/usr/include/bullet/LinearMath/btMatrix3x3.h is in libbullet-dev 2.83.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 | /*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_MATRIX3x3_H
#define BT_MATRIX3x3_H
#include "btVector3.h"
#include "btQuaternion.h"
#include <stdio.h>
#ifdef BT_USE_SSE
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
#define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
#endif
#if defined(BT_USE_SSE)
#define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
#define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
#define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
#elif defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
#endif
#ifdef BT_USE_DOUBLE_PRECISION
#define btMatrix3x3Data btMatrix3x3DoubleData
#else
#define btMatrix3x3Data btMatrix3x3FloatData
#endif //BT_USE_DOUBLE_PRECISION
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
* Make sure to only include a pure orthogonal matrix without scaling. */
ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {
///Data storage for the matrix, each vector is a row of the matrix
btVector3 m_el[3];
public:
/** @brief No initializaion constructor */
btMatrix3x3 () {}
// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
/**@brief Constructor from Quaternion */
explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
/*
template <typename btScalar>
Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
setEulerYPR(yaw, pitch, roll);
}
*/
/** @brief Constructor with row major formatting */
btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
const btScalar& yx, const btScalar& yy, const btScalar& yz,
const btScalar& zx, const btScalar& zy, const btScalar& zz)
{
setValue(xx, xy, xz,
yx, yy, yz,
zx, zy, zz);
}
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 )
{
m_el[0].mVec128 = v0;
m_el[1].mVec128 = v1;
m_el[2].mVec128 = v2;
}
SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 )
{
m_el[0] = v0;
m_el[1] = v1;
m_el[2] = v2;
}
// Copy constructor
SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
{
m_el[0].mVec128 = rhs.m_el[0].mVec128;
m_el[1].mVec128 = rhs.m_el[1].mVec128;
m_el[2].mVec128 = rhs.m_el[2].mVec128;
}
// Assignment Operator
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
{
m_el[0].mVec128 = m.m_el[0].mVec128;
m_el[1].mVec128 = m.m_el[1].mVec128;
m_el[2].mVec128 = m.m_el[2].mVec128;
return *this;
}
#else
/** @brief Copy constructor */
SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
{
m_el[0] = other.m_el[0];
m_el[1] = other.m_el[1];
m_el[2] = other.m_el[2];
}
/** @brief Assignment Operator */
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
{
m_el[0] = other.m_el[0];
m_el[1] = other.m_el[1];
m_el[2] = other.m_el[2];
return *this;
}
#endif
/** @brief Get a column of the matrix as a vector
* @param i Column number 0 indexed */
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
{
return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
}
/** @brief Get a row of the matrix as a vector
* @param i Row number 0 indexed */
SIMD_FORCE_INLINE const btVector3& getRow(int i) const
{
btFullAssert(0 <= i && i < 3);
return m_el[i];
}
/** @brief Get a mutable reference to a row of the matrix as a vector
* @param i Row number 0 indexed */
SIMD_FORCE_INLINE btVector3& operator[](int i)
{
btFullAssert(0 <= i && i < 3);
return m_el[i];
}
/** @brief Get a const reference to a row of the matrix as a vector
* @param i Row number 0 indexed */
SIMD_FORCE_INLINE const btVector3& operator[](int i) const
{
btFullAssert(0 <= i && i < 3);
return m_el[i];
}
/** @brief Multiply by the target matrix on the right
* @param m Rotation matrix to be applied
* Equivilant to this = this * m */
btMatrix3x3& operator*=(const btMatrix3x3& m);
/** @brief Adds by the target matrix on the right
* @param m matrix to be applied
* Equivilant to this = this + m */
btMatrix3x3& operator+=(const btMatrix3x3& m);
/** @brief Substractss by the target matrix on the right
* @param m matrix to be applied
* Equivilant to this = this - m */
btMatrix3x3& operator-=(const btMatrix3x3& m);
/** @brief Set from the rotational part of a 4x4 OpenGL matrix
* @param m A pointer to the beginning of the array of scalars*/
void setFromOpenGLSubMatrix(const btScalar *m)
{
m_el[0].setValue(m[0],m[4],m[8]);
m_el[1].setValue(m[1],m[5],m[9]);
m_el[2].setValue(m[2],m[6],m[10]);
}
/** @brief Set the values of the matrix explicitly (row major)
* @param xx Top left
* @param xy Top Middle
* @param xz Top Right
* @param yx Middle Left
* @param yy Middle Middle
* @param yz Middle Right
* @param zx Bottom Left
* @param zy Bottom Middle
* @param zz Bottom Right*/
void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
const btScalar& yx, const btScalar& yy, const btScalar& yz,
const btScalar& zx, const btScalar& zy, const btScalar& zz)
{
m_el[0].setValue(xx,xy,xz);
m_el[1].setValue(yx,yy,yz);
m_el[2].setValue(zx,zy,zz);
}
/** @brief Set the matrix from a quaternion
* @param q The Quaternion to match */
void setRotation(const btQuaternion& q)
{
btScalar d = q.length2();
btFullAssert(d != btScalar(0.0));
btScalar s = btScalar(2.0) / d;
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vs, Q = q.get128();
__m128i Qi = btCastfTo128i(Q);
__m128 Y, Z;
__m128 V1, V2, V3;
__m128 V11, V21, V31;
__m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
__m128i NQi = btCastfTo128i(NQ);
V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3))); // Y X Z W
V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3)); // -X -X Y W
V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3))); // Z Y X W
V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
V11 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3))); // Y Y X W
V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3)); // X Z -X -W
V2 = V2 * V1; //
V1 = V1 * V11; //
V3 = V3 * V31; //
V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3)); // -Z -W Y W
V11 = V11 * V21; //
V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3)); // W W -Y -W
V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3))); // -W -Z -X -W
Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3))); // Y X Y W
vs = _mm_load_ss(&s);
V21 = V21 * Y;
V31 = V31 * Z;
V1 = V1 + V11;
V2 = V2 + V21;
V3 = V3 + V31;
vs = bt_splat3_ps(vs, 0);
// s ready
V1 = V1 * vs;
V2 = V2 * vs;
V3 = V3 * vs;
V1 = V1 + v1000;
V2 = V2 + v0100;
V3 = V3 + v0010;
m_el[0] = V1;
m_el[1] = V2;
m_el[2] = V3;
#else
btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
setValue(
btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
#endif
}
/** @brief Set the matrix from euler angles using YPR around YXZ respectively
* @param yaw Yaw about Y axis
* @param pitch Pitch about X axis
* @param roll Roll about Z axis
*/
void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
setEulerZYX(roll, pitch, yaw);
}
/** @brief Set the matrix from euler angles YPR around ZYX axes
* @param eulerX Roll about X axis
* @param eulerY Pitch around Y axis
* @param eulerZ Yaw aboud Z axis
*
* These angles are used to produce a rotation matrix. The euler
* angles are applied in ZYX order. I.e a vector is first rotated
* about X then Y and then Z
**/
void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
btScalar ci ( btCos(eulerX));
btScalar cj ( btCos(eulerY));
btScalar ch ( btCos(eulerZ));
btScalar si ( btSin(eulerX));
btScalar sj ( btSin(eulerY));
btScalar sh ( btSin(eulerZ));
btScalar cc = ci * ch;
btScalar cs = ci * sh;
btScalar sc = si * ch;
btScalar ss = si * sh;
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
cj * sh, sj * ss + cc, sj * cs - sc,
-sj, cj * si, cj * ci);
}
/**@brief Set the matrix to the identity */
void setIdentity()
{
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
m_el[0] = v1000;
m_el[1] = v0100;
m_el[2] = v0010;
#else
setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
btScalar(0.0), btScalar(1.0), btScalar(0.0),
btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
}
static const btMatrix3x3& getIdentity()
{
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
static const btMatrix3x3
identityMatrix(v1000, v0100, v0010);
#else
static const btMatrix3x3
identityMatrix(
btScalar(1.0), btScalar(0.0), btScalar(0.0),
btScalar(0.0), btScalar(1.0), btScalar(0.0),
btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
return identityMatrix;
}
/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
* @param m The array to be filled */
void getOpenGLSubMatrix(btScalar *m) const
{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 v0 = m_el[0].mVec128;
__m128 v1 = m_el[1].mVec128;
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
__m128 *vm = (__m128 *)m;
__m128 vT;
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
vm[0] = v0;
vm[1] = v1;
vm[2] = v2;
#elif defined(BT_USE_NEON)
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
float32x4_t *vm = (float32x4_t *)m;
float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
vm[0] = v0;
vm[1] = v1;
vm[2] = v2;
#else
m[0] = btScalar(m_el[0].x());
m[1] = btScalar(m_el[1].x());
m[2] = btScalar(m_el[2].x());
m[3] = btScalar(0.0);
m[4] = btScalar(m_el[0].y());
m[5] = btScalar(m_el[1].y());
m[6] = btScalar(m_el[2].y());
m[7] = btScalar(0.0);
m[8] = btScalar(m_el[0].z());
m[9] = btScalar(m_el[1].z());
m[10] = btScalar(m_el[2].z());
m[11] = btScalar(0.0);
#endif
}
/**@brief Get the matrix represented as a quaternion
* @param q The quaternion which will be set */
void getRotation(btQuaternion& q) const
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
btScalar s, x;
union {
btSimdFloat4 vec;
btScalar f[4];
} temp;
if (trace > btScalar(0.0))
{
x = trace + btScalar(1.0);
temp.f[0]=m_el[2].y() - m_el[1].z();
temp.f[1]=m_el[0].z() - m_el[2].x();
temp.f[2]=m_el[1].x() - m_el[0].y();
temp.f[3]=x;
//temp.f[3]= s * btScalar(0.5);
}
else
{
int i, j, k;
if(m_el[0].x() < m_el[1].y())
{
if( m_el[1].y() < m_el[2].z() )
{ i = 2; j = 0; k = 1; }
else
{ i = 1; j = 2; k = 0; }
}
else
{
if( m_el[0].x() < m_el[2].z())
{ i = 2; j = 0; k = 1; }
else
{ i = 0; j = 1; k = 2; }
}
x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
temp.f[3] = (m_el[k][j] - m_el[j][k]);
temp.f[j] = (m_el[j][i] + m_el[i][j]);
temp.f[k] = (m_el[k][i] + m_el[i][k]);
temp.f[i] = x;
//temp.f[i] = s * btScalar(0.5);
}
s = btSqrt(x);
q.set128(temp.vec);
s = btScalar(0.5) / s;
q *= s;
#else
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
btScalar temp[4];
if (trace > btScalar(0.0))
{
btScalar s = btSqrt(trace + btScalar(1.0));
temp[3]=(s * btScalar(0.5));
s = btScalar(0.5) / s;
temp[0]=((m_el[2].y() - m_el[1].z()) * s);
temp[1]=((m_el[0].z() - m_el[2].x()) * s);
temp[2]=((m_el[1].x() - m_el[0].y()) * s);
}
else
{
int i = m_el[0].x() < m_el[1].y() ?
(m_el[1].y() < m_el[2].z() ? 2 : 1) :
(m_el[0].x() < m_el[2].z() ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
temp[i] = s * btScalar(0.5);
s = btScalar(0.5) / s;
temp[3] = (m_el[k][j] - m_el[j][k]) * s;
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
}
q.setValue(temp[0],temp[1],temp[2],temp[3]);
#endif
}
/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
* @param yaw Yaw around Y axis
* @param pitch Pitch around X axis
* @param roll around Z axis */
void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
{
// first use the normal calculus
yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
pitch = btScalar(btAsin(-m_el[2].x()));
roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
// on pitch = +/-HalfPI
if (btFabs(pitch)==SIMD_HALF_PI)
{
if (yaw>0)
yaw-=SIMD_PI;
else
yaw+=SIMD_PI;
if (roll>0)
roll-=SIMD_PI;
else
roll+=SIMD_PI;
}
};
/**@brief Get the matrix represented as euler angles around ZYX
* @param yaw Yaw around X axis
* @param pitch Pitch around Y axis
* @param roll around X axis
* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
{
struct Euler
{
btScalar yaw;
btScalar pitch;
btScalar roll;
};
Euler euler_out;
Euler euler_out2; //second solution
//get the pointer to the raw data
// Check that pitch is not at a singularity
if (btFabs(m_el[2].x()) >= 1)
{
euler_out.yaw = 0;
euler_out2.yaw = 0;
// From difference of angles formula
btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
if (m_el[2].x() > 0) //gimbal locked up
{
euler_out.pitch = SIMD_PI / btScalar(2.0);
euler_out2.pitch = SIMD_PI / btScalar(2.0);
euler_out.roll = euler_out.pitch + delta;
euler_out2.roll = euler_out.pitch + delta;
}
else // gimbal locked down
{
euler_out.pitch = -SIMD_PI / btScalar(2.0);
euler_out2.pitch = -SIMD_PI / btScalar(2.0);
euler_out.roll = -euler_out.pitch + delta;
euler_out2.roll = -euler_out.pitch + delta;
}
}
else
{
euler_out.pitch = - btAsin(m_el[2].x());
euler_out2.pitch = SIMD_PI - euler_out.pitch;
euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
m_el[2].z()/btCos(euler_out.pitch));
euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
m_el[2].z()/btCos(euler_out2.pitch));
euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
m_el[0].x()/btCos(euler_out.pitch));
euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
m_el[0].x()/btCos(euler_out2.pitch));
}
if (solution_number == 1)
{
yaw = euler_out.yaw;
pitch = euler_out.pitch;
roll = euler_out.roll;
}
else
{
yaw = euler_out2.yaw;
pitch = euler_out2.pitch;
roll = euler_out2.roll;
}
}
/**@brief Create a scaled copy of the matrix
* @param s Scaling vector The elements of the vector will scale each column */
btMatrix3x3 scaled(const btVector3& s) const
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
#else
return btMatrix3x3(
m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
#endif
}
/**@brief Return the determinant of the matrix */
btScalar determinant() const;
/**@brief Return the adjoint of the matrix */
btMatrix3x3 adjoint() const;
/**@brief Return the matrix with all values non negative */
btMatrix3x3 absolute() const;
/**@brief Return the transpose of the matrix */
btMatrix3x3 transpose() const;
/**@brief Return the inverse of the matrix */
btMatrix3x3 inverse() const;
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
///Solve33 is from Box2d, thanks to Erin Catto,
btVector3 solve33(const btVector3& b) const
{
btVector3 col1 = getColumn(0);
btVector3 col2 = getColumn(1);
btVector3 col3 = getColumn(2);
btScalar det = btDot(col1, btCross(col2, col3));
if (btFabs(det)>SIMD_EPSILON)
{
det = 1.0f / det;
}
btVector3 x;
x[0] = det * btDot(b, btCross(col2, col3));
x[1] = det * btDot(col1, btCross(b, col3));
x[2] = det * btDot(col1, btCross(col2, b));
return x;
}
btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
{
return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
}
SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
{
return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
}
SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
{
return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
}
/**@brief diagonalizes this matrix by the Jacobi method.
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
* coordinate system, i.e., old_this = rot * new_this * rot^T.
* @param threshold See iteration
* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
* by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
*
* Note that this matrix is assumed to be symmetric.
*/
void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
{
rot.setIdentity();
for (int step = maxSteps; step > 0; step--)
{
// find off-diagonal element [p][q] with largest magnitude
int p = 0;
int q = 1;
int r = 2;
btScalar max = btFabs(m_el[0][1]);
btScalar v = btFabs(m_el[0][2]);
if (v > max)
{
q = 2;
r = 1;
max = v;
}
v = btFabs(m_el[1][2]);
if (v > max)
{
p = 1;
q = 2;
r = 0;
max = v;
}
btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
if (max <= t)
{
if (max <= SIMD_EPSILON * t)
{
return;
}
step = 1;
}
// compute Jacobi rotation J which leads to a zero for element [p][q]
btScalar mpq = m_el[p][q];
btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
btScalar theta2 = theta * theta;
btScalar cos;
btScalar sin;
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
{
t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
: 1 / (theta - btSqrt(1 + theta2));
cos = 1 / btSqrt(1 + t * t);
sin = cos * t;
}
else
{
// approximation for large theta-value, i.e., a nearly diagonal matrix
t = 1 / (theta * (2 + btScalar(0.5) / theta2));
cos = 1 - btScalar(0.5) * t * t;
sin = cos * t;
}
// apply rotation to matrix (this = J^T * this * J)
m_el[p][q] = m_el[q][p] = 0;
m_el[p][p] -= t * mpq;
m_el[q][q] += t * mpq;
btScalar mrp = m_el[r][p];
btScalar mrq = m_el[r][q];
m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
// apply rotation to rot (rot = rot * J)
for (int i = 0; i < 3; i++)
{
btVector3& row = rot[i];
mrp = row[p];
mrq = row[q];
row[p] = cos * mrp - sin * mrq;
row[q] = cos * mrq + sin * mrp;
}
}
}
/**@brief Calculate the matrix cofactor
* @param r1 The first row to use for calculating the cofactor
* @param c1 The first column to use for calculating the cofactor
* @param r1 The second row to use for calculating the cofactor
* @param c1 The second column to use for calculating the cofactor
* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
*/
btScalar cofac(int r1, int c1, int r2, int c2) const
{
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
void serialize(struct btMatrix3x3Data& dataOut) const;
void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
void deSerialize(const struct btMatrix3x3Data& dataIn);
void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
};
SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator*=(const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 rv00, rv01, rv02;
__m128 rv10, rv11, rv12;
__m128 rv20, rv21, rv22;
__m128 mv0, mv1, mv2;
rv02 = m_el[0].mVec128;
rv12 = m_el[1].mVec128;
rv22 = m_el[2].mVec128;
mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
// rv0
rv00 = bt_splat_ps(rv02, 0);
rv01 = bt_splat_ps(rv02, 1);
rv02 = bt_splat_ps(rv02, 2);
rv00 = _mm_mul_ps(rv00, mv0);
rv01 = _mm_mul_ps(rv01, mv1);
rv02 = _mm_mul_ps(rv02, mv2);
// rv1
rv10 = bt_splat_ps(rv12, 0);
rv11 = bt_splat_ps(rv12, 1);
rv12 = bt_splat_ps(rv12, 2);
rv10 = _mm_mul_ps(rv10, mv0);
rv11 = _mm_mul_ps(rv11, mv1);
rv12 = _mm_mul_ps(rv12, mv2);
// rv2
rv20 = bt_splat_ps(rv22, 0);
rv21 = bt_splat_ps(rv22, 1);
rv22 = bt_splat_ps(rv22, 2);
rv20 = _mm_mul_ps(rv20, mv0);
rv21 = _mm_mul_ps(rv21, mv1);
rv22 = _mm_mul_ps(rv22, mv2);
rv00 = _mm_add_ps(rv00, rv01);
rv10 = _mm_add_ps(rv10, rv11);
rv20 = _mm_add_ps(rv20, rv21);
m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
#elif defined(BT_USE_NEON)
float32x4_t rv0, rv1, rv2;
float32x4_t v0, v1, v2;
float32x4_t mv0, mv1, mv2;
v0 = m_el[0].mVec128;
v1 = m_el[1].mVec128;
v2 = m_el[2].mVec128;
mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
m_el[0].mVec128 = rv0;
m_el[1].mVec128 = rv1;
m_el[2].mVec128 = rv2;
#else
setValue(
m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
#endif
return *this;
}
SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator+=(const btMatrix3x3& m)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
#else
setValue(
m_el[0][0]+m.m_el[0][0],
m_el[0][1]+m.m_el[0][1],
m_el[0][2]+m.m_el[0][2],
m_el[1][0]+m.m_el[1][0],
m_el[1][1]+m.m_el[1][1],
m_el[1][2]+m.m_el[1][2],
m_el[2][0]+m.m_el[2][0],
m_el[2][1]+m.m_el[2][1],
m_el[2][2]+m.m_el[2][2]);
#endif
return *this;
}
SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m, const btScalar & k)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
__m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
return btMatrix3x3(
_mm_mul_ps(m[0].mVec128, vk),
_mm_mul_ps(m[1].mVec128, vk),
_mm_mul_ps(m[2].mVec128, vk));
#elif defined(BT_USE_NEON)
return btMatrix3x3(
vmulq_n_f32(m[0].mVec128, k),
vmulq_n_f32(m[1].mVec128, k),
vmulq_n_f32(m[2].mVec128, k));
#else
return btMatrix3x3(
m[0].x()*k,m[0].y()*k,m[0].z()*k,
m[1].x()*k,m[1].y()*k,m[1].z()*k,
m[2].x()*k,m[2].y()*k,m[2].z()*k);
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
return btMatrix3x3(
m1[0].mVec128 + m2[0].mVec128,
m1[1].mVec128 + m2[1].mVec128,
m1[2].mVec128 + m2[2].mVec128);
#else
return btMatrix3x3(
m1[0][0]+m2[0][0],
m1[0][1]+m2[0][1],
m1[0][2]+m2[0][2],
m1[1][0]+m2[1][0],
m1[1][1]+m2[1][1],
m1[1][2]+m2[1][2],
m1[2][0]+m2[2][0],
m1[2][1]+m2[2][1],
m1[2][2]+m2[2][2]);
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
return btMatrix3x3(
m1[0].mVec128 - m2[0].mVec128,
m1[1].mVec128 - m2[1].mVec128,
m1[2].mVec128 - m2[2].mVec128);
#else
return btMatrix3x3(
m1[0][0]-m2[0][0],
m1[0][1]-m2[0][1],
m1[0][2]-m2[0][2],
m1[1][0]-m2[1][0],
m1[1][1]-m2[1][1],
m1[1][2]-m2[1][2],
m1[2][0]-m2[2][0],
m1[2][1]-m2[2][1],
m1[2][2]-m2[2][2]);
#endif
}
SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator-=(const btMatrix3x3& m)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
#else
setValue(
m_el[0][0]-m.m_el[0][0],
m_el[0][1]-m.m_el[0][1],
m_el[0][2]-m.m_el[0][2],
m_el[1][0]-m.m_el[1][0],
m_el[1][1]-m.m_el[1][1],
m_el[1][2]-m.m_el[1][2],
m_el[2][0]-m.m_el[2][0],
m_el[2][1]-m.m_el[2][1],
m_el[2][2]-m.m_el[2][2]);
#endif
return *this;
}
SIMD_FORCE_INLINE btScalar
btMatrix3x3::determinant() const
{
return btTriple((*this)[0], (*this)[1], (*this)[2]);
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::absolute() const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
return btMatrix3x3(
_mm_and_ps(m_el[0].mVec128, btvAbsfMask),
_mm_and_ps(m_el[1].mVec128, btvAbsfMask),
_mm_and_ps(m_el[2].mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
return btMatrix3x3(
(float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
(float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
(float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
#else
return btMatrix3x3(
btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::transpose() const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
__m128 v0 = m_el[0].mVec128;
__m128 v1 = m_el[1].mVec128;
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
__m128 vT;
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
return btMatrix3x3( v0, v1, v2 );
#elif defined(BT_USE_NEON)
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
return btMatrix3x3( v0, v1, v2 );
#else
return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
m_el[0].y(), m_el[1].y(), m_el[2].y(),
m_el[0].z(), m_el[1].z(), m_el[2].z());
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::adjoint() const
{
return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::inverse() const
{
btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
btScalar det = (*this)[0].dot(co);
btFullAssert(det != btScalar(0.0));
btScalar s = btScalar(1.0) / det;
return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
// zeros w
// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
__m128 row = m_el[0].mVec128;
__m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
__m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
__m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
__m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
__m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
__m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
row = m_el[1].mVec128;
r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
row = m_el[2].mVec128;
r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
return btMatrix3x3( r0, r1, r2 );
#elif defined BT_USE_NEON
// zeros w
static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
float32x4_t row = m_el[0].mVec128;
float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
row = m_el[1].mVec128;
r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
row = m_el[2].mVec128;
r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
return btMatrix3x3( r0, r1, r2 );
#else
return btMatrix3x3(
m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
__m128 a0 = m_el[0].mVec128;
__m128 a1 = m_el[1].mVec128;
__m128 a2 = m_el[2].mVec128;
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
__m128 mx = mT[0].mVec128;
__m128 my = mT[1].mVec128;
__m128 mz = mT[2].mVec128;
__m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
__m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
__m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
return btMatrix3x3( r0, r1, r2);
#elif defined BT_USE_NEON
float32x4_t a0 = m_el[0].mVec128;
float32x4_t a1 = m_el[1].mVec128;
float32x4_t a2 = m_el[2].mVec128;
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
float32x4_t mx = mT[0].mVec128;
float32x4_t my = mT[1].mVec128;
float32x4_t mz = mT[2].mVec128;
float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
return btMatrix3x3( r0, r1, r2 );
#else
return btMatrix3x3(
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
#endif
}
SIMD_FORCE_INLINE btVector3
operator*(const btMatrix3x3& m, const btVector3& v)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
return v.dot3(m[0], m[1], m[2]);
#else
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
#endif
}
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
const __m128 vv = v.mVec128;
__m128 c0 = bt_splat_ps( vv, 0);
__m128 c1 = bt_splat_ps( vv, 1);
__m128 c2 = bt_splat_ps( vv, 2);
c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
c0 = _mm_add_ps(c0, c1);
c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
return btVector3(_mm_add_ps(c0, c2));
#elif defined(BT_USE_NEON)
const float32x4_t vv = v.mVec128;
const float32x2_t vlo = vget_low_f32(vv);
const float32x2_t vhi = vget_high_f32(vv);
float32x4_t c0, c1, c2;
c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
c0 = vmulq_lane_f32(c0, vlo, 0);
c1 = vmulq_lane_f32(c1, vlo, 1);
c2 = vmulq_lane_f32(c2, vhi, 0);
c0 = vaddq_f32(c0, c1);
c0 = vaddq_f32(c0, c2);
return btVector3(c0);
#else
return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
#endif
}
SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
__m128 m10 = m1[0].mVec128;
__m128 m11 = m1[1].mVec128;
__m128 m12 = m1[2].mVec128;
__m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
__m128 c0 = bt_splat_ps( m10, 0);
__m128 c1 = bt_splat_ps( m11, 0);
__m128 c2 = bt_splat_ps( m12, 0);
c0 = _mm_mul_ps(c0, m2v);
c1 = _mm_mul_ps(c1, m2v);
c2 = _mm_mul_ps(c2, m2v);
m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
__m128 c0_1 = bt_splat_ps( m10, 1);
__m128 c1_1 = bt_splat_ps( m11, 1);
__m128 c2_1 = bt_splat_ps( m12, 1);
c0_1 = _mm_mul_ps(c0_1, m2v);
c1_1 = _mm_mul_ps(c1_1, m2v);
c2_1 = _mm_mul_ps(c2_1, m2v);
m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
c0 = _mm_add_ps(c0, c0_1);
c1 = _mm_add_ps(c1, c1_1);
c2 = _mm_add_ps(c2, c2_1);
m10 = bt_splat_ps( m10, 2);
m11 = bt_splat_ps( m11, 2);
m12 = bt_splat_ps( m12, 2);
m10 = _mm_mul_ps(m10, m2v);
m11 = _mm_mul_ps(m11, m2v);
m12 = _mm_mul_ps(m12, m2v);
c0 = _mm_add_ps(c0, m10);
c1 = _mm_add_ps(c1, m11);
c2 = _mm_add_ps(c2, m12);
return btMatrix3x3(c0, c1, c2);
#elif defined(BT_USE_NEON)
float32x4_t rv0, rv1, rv2;
float32x4_t v0, v1, v2;
float32x4_t mv0, mv1, mv2;
v0 = m1[0].mVec128;
v1 = m1[1].mVec128;
v2 = m1[2].mVec128;
mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
return btMatrix3x3(rv0, rv1, rv2);
#else
return btMatrix3x3(
m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
#endif
}
/*
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
return btMatrix3x3(
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
}
*/
/**@brief Equality operator between two matrices
* It will test all elements are equal. */
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
__m128 c0, c1, c2;
c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
c0 = _mm_and_ps(c0, c1);
c0 = _mm_and_ps(c0, c2);
return (0x7 == _mm_movemask_ps((__m128)c0));
#else
return
( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
#endif
}
///for serialization
struct btMatrix3x3FloatData
{
btVector3FloatData m_el[3];
};
///for serialization
struct btMatrix3x3DoubleData
{
btVector3DoubleData m_el[3];
};
SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
{
for (int i=0;i<3;i++)
m_el[i].serialize(dataOut.m_el[i]);
}
SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
{
for (int i=0;i<3;i++)
m_el[i].serializeFloat(dataOut.m_el[i]);
}
SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
{
for (int i=0;i<3;i++)
m_el[i].deSerialize(dataIn.m_el[i]);
}
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
{
for (int i=0;i<3;i++)
m_el[i].deSerializeFloat(dataIn.m_el[i]);
}
SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
{
for (int i=0;i<3;i++)
m_el[i].deSerializeDouble(dataIn.m_el[i]);
}
#endif //BT_MATRIX3x3_H
|