/usr/include/bullet/LinearMath/btSpatialAlgebra.h is in libbullet-dev 2.83.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /*
Copyright (c) 2003-2015 Erwin Coumans, Jakub Stepien
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///These spatial algebra classes are used for btMultiBody,
///see BulletDynamics/Featherstone
#ifndef BT_SPATIAL_ALGEBRA_H
#define BT_SPATIAL_ALGEBRA_H
#include "btMatrix3x3.h"
struct btSpatialForceVector
{
btVector3 m_topVec, m_bottomVec;
//
btSpatialForceVector() { setZero(); }
btSpatialForceVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(linear), m_bottomVec(angular) {}
btSpatialForceVector(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
setValue(ax, ay, az, lx, ly, lz);
}
//
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = linear; m_bottomVec = angular; }
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_bottomVec.setValue(ax, ay, az); m_topVec.setValue(lx, ly, lz);
}
//
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_bottomVec[0] += ax; m_bottomVec[1] += ay; m_bottomVec[2] += az;
m_topVec[0] += lx; m_topVec[1] += ly; m_topVec[2] += lz;
}
//
const btVector3 & getLinear() const { return m_topVec; }
const btVector3 & getAngular() const { return m_bottomVec; }
//
void setLinear(const btVector3 &linear) { m_topVec = linear; }
void setAngular(const btVector3 &angular) { m_bottomVec = angular; }
//
void addAngular(const btVector3 &angular) { m_bottomVec += angular; }
void addLinear(const btVector3 &linear) { m_topVec += linear; }
//
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
//
btSpatialForceVector & operator += (const btSpatialForceVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
btSpatialForceVector & operator -= (const btSpatialForceVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
btSpatialForceVector operator - (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec - vec.m_bottomVec, m_topVec - vec.m_topVec); }
btSpatialForceVector operator + (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec + vec.m_bottomVec, m_topVec + vec.m_topVec); }
btSpatialForceVector operator - () const { return btSpatialForceVector(-m_bottomVec, -m_topVec); }
btSpatialForceVector operator * (const btScalar &s) const { return btSpatialForceVector(s * m_bottomVec, s * m_topVec); }
//btSpatialForceVector & operator = (const btSpatialForceVector &vec) { m_topVec = vec.m_topVec; m_bottomVec = vec.m_bottomVec; return *this; }
};
struct btSpatialMotionVector
{
btVector3 m_topVec, m_bottomVec;
//
btSpatialMotionVector() { setZero(); }
btSpatialMotionVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(angular), m_bottomVec(linear) {}
//
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = angular; m_bottomVec = linear; }
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_topVec.setValue(ax, ay, az); m_bottomVec.setValue(lx, ly, lz);
}
//
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_topVec[0] += ax; m_topVec[1] += ay; m_topVec[2] += az;
m_bottomVec[0] += lx; m_bottomVec[1] += ly; m_bottomVec[2] += lz;
}
//
const btVector3 & getAngular() const { return m_topVec; }
const btVector3 & getLinear() const { return m_bottomVec; }
//
void setAngular(const btVector3 &angular) { m_topVec = angular; }
void setLinear(const btVector3 &linear) { m_bottomVec = linear; }
//
void addAngular(const btVector3 &angular) { m_topVec += angular; }
void addLinear(const btVector3 &linear) { m_bottomVec += linear; }
//
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
//
btScalar dot(const btSpatialForceVector &b) const
{
return m_bottomVec.dot(b.m_topVec) + m_topVec.dot(b.m_bottomVec);
}
//
template<typename SpatialVectorType>
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
{
out.m_topVec = m_topVec.cross(b.m_topVec);
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
}
template<typename SpatialVectorType>
SpatialVectorType cross(const SpatialVectorType &b) const
{
SpatialVectorType out;
out.m_topVec = m_topVec.cross(b.m_topVec);
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
return out;
}
//
btSpatialMotionVector & operator += (const btSpatialMotionVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
btSpatialMotionVector & operator -= (const btSpatialMotionVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
btSpatialMotionVector & operator *= (const btScalar &s) { m_topVec *= s; m_bottomVec *= s; return *this; }
btSpatialMotionVector operator - (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec - vec.m_topVec, m_bottomVec - vec.m_bottomVec); }
btSpatialMotionVector operator + (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec + vec.m_topVec, m_bottomVec + vec.m_bottomVec); }
btSpatialMotionVector operator - () const { return btSpatialMotionVector(-m_topVec, -m_bottomVec); }
btSpatialMotionVector operator * (const btScalar &s) const { return btSpatialMotionVector(s * m_topVec, s * m_bottomVec); }
};
struct btSymmetricSpatialDyad
{
btMatrix3x3 m_topLeftMat, m_topRightMat, m_bottomLeftMat;
//
btSymmetricSpatialDyad() { setIdentity(); }
btSymmetricSpatialDyad(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat) { setMatrix(topLeftMat, topRightMat, bottomLeftMat); }
//
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
{
m_topLeftMat = topLeftMat;
m_topRightMat = topRightMat;
m_bottomLeftMat = bottomLeftMat;
}
//
void addMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
{
m_topLeftMat += topLeftMat;
m_topRightMat += topRightMat;
m_bottomLeftMat += bottomLeftMat;
}
//
void setIdentity() { m_topLeftMat.setIdentity(); m_topRightMat.setIdentity(); m_bottomLeftMat.setIdentity(); }
//
btSymmetricSpatialDyad & operator -= (const btSymmetricSpatialDyad &mat)
{
m_topLeftMat -= mat.m_topLeftMat;
m_topRightMat -= mat.m_topRightMat;
m_bottomLeftMat -= mat.m_bottomLeftMat;
return *this;
}
//
btSpatialForceVector operator * (const btSpatialMotionVector &vec)
{
return btSpatialForceVector(m_bottomLeftMat * vec.m_topVec + m_topLeftMat.transpose() * vec.m_bottomVec, m_topLeftMat * vec.m_topVec + m_topRightMat * vec.m_bottomVec);
}
};
struct btSpatialTransformationMatrix
{
btMatrix3x3 m_rotMat; //btMatrix3x3 m_trnCrossMat;
btVector3 m_trnVec;
//
enum eOutputOperation
{
None = 0,
Add = 1,
Subtract = 2
};
//
template<typename SpatialVectorType>
void transform( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat * inVec.m_topVec;
outVec.m_bottomVec = -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat * inVec.m_topVec;
outVec.m_bottomVec += -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
outVec.m_bottomVec -= -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
}
template<typename SpatialVectorType>
void transformRotationOnly( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat * inVec.m_topVec;
outVec.m_bottomVec = m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat * inVec.m_topVec;
outVec.m_bottomVec += m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
outVec.m_bottomVec -= m_rotMat * inVec.m_bottomVec;
}
}
template<typename SpatialVectorType>
void transformInverse( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec = m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec += m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec -= m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
}
template<typename SpatialVectorType>
void transformInverseRotationOnly( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec = m_rotMat.transpose() * inVec.m_bottomVec;
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec += m_rotMat.transpose() * inVec.m_bottomVec;
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec -= m_rotMat.transpose() * inVec.m_bottomVec;
}
}
void transformInverse( const btSymmetricSpatialDyad &inMat,
btSymmetricSpatialDyad &outMat,
eOutputOperation outOp = None)
{
const btMatrix3x3 r_cross( 0, -m_trnVec[2], m_trnVec[1],
m_trnVec[2], 0, -m_trnVec[0],
-m_trnVec[1], m_trnVec[0], 0);
if(outOp == None)
{
outMat.m_topLeftMat = m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat = m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat = m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
else if(outOp == Add)
{
outMat.m_topLeftMat += m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat += m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat += m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
else if(outOp == Subtract)
{
outMat.m_topLeftMat -= m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat -= m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat -= m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
}
template<typename SpatialVectorType>
SpatialVectorType operator * (const SpatialVectorType &vec)
{
SpatialVectorType out;
transform(vec, out);
return out;
}
};
template<typename SpatialVectorType>
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
{
//output op maybe?
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
out.m_topLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
//maybe simple a*spatTranspose(a) would be nicer?
}
template<typename SpatialVectorType>
btSymmetricSpatialDyad symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b)
{
btSymmetricSpatialDyad out;
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
out.m_bottomLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
return out;
//maybe simple a*spatTranspose(a) would be nicer?
}
#endif //BT_SPATIAL_ALGEBRA_H
|