (complex<float>* limits)
{
m_minLegalValue = limits[0];
m_maxLegalValue = limits[1];
m_minDataValue = limits[2];
m_maxDataValue = limits[3];
}
#else
template <>
void
ColumnVectorData<complex<float> >::setDataLimits (complex<float>* limits);
#endif
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<double> >::setDataLimits (complex<double>* limits)
{
m_minLegalValue = limits[0];
m_maxLegalValue = limits[1];
m_minDataValue = limits[2];
m_maxDataValue = limits[3];
}
#else
template <>
void
ColumnVectorData<complex<double> >::setDataLimits (complex<double>* limits);
#endif
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<std::complex<float> >::readColumnData(long firstRow,
long nelements, long firstElem, std::complex<float>* null )
{
int status=0;
float nulval (0);
FITSUtil::auto_array_ptr<float> pArray(new float[2*nelements]);
float* array = pArray.get();
int anynul(0);
if (fits_read_col_cmp(fitsPointer(),index(),firstRow, firstElem,
nelements,nulval,array,&anynul,&status) ) throw FitsError(status);
if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
std::valarray<std::complex<float> > readData(nelements);
for (long j = 0; j < nelements; ++j)
{
readData[j] = std::complex<float>(array[2*j],array[2*j+1]);
}
size_t countRead = 0;
const size_t ONE = 1;
if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
size_t vectorSize(0);
if (!varLength())
{
vectorSize = std::max(repeat(),ONE); // safety check.
}
else
{
// assume that the user specified the correct length for
// variable columns. This should be ok since readVariableColumns
// uses fits_read_descripts to return this information from the
// fits pointer, and this is passed as nelements here.
vectorSize = nelements;
}
size_t n = nelements;
int i = firstRow;
int ii = i - 1;
while ( countRead < n)
{
std::valarray<complex<float> >& current = m_data[ii];
if (current.size() != vectorSize) current.resize(vectorSize,0.);
int elementsInFirstRow = vectorSize-firstElem + 1;
bool lastRow = ( (nelements - countRead) < vectorSize);
if (lastRow)
{
int elementsInLastRow = nelements - countRead;
std::copy(&readData[countRead],&readData[0]+nelements,¤t[0]);
countRead += elementsInLastRow;
}
// what to do with complete rows. if firstElem == 1 the
else
{
if (firstElem == 1 || (firstElem > 1 && i > firstRow) )
{
current = readData[std::slice(vectorSize*(ii-firstRow)+
elementsInFirstRow,vectorSize,1)];
++ii;
++i;
countRead += vectorSize;
}
else
{
if (i == firstRow)
{
std::copy(&readData[0],&readData[0]+elementsInFirstRow,
¤t[firstElem]);
countRead += elementsInFirstRow;
++i;
++ii;
}
}
}
}
}
#else
template <>
void ColumnVectorData<complex<float> >::readColumnData(long firstRow,
long nelements,
long firstElem, complex<float>* null);
#endif
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<double> >::readColumnData (long firstRow,
long nelements,long firstElem,
complex<double>* nullValue)
{
// duplicated for each complex type to work around imagined or
// actual compiler deficiencies.
int status=0;
double nulval (0);
FITSUtil::auto_array_ptr<double> pArray(new double[2*nelements]);
double* array = pArray.get();
int anynul(0);
if (fits_read_col_dblcmp(fitsPointer(),index(),firstRow, firstElem,
nelements,nulval,array,&anynul,&status) ) throw FitsError(status);
if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
std::valarray<std::complex<double> > readData(nelements);
for (long j = 0; j < nelements; ++j)
{
readData[j] = std::complex<double>(array[2*j],array[2*j+1]);
}
size_t countRead = 0;
const size_t ONE = 1;
if (m_data.size() != static_cast<size_t>(rows())) m_data.resize(rows());
size_t vectorSize(0);
if (!varLength())
{
vectorSize = std::max(repeat(),ONE); // safety check.
}
else
{
// assume that the user specified the correct length for
// variable columns. This should be ok since readVariableColumns
// uses fits_read_descripts to return this information from the
// fits pointer, and this is passed as nelements here.
vectorSize = nelements;
}
size_t n = nelements;
int i = firstRow;
int ii = i - 1;
while ( countRead < n)
{
std::valarray<std::complex<double> >& current = m_data[ii];
if (current.size() != vectorSize) current.resize(vectorSize,0.);
int elementsInFirstRow = vectorSize-firstElem + 1;
bool lastRow = ( (nelements - countRead) < vectorSize);
if (lastRow)
{
int elementsInLastRow = nelements - countRead;
std::copy(&readData[countRead],&readData[0]+nelements,¤t[0]);
countRead += elementsInLastRow;
}
// what to do with complete rows. if firstElem == 1 the
else
{
if (firstElem == 1 || (firstElem > 1 && i > firstRow) )
{
current = readData[std::slice(vectorSize*(ii-firstRow)+
elementsInFirstRow,vectorSize,1)];
++ii;
++i;
countRead += vectorSize;
}
else
{
if (i == firstRow)
{
std::copy(&readData[0],&readData[0]+elementsInFirstRow,
¤t[firstElem]);
countRead += elementsInFirstRow;
++i;
++ii;
}
}
}
}
}
#else
template <>
void ColumnVectorData<complex<double> >::readColumnData (long firstRow,
long nelements,
long firstElem, complex<double>* null);
#endif
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<float> >::writeFixedArray
(complex<float>* data, long nElements, long nRows, long firstRow,
complex<float>* nullValue)
{
int status(0);
// check for sanity of inputs, then write to file.
// this function writes only complete rows to a table with
// fixed width rows.
if ( nElements < nRows*static_cast<long>(repeat()) )
{
#ifdef SSTREAM_DEFECT
std::ostrstream msgStr;
#else
std::ostringstream msgStr;
#endif
msgStr << " input array size: " << nElements
<< " required " << nRows*repeat();
#ifdef SSTREAM_DEFECT
msgStr << std::ends;
#endif
String msg(msgStr.str());
throw Column::InsufficientElements(msg);
}
FITSUtil::auto_array_ptr<float> realData(new float[2*nElements]);
for (int j = 0; j < nElements; ++j)
{
realData[2*j] = data[j].real();
realData[2*j+1] = data[j].imag();
}
if (fits_write_col_cmp(fitsPointer(),index(),firstRow,
1,nElements,realData.get(),&status)) throw FitsError(status);
parent()->updateRows();
}
#else
template <>
void ColumnVectorData<complex<float> >::writeFixedArray
(complex<float>* data, long nElements, long nRows, long firstRow, std::complex<float>* null);
#endif
#if SPEC_TEMPLATE_IMP_DEFECT || SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void ColumnVectorData<complex<double> >::writeFixedArray
(complex<double>* data, long nElements, long nRows, long firstRow,
complex<double>* nullValue)
{
int status(0);
// check for sanity of inputs, then write to file.
// this function writes only complete rows to a table with
// fixed width rows.
if ( nElements < nRows*static_cast<long>(repeat()) )
{
#ifdef SSTREAM_DEFECT
std::ostrstream msgStr;
#else
std::ostringstream msgStr;
#endif
msgStr << " input array size: " << nElements
<< " required " << nRows*repeat();
#ifdef SSTREAM_DEFECT
msgStr << std::ends;
#endif
String msg(msgStr.str());
throw Column::InsufficientElements(msg);
}
FITSUtil::auto_array_ptr<double> realData(new double[2*nElements]);
for (int j = 0; j < nElements; ++j)
{
realData[2*j] = data[j].real();
realData[2*j+1] = data[j].imag();
}
if (fits_write_col_dblcmp(fitsPointer(),index(),firstRow,
1,nElements,realData.get(),&status)) throw FitsError(status);
parent()->updateRows();
}
#else
template <>
void ColumnVectorData<complex<double> >::writeFixedArray
(complex<double>* data, long nElements, long nRows, long firstRow,
std::complex<double>* null);
#endif
#ifdef SPEC_TEMPLATE_DECL_DEFECT
template <>
inline void
ColumnVectorData<std::complex<float> >::doWrite
(std::complex<float>* data, long row, long rowSize, long firstElem, std::complex<float>* nullValue )
{
int status(0);
FITSUtil::auto_array_ptr<float> carray( new float[2*rowSize]);
for ( long j = 0 ; j < rowSize; ++ j)
{
carray[2*j] = data[j].real();
carray[2*j + 1] = data[j].imag();
}
if (fits_write_col_cmp(fitsPointer(),index(),row,firstElem,rowSize,
carray.get(),&status)) throw FitsError(status);
}
template <>
inline void
ColumnVectorData<std::complex<double> >::doWrite
(std::complex<double>* data, long row, long rowSize, long firstElem, std::complex<double>* nullValue )
{
int status(0);
FITSUtil::auto_array_ptr<double> carray( new double[2*rowSize]);
for ( long j = 0 ; j < rowSize; ++ j)
{
carray[2*j] = data[j].real();
carray[2*j + 1] = data[j].imag();
}
if (fits_write_col_dblcmp(fitsPointer(),index(),row,firstElem,rowSize,
carray.get(),&status)) throw FitsError(status);
}
#else
template<>
void
ColumnVectorData<complex<float> >::doWrite
( complex<float>* data, long row, long rowSize, long firstElem, complex<float>* nullValue);
template<>
void
ColumnVectorData<complex<double> >::doWrite
( complex<double>* data, long row, long rowSize, long firstElem, complex<double>* nullValue );
#endif
} // namespace CCfits
#endif
|