/usr/include/kj/parse/common.h is in libcapnp-dev 0.5.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// Parser combinator framework!
//
// This file declares several functions which construct parsers, usually taking other parsers as
// input, thus making them parser combinators.
//
// A valid parser is any functor which takes a reference to an input cursor (defined below) as its
// input and returns a Maybe. The parser returns null on parse failure, or returns the parsed
// result on success.
//
// An "input cursor" is any type which implements the same interface as IteratorInput, below. Such
// a type acts as a pointer to the current input location. When a parser returns successfully, it
// will have updated the input cursor to point to the position just past the end of what was parsed.
// On failure, the cursor position is unspecified.
#ifndef KJ_PARSE_COMMON_H_
#define KJ_PARSE_COMMON_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "../common.h"
#include "../memory.h"
#include "../array.h"
#include "../tuple.h"
#include "../vector.h"
namespace kj {
namespace parse {
template <typename Element, typename Iterator>
class IteratorInput {
// A parser input implementation based on an iterator range.
public:
IteratorInput(Iterator begin, Iterator end)
: parent(nullptr), pos(begin), end(end), best(begin) {}
explicit IteratorInput(IteratorInput& parent)
: parent(&parent), pos(parent.pos), end(parent.end), best(parent.pos) {}
~IteratorInput() {
if (parent != nullptr) {
parent->best = kj::max(kj::max(pos, best), parent->best);
}
}
KJ_DISALLOW_COPY(IteratorInput);
void advanceParent() {
parent->pos = pos;
}
void forgetParent() {
parent = nullptr;
}
bool atEnd() { return pos == end; }
auto current() -> decltype(*instance<Iterator>()) {
KJ_IREQUIRE(!atEnd());
return *pos;
}
auto consume() -> decltype(*instance<Iterator>()) {
KJ_IREQUIRE(!atEnd());
return *pos++;
}
void next() {
KJ_IREQUIRE(!atEnd());
++pos;
}
Iterator getBest() { return kj::max(pos, best); }
Iterator getPosition() { return pos; }
private:
IteratorInput* parent;
Iterator pos;
Iterator end;
Iterator best; // furthest we got with any sub-input
};
template <typename T> struct OutputType_;
template <typename T> struct OutputType_<Maybe<T>> { typedef T Type; };
template <typename Parser, typename Input>
using OutputType = typename OutputType_<decltype(instance<Parser&>()(instance<Input&>()))>::Type;
// Synonym for the output type of a parser, given the parser type and the input type.
// =======================================================================================
template <typename Input, typename Output>
class ParserRef {
// Acts as a reference to some other parser, with simplified type. The referenced parser
// is polymorphic by virtual call rather than templates. For grammars of non-trivial size,
// it is important to inject refs into the grammar here and there to prevent the parser types
// from becoming ridiculous. Using too many of them can hurt performance, though.
public:
ParserRef(): parser(nullptr), wrapper(nullptr) {}
ParserRef(const ParserRef&) = default;
ParserRef(ParserRef&&) = default;
ParserRef& operator=(const ParserRef& other) = default;
ParserRef& operator=(ParserRef&& other) = default;
template <typename Other>
constexpr ParserRef(Other&& other)
: parser(&other), wrapper(&WrapperImplInstance<Decay<Other>>::instance) {
static_assert(kj::isReference<Other>(), "ParseRef should not be assigned to a temporary.");
}
template <typename Other>
inline ParserRef& operator=(Other&& other) {
static_assert(kj::isReference<Other>(), "ParseRef should not be assigned to a temporary.");
parser = &other;
wrapper = &WrapperImplInstance<Decay<Other>>::instance;
return *this;
}
KJ_ALWAYS_INLINE(Maybe<Output> operator()(Input& input) const) {
// Always inline in the hopes that this allows branch prediction to kick in so the virtual call
// doesn't hurt so much.
return wrapper->parse(parser, input);
}
private:
struct Wrapper {
virtual Maybe<Output> parse(const void* parser, Input& input) const = 0;
};
template <typename ParserImpl>
struct WrapperImpl: public Wrapper {
Maybe<Output> parse(const void* parser, Input& input) const override {
return (*reinterpret_cast<const ParserImpl*>(parser))(input);
}
};
template <typename ParserImpl>
struct WrapperImplInstance {
static constexpr WrapperImpl<ParserImpl> instance = WrapperImpl<ParserImpl>();
};
const void* parser;
const Wrapper* wrapper;
};
template <typename Input, typename Output>
template <typename ParserImpl>
constexpr ParserRef<Input, Output>::WrapperImpl<ParserImpl>
ParserRef<Input, Output>::WrapperImplInstance<ParserImpl>::instance;
template <typename Input, typename ParserImpl>
constexpr ParserRef<Input, OutputType<ParserImpl, Input>> ref(ParserImpl& impl) {
// Constructs a ParserRef. You must specify the input type explicitly, e.g.
// `ref<MyInput>(myParser)`.
return ParserRef<Input, OutputType<ParserImpl, Input>>(impl);
}
// -------------------------------------------------------------------
// any
// Output = one token
class Any_ {
public:
template <typename Input>
Maybe<Decay<decltype(instance<Input>().consume())>> operator()(Input& input) const {
if (input.atEnd()) {
return nullptr;
} else {
return input.consume();
}
}
};
constexpr Any_ any = Any_();
// A parser which matches any token and simply returns it.
// -------------------------------------------------------------------
// exactly()
// Output = Tuple<>
template <typename T>
class Exactly_ {
public:
explicit constexpr Exactly_(T&& expected): expected(expected) {}
template <typename Input>
Maybe<Tuple<>> operator()(Input& input) const {
if (input.atEnd() || input.current() != expected) {
return nullptr;
} else {
input.next();
return Tuple<>();
}
}
private:
T expected;
};
template <typename T>
constexpr Exactly_<T> exactly(T&& expected) {
// Constructs a parser which succeeds when the input is exactly the token specified. The
// result is always the empty tuple.
return Exactly_<T>(kj::fwd<T>(expected));
}
// -------------------------------------------------------------------
// exactlyConst()
// Output = Tuple<>
template <typename T, T expected>
class ExactlyConst_ {
public:
explicit constexpr ExactlyConst_() {}
template <typename Input>
Maybe<Tuple<>> operator()(Input& input) const {
if (input.atEnd() || input.current() != expected) {
return nullptr;
} else {
input.next();
return Tuple<>();
}
}
};
template <typename T, T expected>
constexpr ExactlyConst_<T, expected> exactlyConst() {
// Constructs a parser which succeeds when the input is exactly the token specified. The
// result is always the empty tuple. This parser is templated on the token value which may cause
// it to perform better -- or worse. Be sure to measure.
return ExactlyConst_<T, expected>();
}
// -------------------------------------------------------------------
// constResult()
template <typename SubParser, typename Result>
class ConstResult_ {
public:
explicit constexpr ConstResult_(SubParser&& subParser, Result&& result)
: subParser(kj::fwd<SubParser>(subParser)), result(kj::fwd<Result>(result)) {}
template <typename Input>
Maybe<Result> operator()(Input& input) const {
if (subParser(input) == nullptr) {
return nullptr;
} else {
return result;
}
}
private:
SubParser subParser;
Result result;
};
template <typename SubParser, typename Result>
constexpr ConstResult_<SubParser, Result> constResult(SubParser&& subParser, Result&& result) {
// Constructs a parser which returns exactly `result` if `subParser` is successful.
return ConstResult_<SubParser, Result>(kj::fwd<SubParser>(subParser), kj::fwd<Result>(result));
}
template <typename SubParser>
constexpr ConstResult_<SubParser, Tuple<>> discard(SubParser&& subParser) {
// Constructs a parser which wraps `subParser` but discards the result.
return constResult(kj::fwd<SubParser>(subParser), Tuple<>());
}
// -------------------------------------------------------------------
// sequence()
// Output = Flattened Tuple of outputs of sub-parsers.
template <typename... SubParsers> class Sequence_;
template <typename FirstSubParser, typename... SubParsers>
class Sequence_<FirstSubParser, SubParsers...> {
public:
template <typename T, typename... U>
explicit constexpr Sequence_(T&& firstSubParser, U&&... rest)
: first(kj::fwd<T>(firstSubParser)), rest(kj::fwd<U>(rest)...) {}
template <typename Input>
auto operator()(Input& input) const ->
Maybe<decltype(tuple(
instance<OutputType<FirstSubParser, Input>>(),
instance<OutputType<SubParsers, Input>>()...))> {
return parseNext(input);
}
template <typename Input, typename... InitialParams>
auto parseNext(Input& input, InitialParams&&... initialParams) const ->
Maybe<decltype(tuple(
kj::fwd<InitialParams>(initialParams)...,
instance<OutputType<FirstSubParser, Input>>(),
instance<OutputType<SubParsers, Input>>()...))> {
KJ_IF_MAYBE(firstResult, first(input)) {
return rest.parseNext(input, kj::fwd<InitialParams>(initialParams)...,
kj::mv(*firstResult));
} else {
return nullptr;
}
}
private:
FirstSubParser first;
Sequence_<SubParsers...> rest;
};
template <>
class Sequence_<> {
public:
template <typename Input>
Maybe<Tuple<>> operator()(Input& input) const {
return parseNext(input);
}
template <typename Input, typename... Params>
auto parseNext(Input& input, Params&&... params) const ->
Maybe<decltype(tuple(kj::fwd<Params>(params)...))> {
return tuple(kj::fwd<Params>(params)...);
}
};
template <typename... SubParsers>
constexpr Sequence_<SubParsers...> sequence(SubParsers&&... subParsers) {
// Constructs a parser that executes each of the parameter parsers in sequence and returns a
// tuple of their results.
return Sequence_<SubParsers...>(kj::fwd<SubParsers>(subParsers)...);
}
// -------------------------------------------------------------------
// many()
// Output = Array of output of sub-parser, or just a uint count if the sub-parser returns Tuple<>.
template <typename SubParser, bool atLeastOne>
class Many_ {
template <typename Input, typename Output = OutputType<SubParser, Input>>
struct Impl;
public:
explicit constexpr Many_(SubParser&& subParser)
: subParser(kj::fwd<SubParser>(subParser)) {}
template <typename Input>
auto operator()(Input& input) const
-> decltype(Impl<Input>::apply(instance<const SubParser&>(), input));
private:
SubParser subParser;
};
template <typename SubParser, bool atLeastOne>
template <typename Input, typename Output>
struct Many_<SubParser, atLeastOne>::Impl {
static Maybe<Array<Output>> apply(const SubParser& subParser, Input& input) {
typedef Vector<OutputType<SubParser, Input>> Results;
Results results;
while (!input.atEnd()) {
Input subInput(input);
KJ_IF_MAYBE(subResult, subParser(subInput)) {
subInput.advanceParent();
results.add(kj::mv(*subResult));
} else {
break;
}
}
if (atLeastOne && results.empty()) {
return nullptr;
}
return results.releaseAsArray();
}
};
template <typename SubParser, bool atLeastOne>
template <typename Input>
struct Many_<SubParser, atLeastOne>::Impl<Input, Tuple<>> {
// If the sub-parser output is Tuple<>, just return a count.
static Maybe<uint> apply(const SubParser& subParser, Input& input) {
uint count = 0;
while (!input.atEnd()) {
Input subInput(input);
KJ_IF_MAYBE(subResult, subParser(subInput)) {
subInput.advanceParent();
++count;
} else {
break;
}
}
if (atLeastOne && count == 0) {
return nullptr;
}
return count;
}
};
template <typename SubParser, bool atLeastOne>
template <typename Input>
auto Many_<SubParser, atLeastOne>::operator()(Input& input) const
-> decltype(Impl<Input>::apply(instance<const SubParser&>(), input)) {
return Impl<Input, OutputType<SubParser, Input>>::apply(subParser, input);
}
template <typename SubParser>
constexpr Many_<SubParser, false> many(SubParser&& subParser) {
// Constructs a parser that repeatedly executes the given parser until it fails, returning an
// Array of the results (or a uint count if `subParser` returns an empty tuple).
return Many_<SubParser, false>(kj::fwd<SubParser>(subParser));
}
template <typename SubParser>
constexpr Many_<SubParser, true> oneOrMore(SubParser&& subParser) {
// Like `many()` but the parser must parse at least one item to be successful.
return Many_<SubParser, true>(kj::fwd<SubParser>(subParser));
}
// -------------------------------------------------------------------
// times()
// Output = Array of output of sub-parser, or Tuple<> if sub-parser returns Tuple<>.
template <typename SubParser>
class Times_ {
template <typename Input, typename Output = OutputType<SubParser, Input>>
struct Impl;
public:
explicit constexpr Times_(SubParser&& subParser, uint count)
: subParser(kj::fwd<SubParser>(subParser)), count(count) {}
template <typename Input>
auto operator()(Input& input) const
-> decltype(Impl<Input>::apply(instance<const SubParser&>(), instance<uint>(), input));
private:
SubParser subParser;
uint count;
};
template <typename SubParser>
template <typename Input, typename Output>
struct Times_<SubParser>::Impl {
static Maybe<Array<Output>> apply(const SubParser& subParser, uint count, Input& input) {
auto results = heapArrayBuilder<OutputType<SubParser, Input>>(count);
while (results.size() < count) {
if (input.atEnd()) {
return nullptr;
} else KJ_IF_MAYBE(subResult, subParser(input)) {
results.add(kj::mv(*subResult));
} else {
return nullptr;
}
}
return results.finish();
}
};
template <typename SubParser>
template <typename Input>
struct Times_<SubParser>::Impl<Input, Tuple<>> {
// If the sub-parser output is Tuple<>, just return a count.
static Maybe<Tuple<>> apply(const SubParser& subParser, uint count, Input& input) {
uint actualCount = 0;
while (actualCount < count) {
if (input.atEnd()) {
return nullptr;
} else KJ_IF_MAYBE(subResult, subParser(input)) {
++actualCount;
} else {
return nullptr;
}
}
return tuple();
}
};
template <typename SubParser>
template <typename Input>
auto Times_<SubParser>::operator()(Input& input) const
-> decltype(Impl<Input>::apply(instance<const SubParser&>(), instance<uint>(), input)) {
return Impl<Input, OutputType<SubParser, Input>>::apply(subParser, count, input);
}
template <typename SubParser>
constexpr Times_<SubParser> times(SubParser&& subParser, uint count) {
// Constructs a parser that repeats the subParser exactly `count` times.
return Times_<SubParser>(kj::fwd<SubParser>(subParser), count);
}
// -------------------------------------------------------------------
// optional()
// Output = Maybe<output of sub-parser>
template <typename SubParser>
class Optional_ {
public:
explicit constexpr Optional_(SubParser&& subParser)
: subParser(kj::fwd<SubParser>(subParser)) {}
template <typename Input>
Maybe<Maybe<OutputType<SubParser, Input>>> operator()(Input& input) const {
typedef Maybe<OutputType<SubParser, Input>> Result;
Input subInput(input);
KJ_IF_MAYBE(subResult, subParser(subInput)) {
subInput.advanceParent();
return Result(kj::mv(*subResult));
} else {
return Result(nullptr);
}
}
private:
SubParser subParser;
};
template <typename SubParser>
constexpr Optional_<SubParser> optional(SubParser&& subParser) {
// Constructs a parser that accepts zero or one of the given sub-parser, returning a Maybe
// of the sub-parser's result.
return Optional_<SubParser>(kj::fwd<SubParser>(subParser));
}
// -------------------------------------------------------------------
// oneOf()
// All SubParsers must have same output type, which becomes the output type of the
// OneOfParser.
template <typename... SubParsers>
class OneOf_;
template <typename FirstSubParser, typename... SubParsers>
class OneOf_<FirstSubParser, SubParsers...> {
public:
explicit constexpr OneOf_(FirstSubParser&& firstSubParser, SubParsers&&... rest)
: first(kj::fwd<FirstSubParser>(firstSubParser)), rest(kj::fwd<SubParsers>(rest)...) {}
template <typename Input>
Maybe<OutputType<FirstSubParser, Input>> operator()(Input& input) const {
{
Input subInput(input);
Maybe<OutputType<FirstSubParser, Input>> firstResult = first(subInput);
if (firstResult != nullptr) {
subInput.advanceParent();
return kj::mv(firstResult);
}
}
// Hoping for some tail recursion here...
return rest(input);
}
private:
FirstSubParser first;
OneOf_<SubParsers...> rest;
};
template <>
class OneOf_<> {
public:
template <typename Input>
decltype(nullptr) operator()(Input& input) const {
return nullptr;
}
};
template <typename... SubParsers>
constexpr OneOf_<SubParsers...> oneOf(SubParsers&&... parsers) {
// Constructs a parser that accepts one of a set of options. The parser behaves as the first
// sub-parser in the list which returns successfully. All of the sub-parsers must return the
// same type.
return OneOf_<SubParsers...>(kj::fwd<SubParsers>(parsers)...);
}
// -------------------------------------------------------------------
// transform()
// Output = Result of applying transform functor to input value. If input is a tuple, it is
// unpacked to form the transformation parameters.
template <typename Position>
struct Span {
public:
inline const Position& begin() const { return begin_; }
inline const Position& end() const { return end_; }
Span() = default;
inline constexpr Span(Position&& begin, Position&& end): begin_(mv(begin)), end_(mv(end)) {}
private:
Position begin_;
Position end_;
};
template <typename Position>
constexpr Span<Decay<Position>> span(Position&& start, Position&& end) {
return Span<Decay<Position>>(kj::fwd<Position>(start), kj::fwd<Position>(end));
}
template <typename SubParser, typename TransformFunc>
class Transform_ {
public:
explicit constexpr Transform_(SubParser&& subParser, TransformFunc&& transform)
: subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}
template <typename Input>
Maybe<decltype(kj::apply(instance<TransformFunc&>(),
instance<OutputType<SubParser, Input>&&>()))>
operator()(Input& input) const {
KJ_IF_MAYBE(subResult, subParser(input)) {
return kj::apply(transform, kj::mv(*subResult));
} else {
return nullptr;
}
}
private:
SubParser subParser;
TransformFunc transform;
};
template <typename SubParser, typename TransformFunc>
class TransformOrReject_ {
public:
explicit constexpr TransformOrReject_(SubParser&& subParser, TransformFunc&& transform)
: subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}
template <typename Input>
decltype(kj::apply(instance<TransformFunc&>(), instance<OutputType<SubParser, Input>&&>()))
operator()(Input& input) const {
KJ_IF_MAYBE(subResult, subParser(input)) {
return kj::apply(transform, kj::mv(*subResult));
} else {
return nullptr;
}
}
private:
SubParser subParser;
TransformFunc transform;
};
template <typename SubParser, typename TransformFunc>
class TransformWithLocation_ {
public:
explicit constexpr TransformWithLocation_(SubParser&& subParser, TransformFunc&& transform)
: subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}
template <typename Input>
Maybe<decltype(kj::apply(instance<TransformFunc&>(),
instance<Span<Decay<decltype(instance<Input&>().getPosition())>>>(),
instance<OutputType<SubParser, Input>&&>()))>
operator()(Input& input) const {
auto start = input.getPosition();
KJ_IF_MAYBE(subResult, subParser(input)) {
return kj::apply(transform, Span<decltype(start)>(kj::mv(start), input.getPosition()),
kj::mv(*subResult));
} else {
return nullptr;
}
}
private:
SubParser subParser;
TransformFunc transform;
};
template <typename SubParser, typename TransformFunc>
constexpr Transform_<SubParser, TransformFunc> transform(
SubParser&& subParser, TransformFunc&& functor) {
// Constructs a parser which executes some other parser and then transforms the result by invoking
// `functor` on it. Typically `functor` is a lambda. It is invoked using `kj::apply`,
// meaning tuples will be unpacked as arguments.
return Transform_<SubParser, TransformFunc>(
kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}
template <typename SubParser, typename TransformFunc>
constexpr TransformOrReject_<SubParser, TransformFunc> transformOrReject(
SubParser&& subParser, TransformFunc&& functor) {
// Like `transform()` except that `functor` returns a `Maybe`. If it returns null, parsing fails,
// otherwise the parser's result is the content of the `Maybe`.
return TransformOrReject_<SubParser, TransformFunc>(
kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}
template <typename SubParser, typename TransformFunc>
constexpr TransformWithLocation_<SubParser, TransformFunc> transformWithLocation(
SubParser&& subParser, TransformFunc&& functor) {
// Like `transform` except that `functor` also takes a `Span` as its first parameter specifying
// the location of the parsed content. The span's position type is whatever the parser input's
// getPosition() returns.
return TransformWithLocation_<SubParser, TransformFunc>(
kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}
// -------------------------------------------------------------------
// notLookingAt()
// Fails if the given parser succeeds at the current location.
template <typename SubParser>
class NotLookingAt_ {
public:
explicit constexpr NotLookingAt_(SubParser&& subParser)
: subParser(kj::fwd<SubParser>(subParser)) {}
template <typename Input>
Maybe<Tuple<>> operator()(Input& input) const {
Input subInput(input);
subInput.forgetParent();
if (subParser(subInput) == nullptr) {
return Tuple<>();
} else {
return nullptr;
}
}
private:
SubParser subParser;
};
template <typename SubParser>
constexpr NotLookingAt_<SubParser> notLookingAt(SubParser&& subParser) {
// Constructs a parser which fails at any position where the given parser succeeds. Otherwise,
// it succeeds without consuming any input and returns an empty tuple.
return NotLookingAt_<SubParser>(kj::fwd<SubParser>(subParser));
}
// -------------------------------------------------------------------
// endOfInput()
// Output = Tuple<>, only succeeds if at end-of-input
class EndOfInput_ {
public:
template <typename Input>
Maybe<Tuple<>> operator()(Input& input) const {
if (input.atEnd()) {
return Tuple<>();
} else {
return nullptr;
}
}
};
constexpr EndOfInput_ endOfInput = EndOfInput_();
// A parser that succeeds only if it is called with no input.
} // namespace parse
} // namespace kj
#endif // KJ_PARSE_COMMON_H_
|