This file is indexed.

/usr/include/bullet/LinearMath/btMatrix3x3.h is in libbullet-dev 2.83.6+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#ifndef	BT_MATRIX3x3_H
#define BT_MATRIX3x3_H

#include "btVector3.h"
#include "btQuaternion.h"
#include <stdio.h>

#ifdef BT_USE_SSE
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
#define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
#endif

#if defined(BT_USE_SSE)
#define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
#define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
#define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
#elif defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
#endif

#ifdef BT_USE_DOUBLE_PRECISION
#define btMatrix3x3Data	btMatrix3x3DoubleData 
#else
#define btMatrix3x3Data	btMatrix3x3FloatData
#endif //BT_USE_DOUBLE_PRECISION


/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
* Make sure to only include a pure orthogonal matrix without scaling. */
ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {

	///Data storage for the matrix, each vector is a row of the matrix
	btVector3 m_el[3];

public:
	/** @brief No initializaion constructor */
	btMatrix3x3 () {}

	//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }

	/**@brief Constructor from Quaternion */
	explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
	/*
	template <typename btScalar>
	Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{ 
	setEulerYPR(yaw, pitch, roll);
	}
	*/
	/** @brief Constructor with row major formatting */
	btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
		const btScalar& yx, const btScalar& yy, const btScalar& yz,
		const btScalar& zx, const btScalar& zy, const btScalar& zz)
	{ 
		setValue(xx, xy, xz, 
			yx, yy, yz, 
			zx, zy, zz);
	}

#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
	SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 ) 
	{
        m_el[0].mVec128 = v0;
        m_el[1].mVec128 = v1;
        m_el[2].mVec128 = v2;
	}

	SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 ) 
	{
        m_el[0] = v0;
        m_el[1] = v1;
        m_el[2] = v2;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
	{
		m_el[0].mVec128 = rhs.m_el[0].mVec128;
		m_el[1].mVec128 = rhs.m_el[1].mVec128;
		m_el[2].mVec128 = rhs.m_el[2].mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m) 
	{
		m_el[0].mVec128 = m.m_el[0].mVec128;
		m_el[1].mVec128 = m.m_el[1].mVec128;
		m_el[2].mVec128 = m.m_el[2].mVec128;
		
		return *this;
	}

#else

	/** @brief Copy constructor */
	SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
	{
		m_el[0] = other.m_el[0];
		m_el[1] = other.m_el[1];
		m_el[2] = other.m_el[2];
	}
    
	/** @brief Assignment Operator */
	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
	{
		m_el[0] = other.m_el[0];
		m_el[1] = other.m_el[1];
		m_el[2] = other.m_el[2];
		return *this;
	}

#endif

	/** @brief Get a column of the matrix as a vector 
	*  @param i Column number 0 indexed */
	SIMD_FORCE_INLINE btVector3 getColumn(int i) const
	{
		return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
	}


	/** @brief Get a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE const btVector3& getRow(int i) const
	{
		btFullAssert(0 <= i && i < 3);
		return m_el[i];
	}

	/** @brief Get a mutable reference to a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE btVector3&  operator[](int i)
	{ 
		btFullAssert(0 <= i && i < 3);
		return m_el[i]; 
	}

	/** @brief Get a const reference to a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE const btVector3& operator[](int i) const
	{
		btFullAssert(0 <= i && i < 3);
		return m_el[i]; 
	}

	/** @brief Multiply by the target matrix on the right
	*  @param m Rotation matrix to be applied 
	* Equivilant to this = this * m */
	btMatrix3x3& operator*=(const btMatrix3x3& m); 

	/** @brief Adds by the target matrix on the right
	*  @param m matrix to be applied 
	* Equivilant to this = this + m */
	btMatrix3x3& operator+=(const btMatrix3x3& m); 

	/** @brief Substractss by the target matrix on the right
	*  @param m matrix to be applied 
	* Equivilant to this = this - m */
	btMatrix3x3& operator-=(const btMatrix3x3& m); 

	/** @brief Set from the rotational part of a 4x4 OpenGL matrix
	*  @param m A pointer to the beginning of the array of scalars*/
	void setFromOpenGLSubMatrix(const btScalar *m)
	{
		m_el[0].setValue(m[0],m[4],m[8]);
		m_el[1].setValue(m[1],m[5],m[9]);
		m_el[2].setValue(m[2],m[6],m[10]);

	}
	/** @brief Set the values of the matrix explicitly (row major)
	*  @param xx Top left
	*  @param xy Top Middle
	*  @param xz Top Right
	*  @param yx Middle Left
	*  @param yy Middle Middle
	*  @param yz Middle Right
	*  @param zx Bottom Left
	*  @param zy Bottom Middle
	*  @param zz Bottom Right*/
	void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, 
		const btScalar& yx, const btScalar& yy, const btScalar& yz, 
		const btScalar& zx, const btScalar& zy, const btScalar& zz)
	{
		m_el[0].setValue(xx,xy,xz);
		m_el[1].setValue(yx,yy,yz);
		m_el[2].setValue(zx,zy,zz);
	}

	/** @brief Set the matrix from a quaternion
	*  @param q The Quaternion to match */  
	void setRotation(const btQuaternion& q) 
	{
		btScalar d = q.length2();
		btFullAssert(d != btScalar(0.0));
		btScalar s = btScalar(2.0) / d;
    
    #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
        __m128	vs, Q = q.get128();
		__m128i Qi = btCastfTo128i(Q);
        __m128	Y, Z;
        __m128	V1, V2, V3;
        __m128	V11, V21, V31;
        __m128	NQ = _mm_xor_ps(Q, btvMzeroMask);
		__m128i NQi = btCastfTo128i(NQ);
        
        V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3)));	// Y X Z W
		V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3));     // -X -X  Y  W
        V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3)));	// Z Y X W
        V1 = _mm_xor_ps(V1, vMPPP);	//	change the sign of the first element
			
        V11	= btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3)));	// Y Y X W
		V21 = _mm_unpackhi_ps(Q, Q);                    //  Z  Z  W  W
		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3));	//  X  Z -X -W

		V2 = V2 * V1;	//
		V1 = V1 * V11;	//
		V3 = V3 * V31;	//

        V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3));	//	-Z -W  Y  W
		V11 = V11 * V21;	//
        V21 = _mm_xor_ps(V21, vMPPP);	//	change the sign of the first element
		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3));	//	 W  W -Y -W
        V31 = _mm_xor_ps(V31, vMPPP);	//	change the sign of the first element
		Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3)));	// -W -Z -X -W
		Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3)));	//  Y  X  Y  W

		vs = _mm_load_ss(&s);
		V21 = V21 * Y;
		V31 = V31 * Z;

		V1 = V1 + V11;
        V2 = V2 + V21;
        V3 = V3 + V31;

        vs = bt_splat3_ps(vs, 0);
            //	s ready
        V1 = V1 * vs;
        V2 = V2 * vs;
        V3 = V3 * vs;
        
        V1 = V1 + v1000;
        V2 = V2 + v0100;
        V3 = V3 + v0010;
        
        m_el[0] = V1; 
        m_el[1] = V2;
        m_el[2] = V3;
    #else    
		btScalar xs = q.x() * s,   ys = q.y() * s,   zs = q.z() * s;
		btScalar wx = q.w() * xs,  wy = q.w() * ys,  wz = q.w() * zs;
		btScalar xx = q.x() * xs,  xy = q.x() * ys,  xz = q.x() * zs;
		btScalar yy = q.y() * ys,  yz = q.y() * zs,  zz = q.z() * zs;
		setValue(
            btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
			xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
			xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
	#endif
    }


	/** @brief Set the matrix from euler angles using YPR around YXZ respectively
	*  @param yaw Yaw about Y axis
	*  @param pitch Pitch about X axis
	*  @param roll Roll about Z axis 
	*/
	void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) 
	{
		setEulerZYX(roll, pitch, yaw);
	}

	/** @brief Set the matrix from euler angles YPR around ZYX axes
	* @param eulerX Roll about X axis
	* @param eulerY Pitch around Y axis
	* @param eulerZ Yaw aboud Z axis
	* 
	* These angles are used to produce a rotation matrix. The euler
	* angles are applied in ZYX order. I.e a vector is first rotated 
	* about X then Y and then Z
	**/
	void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { 
		///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
		btScalar ci ( btCos(eulerX)); 
		btScalar cj ( btCos(eulerY)); 
		btScalar ch ( btCos(eulerZ)); 
		btScalar si ( btSin(eulerX)); 
		btScalar sj ( btSin(eulerY)); 
		btScalar sh ( btSin(eulerZ)); 
		btScalar cc = ci * ch; 
		btScalar cs = ci * sh; 
		btScalar sc = si * ch; 
		btScalar ss = si * sh;

		setValue(cj * ch, sj * sc - cs, sj * cc + ss,
			cj * sh, sj * ss + cc, sj * cs - sc, 
			-sj,      cj * si,      cj * ci);
	}

	/**@brief Set the matrix to the identity */
	void setIdentity()
	{ 
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
			m_el[0] = v1000; 
			m_el[1] = v0100;
			m_el[2] = v0010;
#else
		setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), 
			btScalar(0.0), btScalar(1.0), btScalar(0.0), 
			btScalar(0.0), btScalar(0.0), btScalar(1.0)); 
#endif
	}

	static const btMatrix3x3&	getIdentity()
	{
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
        static const btMatrix3x3 
        identityMatrix(v1000, v0100, v0010);
#else
		static const btMatrix3x3 
        identityMatrix(
            btScalar(1.0), btScalar(0.0), btScalar(0.0), 
			btScalar(0.0), btScalar(1.0), btScalar(0.0), 
			btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
		return identityMatrix;
	}

	/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
	* @param m The array to be filled */
	void getOpenGLSubMatrix(btScalar *m) const 
	{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
        __m128 v0 = m_el[0].mVec128;
        __m128 v1 = m_el[1].mVec128;
        __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
        __m128 *vm = (__m128 *)m;
        __m128 vT;
        
        v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
        
        vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
        v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1

        v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
        v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
        v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0

        vm[0] = v0;
        vm[1] = v1;
        vm[2] = v2;
#elif defined(BT_USE_NEON)
        // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
        static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
        float32x4_t *vm = (float32x4_t *)m;
        float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
        float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
        float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
        float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
        float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
        float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0

        vm[0] = v0;
        vm[1] = v1;
        vm[2] = v2;
#else
		m[0]  = btScalar(m_el[0].x()); 
		m[1]  = btScalar(m_el[1].x());
		m[2]  = btScalar(m_el[2].x());
		m[3]  = btScalar(0.0); 
		m[4]  = btScalar(m_el[0].y());
		m[5]  = btScalar(m_el[1].y());
		m[6]  = btScalar(m_el[2].y());
		m[7]  = btScalar(0.0); 
		m[8]  = btScalar(m_el[0].z()); 
		m[9]  = btScalar(m_el[1].z());
		m[10] = btScalar(m_el[2].z());
		m[11] = btScalar(0.0); 
#endif
	}

	/**@brief Get the matrix represented as a quaternion 
	* @param q The quaternion which will be set */
	void getRotation(btQuaternion& q) const
	{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
        btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
        btScalar s, x;
        
        union {
            btSimdFloat4 vec;
            btScalar f[4];
        } temp;
        
        if (trace > btScalar(0.0)) 
        {
            x = trace + btScalar(1.0);

            temp.f[0]=m_el[2].y() - m_el[1].z();
            temp.f[1]=m_el[0].z() - m_el[2].x();
            temp.f[2]=m_el[1].x() - m_el[0].y();
            temp.f[3]=x;
            //temp.f[3]= s * btScalar(0.5);
        } 
        else 
        {
            int i, j, k;
            if(m_el[0].x() < m_el[1].y()) 
            { 
                if( m_el[1].y() < m_el[2].z() )
                    { i = 2; j = 0; k = 1; }
                else
                    { i = 1; j = 2; k = 0; }
            }
            else
            {
                if( m_el[0].x() < m_el[2].z())
                    { i = 2; j = 0; k = 1; }
                else
                    { i = 0; j = 1; k = 2; }
            }

            x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);

            temp.f[3] = (m_el[k][j] - m_el[j][k]);
            temp.f[j] = (m_el[j][i] + m_el[i][j]);
            temp.f[k] = (m_el[k][i] + m_el[i][k]);
            temp.f[i] = x;
            //temp.f[i] = s * btScalar(0.5);
        }

        s = btSqrt(x);
        q.set128(temp.vec);
        s = btScalar(0.5) / s;

        q *= s;
#else    
		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();

		btScalar temp[4];

		if (trace > btScalar(0.0)) 
		{
			btScalar s = btSqrt(trace + btScalar(1.0));
			temp[3]=(s * btScalar(0.5));
			s = btScalar(0.5) / s;

			temp[0]=((m_el[2].y() - m_el[1].z()) * s);
			temp[1]=((m_el[0].z() - m_el[2].x()) * s);
			temp[2]=((m_el[1].x() - m_el[0].y()) * s);
		} 
		else 
		{
			int i = m_el[0].x() < m_el[1].y() ? 
				(m_el[1].y() < m_el[2].z() ? 2 : 1) :
				(m_el[0].x() < m_el[2].z() ? 2 : 0); 
			int j = (i + 1) % 3;  
			int k = (i + 2) % 3;

			btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
			temp[i] = s * btScalar(0.5);
			s = btScalar(0.5) / s;

			temp[3] = (m_el[k][j] - m_el[j][k]) * s;
			temp[j] = (m_el[j][i] + m_el[i][j]) * s;
			temp[k] = (m_el[k][i] + m_el[i][k]) * s;
		}
		q.setValue(temp[0],temp[1],temp[2],temp[3]);
#endif
	}

	/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
	* @param yaw Yaw around Y axis
	* @param pitch Pitch around X axis
	* @param roll around Z axis */	
	void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
	{

		// first use the normal calculus
		yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
		pitch = btScalar(btAsin(-m_el[2].x()));
		roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));

		// on pitch = +/-HalfPI
		if (btFabs(pitch)==SIMD_HALF_PI)
		{
			if (yaw>0)
				yaw-=SIMD_PI;
			else
				yaw+=SIMD_PI;

			if (roll>0)
				roll-=SIMD_PI;
			else
				roll+=SIMD_PI;
		}
	};


	/**@brief Get the matrix represented as euler angles around ZYX
	* @param yaw Yaw around X axis
	* @param pitch Pitch around Y axis
	* @param roll around X axis 
	* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/	
	void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
	{
		struct Euler
		{
			btScalar yaw;
			btScalar pitch;
			btScalar roll;
		};

		Euler euler_out;
		Euler euler_out2; //second solution
		//get the pointer to the raw data

		// Check that pitch is not at a singularity
		if (btFabs(m_el[2].x()) >= 1)
		{
			euler_out.yaw = 0;
			euler_out2.yaw = 0;

			// From difference of angles formula
			btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
			if (m_el[2].x() > 0)  //gimbal locked up
			{
				euler_out.pitch = SIMD_PI / btScalar(2.0);
				euler_out2.pitch = SIMD_PI / btScalar(2.0);
				euler_out.roll = euler_out.pitch + delta;
				euler_out2.roll = euler_out.pitch + delta;
			}
			else // gimbal locked down
			{
				euler_out.pitch = -SIMD_PI / btScalar(2.0);
				euler_out2.pitch = -SIMD_PI / btScalar(2.0);
				euler_out.roll = -euler_out.pitch + delta;
				euler_out2.roll = -euler_out.pitch + delta;
			}
		}
		else
		{
			euler_out.pitch = - btAsin(m_el[2].x());
			euler_out2.pitch = SIMD_PI - euler_out.pitch;

			euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch), 
				m_el[2].z()/btCos(euler_out.pitch));
			euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch), 
				m_el[2].z()/btCos(euler_out2.pitch));

			euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch), 
				m_el[0].x()/btCos(euler_out.pitch));
			euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch), 
				m_el[0].x()/btCos(euler_out2.pitch));
		}

		if (solution_number == 1)
		{ 
			yaw = euler_out.yaw; 
			pitch = euler_out.pitch;
			roll = euler_out.roll;
		}
		else
		{ 
			yaw = euler_out2.yaw; 
			pitch = euler_out2.pitch;
			roll = euler_out2.roll;
		}
	}

	/**@brief Create a scaled copy of the matrix 
	* @param s Scaling vector The elements of the vector will scale each column */

	btMatrix3x3 scaled(const btVector3& s) const
	{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
		return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
#else		
		return btMatrix3x3(
            m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
			m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
			m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
#endif
	}

	/**@brief Return the determinant of the matrix */
	btScalar            determinant() const;
	/**@brief Return the adjoint of the matrix */
	btMatrix3x3 adjoint() const;
	/**@brief Return the matrix with all values non negative */
	btMatrix3x3 absolute() const;
	/**@brief Return the transpose of the matrix */
	btMatrix3x3 transpose() const;
	/**@brief Return the inverse of the matrix */
	btMatrix3x3 inverse() const; 

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases.
	///Solve33 is from Box2d, thanks to Erin Catto,
	btVector3 solve33(const btVector3& b) const
	{
		btVector3 col1 = getColumn(0);
		btVector3 col2 = getColumn(1);
		btVector3 col3 = getColumn(2);
		
		btScalar det = btDot(col1, btCross(col2, col3));
		if (btFabs(det)>SIMD_EPSILON)
		{
			det = 1.0f / det;
		}
		btVector3 x;
		x[0] = det * btDot(b, btCross(col2, col3));
		x[1] = det * btDot(col1, btCross(b, col3));
		x[2] = det * btDot(col1, btCross(col2, b));
		return x;
	}

	btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
	btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;

	SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const 
	{
		return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
	}
	SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const 
	{
		return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
	}
	SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const 
	{
		return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
	}


	/**@brief diagonalizes this matrix by the Jacobi method.
	* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
	* coordinate system, i.e., old_this = rot * new_this * rot^T. 
	* @param threshold See iteration
	* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied 
	* by the sum of the absolute values of the diagonal, or when maxSteps have been executed. 
	* 
	* Note that this matrix is assumed to be symmetric. 
	*/
	void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
	{
		rot.setIdentity();
		for (int step = maxSteps; step > 0; step--)
		{
			// find off-diagonal element [p][q] with largest magnitude
			int p = 0;
			int q = 1;
			int r = 2;
			btScalar max = btFabs(m_el[0][1]);
			btScalar v = btFabs(m_el[0][2]);
			if (v > max)
			{
				q = 2;
				r = 1;
				max = v;
			}
			v = btFabs(m_el[1][2]);
			if (v > max)
			{
				p = 1;
				q = 2;
				r = 0;
				max = v;
			}

			btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
			if (max <= t)
			{
				if (max <= SIMD_EPSILON * t)
				{
					return;
				}
				step = 1;
			}

			// compute Jacobi rotation J which leads to a zero for element [p][q] 
			btScalar mpq = m_el[p][q];
			btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
			btScalar theta2 = theta * theta;
			btScalar cos;
			btScalar sin;
			if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
			{
				t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
					: 1 / (theta - btSqrt(1 + theta2));
				cos = 1 / btSqrt(1 + t * t);
				sin = cos * t;
			}
			else
			{
				// approximation for large theta-value, i.e., a nearly diagonal matrix
				t = 1 / (theta * (2 + btScalar(0.5) / theta2));
				cos = 1 - btScalar(0.5) * t * t;
				sin = cos * t;
			}

			// apply rotation to matrix (this = J^T * this * J)
			m_el[p][q] = m_el[q][p] = 0;
			m_el[p][p] -= t * mpq;
			m_el[q][q] += t * mpq;
			btScalar mrp = m_el[r][p];
			btScalar mrq = m_el[r][q];
			m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
			m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;

			// apply rotation to rot (rot = rot * J)
			for (int i = 0; i < 3; i++)
			{
				btVector3& row = rot[i];
				mrp = row[p];
				mrq = row[q];
				row[p] = cos * mrp - sin * mrq;
				row[q] = cos * mrq + sin * mrp;
			}
		}
	}




	/**@brief Calculate the matrix cofactor 
	* @param r1 The first row to use for calculating the cofactor
	* @param c1 The first column to use for calculating the cofactor
	* @param r1 The second row to use for calculating the cofactor
	* @param c1 The second column to use for calculating the cofactor
	* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
	*/
	btScalar cofac(int r1, int c1, int r2, int c2) const 
	{
		return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
	}

	void	serialize(struct	btMatrix3x3Data& dataOut) const;

	void	serializeFloat(struct	btMatrix3x3FloatData& dataOut) const;

	void	deSerialize(const struct	btMatrix3x3Data& dataIn);

	void	deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn);

	void	deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn);

};


SIMD_FORCE_INLINE btMatrix3x3& 
btMatrix3x3::operator*=(const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
    __m128 rv00, rv01, rv02;
    __m128 rv10, rv11, rv12;
    __m128 rv20, rv21, rv22;
    __m128 mv0, mv1, mv2;

    rv02 = m_el[0].mVec128;
    rv12 = m_el[1].mVec128;
    rv22 = m_el[2].mVec128;

    mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask); 
    mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask); 
    mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask); 
    
    // rv0
    rv00 = bt_splat_ps(rv02, 0);
    rv01 = bt_splat_ps(rv02, 1);
    rv02 = bt_splat_ps(rv02, 2);
    
    rv00 = _mm_mul_ps(rv00, mv0);
    rv01 = _mm_mul_ps(rv01, mv1);
    rv02 = _mm_mul_ps(rv02, mv2);
    
    // rv1
    rv10 = bt_splat_ps(rv12, 0);
    rv11 = bt_splat_ps(rv12, 1);
    rv12 = bt_splat_ps(rv12, 2);
    
    rv10 = _mm_mul_ps(rv10, mv0);
    rv11 = _mm_mul_ps(rv11, mv1);
    rv12 = _mm_mul_ps(rv12, mv2);
    
    // rv2
    rv20 = bt_splat_ps(rv22, 0);
    rv21 = bt_splat_ps(rv22, 1);
    rv22 = bt_splat_ps(rv22, 2);
    
    rv20 = _mm_mul_ps(rv20, mv0);
    rv21 = _mm_mul_ps(rv21, mv1);
    rv22 = _mm_mul_ps(rv22, mv2);

    rv00 = _mm_add_ps(rv00, rv01);
    rv10 = _mm_add_ps(rv10, rv11);
    rv20 = _mm_add_ps(rv20, rv21);

    m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
    m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
    m_el[2].mVec128 = _mm_add_ps(rv20, rv22);

#elif defined(BT_USE_NEON)

    float32x4_t rv0, rv1, rv2;
    float32x4_t v0, v1, v2;
    float32x4_t mv0, mv1, mv2;

    v0 = m_el[0].mVec128;
    v1 = m_el[1].mVec128;
    v2 = m_el[2].mVec128;

    mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); 
    mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); 
    mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); 
    
    rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
    rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
    rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
    
    rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
    rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
    rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
    
    rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
    rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
    rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);

    m_el[0].mVec128 = rv0;
    m_el[1].mVec128 = rv1;
    m_el[2].mVec128 = rv2;
#else    
	setValue(
        m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
		m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
		m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
#endif
	return *this;
}

SIMD_FORCE_INLINE btMatrix3x3& 
btMatrix3x3::operator+=(const btMatrix3x3& m)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
    m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
    m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
    m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
#else
	setValue(
		m_el[0][0]+m.m_el[0][0], 
		m_el[0][1]+m.m_el[0][1],
		m_el[0][2]+m.m_el[0][2],
		m_el[1][0]+m.m_el[1][0], 
		m_el[1][1]+m.m_el[1][1],
		m_el[1][2]+m.m_el[1][2],
		m_el[2][0]+m.m_el[2][0], 
		m_el[2][1]+m.m_el[2][1],
		m_el[2][2]+m.m_el[2][2]);
#endif
	return *this;
}

SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m, const btScalar & k)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
    __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
    return btMatrix3x3(
                _mm_mul_ps(m[0].mVec128, vk), 
                _mm_mul_ps(m[1].mVec128, vk), 
                _mm_mul_ps(m[2].mVec128, vk)); 
#elif defined(BT_USE_NEON)
    return btMatrix3x3(
                vmulq_n_f32(m[0].mVec128, k),
                vmulq_n_f32(m[1].mVec128, k),
                vmulq_n_f32(m[2].mVec128, k)); 
#else
	return btMatrix3x3(
		m[0].x()*k,m[0].y()*k,m[0].z()*k,
		m[1].x()*k,m[1].y()*k,m[1].z()*k,
		m[2].x()*k,m[2].y()*k,m[2].z()*k);
#endif
}

SIMD_FORCE_INLINE btMatrix3x3 
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
	return btMatrix3x3(
        m1[0].mVec128 + m2[0].mVec128,
        m1[1].mVec128 + m2[1].mVec128,
        m1[2].mVec128 + m2[2].mVec128);
#else
	return btMatrix3x3(
        m1[0][0]+m2[0][0], 
        m1[0][1]+m2[0][1],
        m1[0][2]+m2[0][2],
        
        m1[1][0]+m2[1][0], 
        m1[1][1]+m2[1][1],
        m1[1][2]+m2[1][2],
        
        m1[2][0]+m2[2][0], 
        m1[2][1]+m2[2][1],
        m1[2][2]+m2[2][2]);
#endif    
}

SIMD_FORCE_INLINE btMatrix3x3 
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
	return btMatrix3x3(
        m1[0].mVec128 - m2[0].mVec128,
        m1[1].mVec128 - m2[1].mVec128,
        m1[2].mVec128 - m2[2].mVec128);
#else
	return btMatrix3x3(
        m1[0][0]-m2[0][0], 
        m1[0][1]-m2[0][1],
        m1[0][2]-m2[0][2],
        
        m1[1][0]-m2[1][0], 
        m1[1][1]-m2[1][1],
        m1[1][2]-m2[1][2],
        
        m1[2][0]-m2[2][0], 
        m1[2][1]-m2[2][1],
        m1[2][2]-m2[2][2]);
#endif
}


SIMD_FORCE_INLINE btMatrix3x3& 
btMatrix3x3::operator-=(const btMatrix3x3& m)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
    m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
    m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
    m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
#else
	setValue(
	m_el[0][0]-m.m_el[0][0], 
	m_el[0][1]-m.m_el[0][1],
	m_el[0][2]-m.m_el[0][2],
	m_el[1][0]-m.m_el[1][0], 
	m_el[1][1]-m.m_el[1][1],
	m_el[1][2]-m.m_el[1][2],
	m_el[2][0]-m.m_el[2][0], 
	m_el[2][1]-m.m_el[2][1],
	m_el[2][2]-m.m_el[2][2]);
#endif
	return *this;
}


SIMD_FORCE_INLINE btScalar 
btMatrix3x3::determinant() const
{ 
	return btTriple((*this)[0], (*this)[1], (*this)[2]);
}


SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::absolute() const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
    return btMatrix3x3(
            _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
            _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
            _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
    return btMatrix3x3(
            (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
            (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
            (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
#else	
	return btMatrix3x3(
            btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
            btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
            btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
#endif
}

SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::transpose() const 
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
    __m128 v0 = m_el[0].mVec128;
    __m128 v1 = m_el[1].mVec128;
    __m128 v2 = m_el[2].mVec128;    //  x2 y2 z2 w2
    __m128 vT;
    
    v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0
    
    vT = _mm_unpackhi_ps(v0, v1);	//	z0 z1 * *
    v0 = _mm_unpacklo_ps(v0, v1);	//	x0 x1 y0 y1

    v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) );	// y0 y1 y2 0
    v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) );	// x0 x1 x2 0
    v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));	// z0 z1 z2 0


    return btMatrix3x3( v0, v1, v2 );
#elif defined(BT_USE_NEON)
    // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
    static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
    float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 );  // {x0 x1 z0 z1}, {y0 y1 w0 w1}
    float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) );       // {x2  0 }, {y2 0}
    float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
    float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
    float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
    float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q );       // z0 z1 z2  0
    return btMatrix3x3( v0, v1, v2 ); 
#else
	return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
                        m_el[0].y(), m_el[1].y(), m_el[2].y(),
                        m_el[0].z(), m_el[1].z(), m_el[2].z());
#endif
}

SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::adjoint() const 
{
	return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
		cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
		cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
}

SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::inverse() const
{
	btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
	btScalar det = (*this)[0].dot(co);
	btFullAssert(det != btScalar(0.0));
	btScalar s = btScalar(1.0) / det;
	return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
		co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
		co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}

SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
    // zeros w
//    static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
    __m128 row = m_el[0].mVec128;
    __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
    __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
    __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
    __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
    __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
    __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
    row = m_el[1].mVec128;
    r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
    r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
    r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
    row = m_el[2].mVec128;
    r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
    r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
    r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
    return btMatrix3x3( r0, r1, r2 );

#elif defined BT_USE_NEON
    // zeros w
    static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
    float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
    float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
    float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
    float32x4_t row = m_el[0].mVec128;
    float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
    float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
    float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
    row = m_el[1].mVec128;
    r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
    r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
    r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
    row = m_el[2].mVec128;
    r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
    r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
    r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
    return btMatrix3x3( r0, r1, r2 );
#else
    return btMatrix3x3(
		m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
		m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
		m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
		m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
		m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
		m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
		m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
		m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
		m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
#endif
}

SIMD_FORCE_INLINE btMatrix3x3 
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
    __m128 a0 = m_el[0].mVec128;
    __m128 a1 = m_el[1].mVec128;
    __m128 a2 = m_el[2].mVec128;
    
    btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
    __m128 mx = mT[0].mVec128;
    __m128 my = mT[1].mVec128;
    __m128 mz = mT[2].mVec128;
    
    __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
    __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
    __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
    r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
    r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
    r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
    r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
    r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
    r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
    return btMatrix3x3( r0, r1, r2);
            
#elif defined BT_USE_NEON
    float32x4_t a0 = m_el[0].mVec128;
    float32x4_t a1 = m_el[1].mVec128;
    float32x4_t a2 = m_el[2].mVec128;
    
    btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
    float32x4_t mx = mT[0].mVec128;
    float32x4_t my = mT[1].mVec128;
    float32x4_t mz = mT[2].mVec128;
    
    float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
    float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
    float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
    r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
    r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
    r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
    r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
    r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
    r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
    return btMatrix3x3( r0, r1, r2 );
    
#else
	return btMatrix3x3(
		m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
		m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
		m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
#endif
}

SIMD_FORCE_INLINE btVector3 
operator*(const btMatrix3x3& m, const btVector3& v) 
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
    return v.dot3(m[0], m[1], m[2]);
#else
	return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
#endif
}


SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))

    const __m128 vv = v.mVec128;

    __m128 c0 = bt_splat_ps( vv, 0);
    __m128 c1 = bt_splat_ps( vv, 1);
    __m128 c2 = bt_splat_ps( vv, 2);

    c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
    c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
    c0 = _mm_add_ps(c0, c1);
    c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
    
    return btVector3(_mm_add_ps(c0, c2));
#elif defined(BT_USE_NEON)
    const float32x4_t vv = v.mVec128;
    const float32x2_t vlo = vget_low_f32(vv);
    const float32x2_t vhi = vget_high_f32(vv);

    float32x4_t c0, c1, c2;

    c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
    c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
    c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);

    c0 = vmulq_lane_f32(c0, vlo, 0);
    c1 = vmulq_lane_f32(c1, vlo, 1);
    c2 = vmulq_lane_f32(c2, vhi, 0);
    c0 = vaddq_f32(c0, c1);
    c0 = vaddq_f32(c0, c2);
    
    return btVector3(c0);
#else
	return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
#endif
}

SIMD_FORCE_INLINE btMatrix3x3 
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))

    __m128 m10 = m1[0].mVec128;  
    __m128 m11 = m1[1].mVec128;
    __m128 m12 = m1[2].mVec128;
    
    __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
    
    __m128 c0 = bt_splat_ps( m10, 0);
    __m128 c1 = bt_splat_ps( m11, 0);
    __m128 c2 = bt_splat_ps( m12, 0);
    
    c0 = _mm_mul_ps(c0, m2v);
    c1 = _mm_mul_ps(c1, m2v);
    c2 = _mm_mul_ps(c2, m2v);
    
    m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
    
    __m128 c0_1 = bt_splat_ps( m10, 1);
    __m128 c1_1 = bt_splat_ps( m11, 1);
    __m128 c2_1 = bt_splat_ps( m12, 1);
    
    c0_1 = _mm_mul_ps(c0_1, m2v);
    c1_1 = _mm_mul_ps(c1_1, m2v);
    c2_1 = _mm_mul_ps(c2_1, m2v);
    
    m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
    
    c0 = _mm_add_ps(c0, c0_1);
    c1 = _mm_add_ps(c1, c1_1);
    c2 = _mm_add_ps(c2, c2_1);
    
    m10 = bt_splat_ps( m10, 2);
    m11 = bt_splat_ps( m11, 2);
    m12 = bt_splat_ps( m12, 2);
    
    m10 = _mm_mul_ps(m10, m2v);
    m11 = _mm_mul_ps(m11, m2v);
    m12 = _mm_mul_ps(m12, m2v);
    
    c0 = _mm_add_ps(c0, m10);
    c1 = _mm_add_ps(c1, m11);
    c2 = _mm_add_ps(c2, m12);
    
    return btMatrix3x3(c0, c1, c2);

#elif defined(BT_USE_NEON)

    float32x4_t rv0, rv1, rv2;
    float32x4_t v0, v1, v2;
    float32x4_t mv0, mv1, mv2;

    v0 = m1[0].mVec128;
    v1 = m1[1].mVec128;
    v2 = m1[2].mVec128;

    mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask); 
    mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask); 
    mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask); 
    
    rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
    rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
    rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
    
    rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
    rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
    rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
    
    rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
    rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
    rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);

	return btMatrix3x3(rv0, rv1, rv2);
        
#else	
	return btMatrix3x3(
		m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
		m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
		m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
#endif
}

/*
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
return btMatrix3x3(
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
}
*/

/**@brief Equality operator between two matrices
* It will test all elements are equal.  */
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))

    __m128 c0, c1, c2;

    c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
    c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
    c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
    
    c0 = _mm_and_ps(c0, c1);
    c0 = _mm_and_ps(c0, c2);

    return (0x7 == _mm_movemask_ps((__m128)c0));
#else 
	return 
    (   m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
		m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
		m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
#endif
}

///for serialization
struct	btMatrix3x3FloatData
{
	btVector3FloatData m_el[3];
};

///for serialization
struct	btMatrix3x3DoubleData
{
	btVector3DoubleData m_el[3];
};


	

SIMD_FORCE_INLINE	void	btMatrix3x3::serialize(struct	btMatrix3x3Data& dataOut) const
{
	for (int i=0;i<3;i++)
		m_el[i].serialize(dataOut.m_el[i]);
}

SIMD_FORCE_INLINE	void	btMatrix3x3::serializeFloat(struct	btMatrix3x3FloatData& dataOut) const
{
	for (int i=0;i<3;i++)
		m_el[i].serializeFloat(dataOut.m_el[i]);
}


SIMD_FORCE_INLINE	void	btMatrix3x3::deSerialize(const struct	btMatrix3x3Data& dataIn)
{
	for (int i=0;i<3;i++)
		m_el[i].deSerialize(dataIn.m_el[i]);
}

SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeFloat(const struct	btMatrix3x3FloatData& dataIn)
{
	for (int i=0;i<3;i++)
		m_el[i].deSerializeFloat(dataIn.m_el[i]);
}

SIMD_FORCE_INLINE	void	btMatrix3x3::deSerializeDouble(const struct	btMatrix3x3DoubleData& dataIn)
{
	for (int i=0;i<3;i++)
		m_el[i].deSerializeDouble(dataIn.m_el[i]);
}

#endif //BT_MATRIX3x3_H