/usr/include/bullet/LinearMath/btMatrixX.h is in libbullet-dev 2.83.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | /*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///original version written by Erwin Coumans, October 2013
#ifndef BT_MATRIX_X_H
#define BT_MATRIX_X_H
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btAlignedObjectArray.h"
//#define BT_DEBUG_OSTREAM
#ifdef BT_DEBUG_OSTREAM
#include <iostream>
#include <iomanip> // std::setw
#endif //BT_DEBUG_OSTREAM
class btIntSortPredicate
{
public:
bool operator() ( const int& a, const int& b ) const
{
return a < b;
}
};
template <typename T>
struct btVectorX
{
btAlignedObjectArray<T> m_storage;
btVectorX()
{
}
btVectorX(int numRows)
{
m_storage.resize(numRows);
}
void resize(int rows)
{
m_storage.resize(rows);
}
int cols() const
{
return 1;
}
int rows() const
{
return m_storage.size();
}
int size() const
{
return rows();
}
T nrm2() const
{
T norm = T(0);
int nn = rows();
{
if (nn == 1)
{
norm = btFabs((*this)[0]);
}
else
{
T scale = 0.0;
T ssq = 1.0;
/* The following loop is equivalent to this call to the LAPACK
auxiliary routine: CALL SLASSQ( N, X, INCX, SCALE, SSQ ) */
for (int ix=0;ix<nn;ix++)
{
if ((*this)[ix] != 0.0)
{
T absxi = btFabs((*this)[ix]);
if (scale < absxi)
{
T temp;
temp = scale / absxi;
ssq = ssq * (temp * temp) + BT_ONE;
scale = absxi;
}
else
{
T temp;
temp = absxi / scale;
ssq += temp * temp;
}
}
}
norm = scale * sqrt(ssq);
}
}
return norm;
}
void setZero()
{
if (m_storage.size())
{
// for (int i=0;i<m_storage.size();i++)
// m_storage[i]=0;
//memset(&m_storage[0],0,sizeof(T)*m_storage.size());
btSetZero(&m_storage[0],m_storage.size());
}
}
const T& operator[] (int index) const
{
return m_storage[index];
}
T& operator[] (int index)
{
return m_storage[index];
}
T* getBufferPointerWritable()
{
return m_storage.size() ? &m_storage[0] : 0;
}
const T* getBufferPointer() const
{
return m_storage.size() ? &m_storage[0] : 0;
}
};
/*
template <typename T>
void setElem(btMatrixX<T>& mat, int row, int col, T val)
{
mat.setElem(row,col,val);
}
*/
template <typename T>
struct btMatrixX
{
int m_rows;
int m_cols;
int m_operations;
int m_resizeOperations;
int m_setElemOperations;
btAlignedObjectArray<T> m_storage;
mutable btAlignedObjectArray< btAlignedObjectArray<int> > m_rowNonZeroElements1;
T* getBufferPointerWritable()
{
return m_storage.size() ? &m_storage[0] : 0;
}
const T* getBufferPointer() const
{
return m_storage.size() ? &m_storage[0] : 0;
}
btMatrixX()
:m_rows(0),
m_cols(0),
m_operations(0),
m_resizeOperations(0),
m_setElemOperations(0)
{
}
btMatrixX(int rows,int cols)
:m_rows(rows),
m_cols(cols),
m_operations(0),
m_resizeOperations(0),
m_setElemOperations(0)
{
resize(rows,cols);
}
void resize(int rows, int cols)
{
m_resizeOperations++;
m_rows = rows;
m_cols = cols;
{
BT_PROFILE("m_storage.resize");
m_storage.resize(rows*cols);
}
}
int cols() const
{
return m_cols;
}
int rows() const
{
return m_rows;
}
///we don't want this read/write operator(), because we cannot keep track of non-zero elements, use setElem instead
/*T& operator() (int row,int col)
{
return m_storage[col*m_rows+row];
}
*/
void addElem(int row,int col, T val)
{
if (val)
{
if (m_storage[col+row*m_cols]==0.f)
{
setElem(row,col,val);
} else
{
m_storage[row*m_cols+col] += val;
}
}
}
void setElem(int row,int col, T val)
{
m_setElemOperations++;
m_storage[row*m_cols+col] = val;
}
void mulElem(int row,int col, T val)
{
m_setElemOperations++;
//mul doesn't change sparsity info
m_storage[row*m_cols+col] *= val;
}
void copyLowerToUpperTriangle()
{
int count=0;
for (int row=0;row<rows();row++)
{
for (int col=0;col<row;col++)
{
setElem(col,row, (*this)(row,col));
count++;
}
}
//printf("copyLowerToUpperTriangle copied %d elements out of %dx%d=%d\n", count,rows(),cols(),cols()*rows());
}
const T& operator() (int row,int col) const
{
return m_storage[col+row*m_cols];
}
void setZero()
{
{
BT_PROFILE("storage=0");
btSetZero(&m_storage[0],m_storage.size());
//memset(&m_storage[0],0,sizeof(T)*m_storage.size());
//for (int i=0;i<m_storage.size();i++)
// m_storage[i]=0;
}
}
void setIdentity()
{
btAssert(rows() == cols());
setZero();
for (int row=0;row<rows();row++)
{
setElem(row,row,1);
}
}
void printMatrix(const char* msg)
{
printf("%s ---------------------\n",msg);
for (int i=0;i<rows();i++)
{
printf("\n");
for (int j=0;j<cols();j++)
{
printf("%2.1f\t",(*this)(i,j));
}
}
printf("\n---------------------\n");
}
void rowComputeNonZeroElements() const
{
m_rowNonZeroElements1.resize(rows());
for (int i=0;i<rows();i++)
{
m_rowNonZeroElements1[i].resize(0);
for (int j=0;j<cols();j++)
{
if ((*this)(i,j)!=0.f)
{
m_rowNonZeroElements1[i].push_back(j);
}
}
}
}
btMatrixX transpose() const
{
//transpose is optimized for sparse matrices
btMatrixX tr(m_cols,m_rows);
tr.setZero();
for (int i=0;i<m_cols;i++)
for (int j=0;j<m_rows;j++)
{
T v = (*this)(j,i);
if (v)
{
tr.setElem(i,j,v);
}
}
return tr;
}
btMatrixX operator*(const btMatrixX& other)
{
//btMatrixX*btMatrixX implementation, brute force
btAssert(cols() == other.rows());
btMatrixX res(rows(),other.cols());
res.setZero();
// BT_PROFILE("btMatrixX mul");
for (int j=0; j < res.cols(); ++j)
{
{
for (int i=0; i < res.rows(); ++i)
{
T dotProd=0;
// T dotProd2=0;
//int waste=0,waste2=0;
{
// bool useOtherCol = true;
{
for (int v=0;v<rows();v++)
{
T w = (*this)(i,v);
if (other(v,j)!=0.f)
{
dotProd+=w*other(v,j);
}
}
}
}
if (dotProd)
res.setElem(i,j,dotProd);
}
}
}
return res;
}
// this assumes the 4th and 8th rows of B and C are zero.
void multiplyAdd2_p8r (const btScalar *B, const btScalar *C, int numRows, int numRowsOther ,int row, int col)
{
const btScalar *bb = B;
for ( int i = 0;i<numRows;i++)
{
const btScalar *cc = C;
for ( int j = 0;j<numRowsOther;j++)
{
btScalar sum;
sum = bb[0]*cc[0];
sum += bb[1]*cc[1];
sum += bb[2]*cc[2];
sum += bb[4]*cc[4];
sum += bb[5]*cc[5];
sum += bb[6]*cc[6];
addElem(row+i,col+j,sum);
cc += 8;
}
bb += 8;
}
}
void multiply2_p8r (const btScalar *B, const btScalar *C, int numRows, int numRowsOther, int row, int col)
{
btAssert (numRows>0 && numRowsOther>0 && B && C);
const btScalar *bb = B;
for ( int i = 0;i<numRows;i++)
{
const btScalar *cc = C;
for ( int j = 0;j<numRowsOther;j++)
{
btScalar sum;
sum = bb[0]*cc[0];
sum += bb[1]*cc[1];
sum += bb[2]*cc[2];
sum += bb[4]*cc[4];
sum += bb[5]*cc[5];
sum += bb[6]*cc[6];
setElem(row+i,col+j,sum);
cc += 8;
}
bb += 8;
}
}
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const T value)
{
int numRows = rowend+1-rowstart;
int numCols = colend+1-colstart;
for (int row=0;row<numRows;row++)
{
for (int col=0;col<numCols;col++)
{
setElem(rowstart+row,colstart+col,value);
}
}
}
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const btMatrixX& block)
{
btAssert(rowend+1-rowstart == block.rows());
btAssert(colend+1-colstart == block.cols());
for (int row=0;row<block.rows();row++)
{
for (int col=0;col<block.cols();col++)
{
setElem(rowstart+row,colstart+col,block(row,col));
}
}
}
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const btVectorX<T>& block)
{
btAssert(rowend+1-rowstart == block.rows());
btAssert(colend+1-colstart == block.cols());
for (int row=0;row<block.rows();row++)
{
for (int col=0;col<block.cols();col++)
{
setElem(rowstart+row,colstart+col,block[row]);
}
}
}
btMatrixX negative()
{
btMatrixX neg(rows(),cols());
for (int i=0;i<rows();i++)
for (int j=0;j<cols();j++)
{
T v = (*this)(i,j);
neg.setElem(i,j,-v);
}
return neg;
}
};
typedef btMatrixX<float> btMatrixXf;
typedef btVectorX<float> btVectorXf;
typedef btMatrixX<double> btMatrixXd;
typedef btVectorX<double> btVectorXd;
#ifdef BT_DEBUG_OSTREAM
template <typename T>
std::ostream& operator<< (std::ostream& os, const btMatrixX<T>& mat)
{
os << " [";
//printf("%s ---------------------\n",msg);
for (int i=0;i<mat.rows();i++)
{
for (int j=0;j<mat.cols();j++)
{
os << std::setw(12) << mat(i,j);
}
if (i!=mat.rows()-1)
os << std::endl << " ";
}
os << " ]";
//printf("\n---------------------\n");
return os;
}
template <typename T>
std::ostream& operator<< (std::ostream& os, const btVectorX<T>& mat)
{
os << " [";
//printf("%s ---------------------\n",msg);
for (int i=0;i<mat.rows();i++)
{
os << std::setw(12) << mat[i];
if (i!=mat.rows()-1)
os << std::endl << " ";
}
os << " ]";
//printf("\n---------------------\n");
return os;
}
#endif //BT_DEBUG_OSTREAM
inline void setElem(btMatrixXd& mat, int row, int col, double val)
{
mat.setElem(row,col,val);
}
inline void setElem(btMatrixXf& mat, int row, int col, float val)
{
mat.setElem(row,col,val);
}
#ifdef BT_USE_DOUBLE_PRECISION
#define btVectorXu btVectorXd
#define btMatrixXu btMatrixXd
#else
#define btVectorXu btVectorXf
#define btMatrixXu btMatrixXf
#endif //BT_USE_DOUBLE_PRECISION
#endif//BT_MATRIX_H_H
|