/usr/include/bullet/BulletSoftBody/btSoftBodyInternals.h is in libbullet-dev 2.83.6+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 | /*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSoftBody implementation by Nathanael Presson
#ifndef _BT_SOFT_BODY_INTERNALS_H
#define _BT_SOFT_BODY_INTERNALS_H
#include "btSoftBody.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btPolarDecomposition.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include <string.h> //for memset
//
// btSymMatrix
//
template <typename T>
struct btSymMatrix
{
btSymMatrix() : dim(0) {}
btSymMatrix(int n,const T& init=T()) { resize(n,init); }
void resize(int n,const T& init=T()) { dim=n;store.resize((n*(n+1))/2,init); }
int index(int c,int r) const { if(c>r) btSwap(c,r);btAssert(r<dim);return((r*(r+1))/2+c); }
T& operator()(int c,int r) { return(store[index(c,r)]); }
const T& operator()(int c,int r) const { return(store[index(c,r)]); }
btAlignedObjectArray<T> store;
int dim;
};
//
// btSoftBodyCollisionShape
//
class btSoftBodyCollisionShape : public btConcaveShape
{
public:
btSoftBody* m_body;
btSoftBodyCollisionShape(btSoftBody* backptr)
{
m_shapeType = SOFTBODY_SHAPE_PROXYTYPE;
m_body=backptr;
}
virtual ~btSoftBodyCollisionShape()
{
}
void processAllTriangles(btTriangleCallback* /*callback*/,const btVector3& /*aabbMin*/,const btVector3& /*aabbMax*/) const
{
//not yet
btAssert(0);
}
///getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
/* t is usually identity, except when colliding against btCompoundShape. See Issue 512 */
const btVector3 mins=m_body->m_bounds[0];
const btVector3 maxs=m_body->m_bounds[1];
const btVector3 crns[]={t*btVector3(mins.x(),mins.y(),mins.z()),
t*btVector3(maxs.x(),mins.y(),mins.z()),
t*btVector3(maxs.x(),maxs.y(),mins.z()),
t*btVector3(mins.x(),maxs.y(),mins.z()),
t*btVector3(mins.x(),mins.y(),maxs.z()),
t*btVector3(maxs.x(),mins.y(),maxs.z()),
t*btVector3(maxs.x(),maxs.y(),maxs.z()),
t*btVector3(mins.x(),maxs.y(),maxs.z())};
aabbMin=aabbMax=crns[0];
for(int i=1;i<8;++i)
{
aabbMin.setMin(crns[i]);
aabbMax.setMax(crns[i]);
}
}
virtual void setLocalScaling(const btVector3& /*scaling*/)
{
///na
}
virtual const btVector3& getLocalScaling() const
{
static const btVector3 dummy(1,1,1);
return dummy;
}
virtual void calculateLocalInertia(btScalar /*mass*/,btVector3& /*inertia*/) const
{
///not yet
btAssert(0);
}
virtual const char* getName()const
{
return "SoftBody";
}
};
//
// btSoftClusterCollisionShape
//
class btSoftClusterCollisionShape : public btConvexInternalShape
{
public:
const btSoftBody::Cluster* m_cluster;
btSoftClusterCollisionShape (const btSoftBody::Cluster* cluster) : m_cluster(cluster) { setMargin(0); }
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const
{
btSoftBody::Node* const * n=&m_cluster->m_nodes[0];
btScalar d=btDot(vec,n[0]->m_x);
int j=0;
for(int i=1,ni=m_cluster->m_nodes.size();i<ni;++i)
{
const btScalar k=btDot(vec,n[i]->m_x);
if(k>d) { d=k;j=i; }
}
return(n[j]->m_x);
}
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
return(localGetSupportingVertex(vec));
}
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const
{}
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{}
virtual int getShapeType() const { return SOFTBODY_SHAPE_PROXYTYPE; }
//debugging
virtual const char* getName()const {return "SOFTCLUSTER";}
virtual void setMargin(btScalar margin)
{
btConvexInternalShape::setMargin(margin);
}
virtual btScalar getMargin() const
{
return btConvexInternalShape::getMargin();
}
};
//
// Inline's
//
//
template <typename T>
static inline void ZeroInitialize(T& value)
{
memset(&value,0,sizeof(T));
}
//
template <typename T>
static inline bool CompLess(const T& a,const T& b)
{ return(a<b); }
//
template <typename T>
static inline bool CompGreater(const T& a,const T& b)
{ return(a>b); }
//
template <typename T>
static inline T Lerp(const T& a,const T& b,btScalar t)
{ return(a+(b-a)*t); }
//
template <typename T>
static inline T InvLerp(const T& a,const T& b,btScalar t)
{ return((b+a*t-b*t)/(a*b)); }
//
static inline btMatrix3x3 Lerp( const btMatrix3x3& a,
const btMatrix3x3& b,
btScalar t)
{
btMatrix3x3 r;
r[0]=Lerp(a[0],b[0],t);
r[1]=Lerp(a[1],b[1],t);
r[2]=Lerp(a[2],b[2],t);
return(r);
}
//
static inline btVector3 Clamp(const btVector3& v,btScalar maxlength)
{
const btScalar sql=v.length2();
if(sql>(maxlength*maxlength))
return((v*maxlength)/btSqrt(sql));
else
return(v);
}
//
template <typename T>
static inline T Clamp(const T& x,const T& l,const T& h)
{ return(x<l?l:x>h?h:x); }
//
template <typename T>
static inline T Sq(const T& x)
{ return(x*x); }
//
template <typename T>
static inline T Cube(const T& x)
{ return(x*x*x); }
//
template <typename T>
static inline T Sign(const T& x)
{ return((T)(x<0?-1:+1)); }
//
template <typename T>
static inline bool SameSign(const T& x,const T& y)
{ return((x*y)>0); }
//
static inline btScalar ClusterMetric(const btVector3& x,const btVector3& y)
{
const btVector3 d=x-y;
return(btFabs(d[0])+btFabs(d[1])+btFabs(d[2]));
}
//
static inline btMatrix3x3 ScaleAlongAxis(const btVector3& a,btScalar s)
{
const btScalar xx=a.x()*a.x();
const btScalar yy=a.y()*a.y();
const btScalar zz=a.z()*a.z();
const btScalar xy=a.x()*a.y();
const btScalar yz=a.y()*a.z();
const btScalar zx=a.z()*a.x();
btMatrix3x3 m;
m[0]=btVector3(1-xx+xx*s,xy*s-xy,zx*s-zx);
m[1]=btVector3(xy*s-xy,1-yy+yy*s,yz*s-yz);
m[2]=btVector3(zx*s-zx,yz*s-yz,1-zz+zz*s);
return(m);
}
//
static inline btMatrix3x3 Cross(const btVector3& v)
{
btMatrix3x3 m;
m[0]=btVector3(0,-v.z(),+v.y());
m[1]=btVector3(+v.z(),0,-v.x());
m[2]=btVector3(-v.y(),+v.x(),0);
return(m);
}
//
static inline btMatrix3x3 Diagonal(btScalar x)
{
btMatrix3x3 m;
m[0]=btVector3(x,0,0);
m[1]=btVector3(0,x,0);
m[2]=btVector3(0,0,x);
return(m);
}
//
static inline btMatrix3x3 Add(const btMatrix3x3& a,
const btMatrix3x3& b)
{
btMatrix3x3 r;
for(int i=0;i<3;++i) r[i]=a[i]+b[i];
return(r);
}
//
static inline btMatrix3x3 Sub(const btMatrix3x3& a,
const btMatrix3x3& b)
{
btMatrix3x3 r;
for(int i=0;i<3;++i) r[i]=a[i]-b[i];
return(r);
}
//
static inline btMatrix3x3 Mul(const btMatrix3x3& a,
btScalar b)
{
btMatrix3x3 r;
for(int i=0;i<3;++i) r[i]=a[i]*b;
return(r);
}
//
static inline void Orthogonalize(btMatrix3x3& m)
{
m[2]=btCross(m[0],m[1]).normalized();
m[1]=btCross(m[2],m[0]).normalized();
m[0]=btCross(m[1],m[2]).normalized();
}
//
static inline btMatrix3x3 MassMatrix(btScalar im,const btMatrix3x3& iwi,const btVector3& r)
{
const btMatrix3x3 cr=Cross(r);
return(Sub(Diagonal(im),cr*iwi*cr));
}
//
static inline btMatrix3x3 ImpulseMatrix( btScalar dt,
btScalar ima,
btScalar imb,
const btMatrix3x3& iwi,
const btVector3& r)
{
return(Diagonal(1/dt)*Add(Diagonal(ima),MassMatrix(imb,iwi,r)).inverse());
}
//
static inline btMatrix3x3 ImpulseMatrix( btScalar ima,const btMatrix3x3& iia,const btVector3& ra,
btScalar imb,const btMatrix3x3& iib,const btVector3& rb)
{
return(Add(MassMatrix(ima,iia,ra),MassMatrix(imb,iib,rb)).inverse());
}
//
static inline btMatrix3x3 AngularImpulseMatrix( const btMatrix3x3& iia,
const btMatrix3x3& iib)
{
return(Add(iia,iib).inverse());
}
//
static inline btVector3 ProjectOnAxis( const btVector3& v,
const btVector3& a)
{
return(a*btDot(v,a));
}
//
static inline btVector3 ProjectOnPlane( const btVector3& v,
const btVector3& a)
{
return(v-ProjectOnAxis(v,a));
}
//
static inline void ProjectOrigin( const btVector3& a,
const btVector3& b,
btVector3& prj,
btScalar& sqd)
{
const btVector3 d=b-a;
const btScalar m2=d.length2();
if(m2>SIMD_EPSILON)
{
const btScalar t=Clamp<btScalar>(-btDot(a,d)/m2,0,1);
const btVector3 p=a+d*t;
const btScalar l2=p.length2();
if(l2<sqd)
{
prj=p;
sqd=l2;
}
}
}
//
static inline void ProjectOrigin( const btVector3& a,
const btVector3& b,
const btVector3& c,
btVector3& prj,
btScalar& sqd)
{
const btVector3& q=btCross(b-a,c-a);
const btScalar m2=q.length2();
if(m2>SIMD_EPSILON)
{
const btVector3 n=q/btSqrt(m2);
const btScalar k=btDot(a,n);
const btScalar k2=k*k;
if(k2<sqd)
{
const btVector3 p=n*k;
if( (btDot(btCross(a-p,b-p),q)>0)&&
(btDot(btCross(b-p,c-p),q)>0)&&
(btDot(btCross(c-p,a-p),q)>0))
{
prj=p;
sqd=k2;
}
else
{
ProjectOrigin(a,b,prj,sqd);
ProjectOrigin(b,c,prj,sqd);
ProjectOrigin(c,a,prj,sqd);
}
}
}
}
//
template <typename T>
static inline T BaryEval( const T& a,
const T& b,
const T& c,
const btVector3& coord)
{
return(a*coord.x()+b*coord.y()+c*coord.z());
}
//
static inline btVector3 BaryCoord( const btVector3& a,
const btVector3& b,
const btVector3& c,
const btVector3& p)
{
const btScalar w[]={ btCross(a-p,b-p).length(),
btCross(b-p,c-p).length(),
btCross(c-p,a-p).length()};
const btScalar isum=1/(w[0]+w[1]+w[2]);
return(btVector3(w[1]*isum,w[2]*isum,w[0]*isum));
}
//
static btScalar ImplicitSolve( btSoftBody::ImplicitFn* fn,
const btVector3& a,
const btVector3& b,
const btScalar accuracy,
const int maxiterations=256)
{
btScalar span[2]={0,1};
btScalar values[2]={fn->Eval(a),fn->Eval(b)};
if(values[0]>values[1])
{
btSwap(span[0],span[1]);
btSwap(values[0],values[1]);
}
if(values[0]>-accuracy) return(-1);
if(values[1]<+accuracy) return(-1);
for(int i=0;i<maxiterations;++i)
{
const btScalar t=Lerp(span[0],span[1],values[0]/(values[0]-values[1]));
const btScalar v=fn->Eval(Lerp(a,b,t));
if((t<=0)||(t>=1)) break;
if(btFabs(v)<accuracy) return(t);
if(v<0)
{ span[0]=t;values[0]=v; }
else
{ span[1]=t;values[1]=v; }
}
return(-1);
}
//
static inline btVector3 NormalizeAny(const btVector3& v)
{
const btScalar l=v.length();
if(l>SIMD_EPSILON)
return(v/l);
else
return(btVector3(0,0,0));
}
//
static inline btDbvtVolume VolumeOf( const btSoftBody::Face& f,
btScalar margin)
{
const btVector3* pts[]={ &f.m_n[0]->m_x,
&f.m_n[1]->m_x,
&f.m_n[2]->m_x};
btDbvtVolume vol=btDbvtVolume::FromPoints(pts,3);
vol.Expand(btVector3(margin,margin,margin));
return(vol);
}
//
static inline btVector3 CenterOf( const btSoftBody::Face& f)
{
return((f.m_n[0]->m_x+f.m_n[1]->m_x+f.m_n[2]->m_x)/3);
}
//
static inline btScalar AreaOf( const btVector3& x0,
const btVector3& x1,
const btVector3& x2)
{
const btVector3 a=x1-x0;
const btVector3 b=x2-x0;
const btVector3 cr=btCross(a,b);
const btScalar area=cr.length();
return(area);
}
//
static inline btScalar VolumeOf( const btVector3& x0,
const btVector3& x1,
const btVector3& x2,
const btVector3& x3)
{
const btVector3 a=x1-x0;
const btVector3 b=x2-x0;
const btVector3 c=x3-x0;
return(btDot(a,btCross(b,c)));
}
//
static void EvaluateMedium( const btSoftBodyWorldInfo* wfi,
const btVector3& x,
btSoftBody::sMedium& medium)
{
medium.m_velocity = btVector3(0,0,0);
medium.m_pressure = 0;
medium.m_density = wfi->air_density;
if(wfi->water_density>0)
{
const btScalar depth=-(btDot(x,wfi->water_normal)+wfi->water_offset);
if(depth>0)
{
medium.m_density = wfi->water_density;
medium.m_pressure = depth*wfi->water_density*wfi->m_gravity.length();
}
}
}
//
static inline void ApplyClampedForce( btSoftBody::Node& n,
const btVector3& f,
btScalar dt)
{
const btScalar dtim=dt*n.m_im;
if((f*dtim).length2()>n.m_v.length2())
{/* Clamp */
n.m_f-=ProjectOnAxis(n.m_v,f.normalized())/dtim;
}
else
{/* Apply */
n.m_f+=f;
}
}
//
static inline int MatchEdge( const btSoftBody::Node* a,
const btSoftBody::Node* b,
const btSoftBody::Node* ma,
const btSoftBody::Node* mb)
{
if((a==ma)&&(b==mb)) return(0);
if((a==mb)&&(b==ma)) return(1);
return(-1);
}
//
// btEigen : Extract eigen system,
// straitforward implementation of http://math.fullerton.edu/mathews/n2003/JacobiMethodMod.html
// outputs are NOT sorted.
//
struct btEigen
{
static int system(btMatrix3x3& a,btMatrix3x3* vectors,btVector3* values=0)
{
static const int maxiterations=16;
static const btScalar accuracy=(btScalar)0.0001;
btMatrix3x3& v=*vectors;
int iterations=0;
vectors->setIdentity();
do {
int p=0,q=1;
if(btFabs(a[p][q])<btFabs(a[0][2])) { p=0;q=2; }
if(btFabs(a[p][q])<btFabs(a[1][2])) { p=1;q=2; }
if(btFabs(a[p][q])>accuracy)
{
const btScalar w=(a[q][q]-a[p][p])/(2*a[p][q]);
const btScalar z=btFabs(w);
const btScalar t=w/(z*(btSqrt(1+w*w)+z));
if(t==t)/* [WARNING] let hope that one does not get thrown aways by some compilers... */
{
const btScalar c=1/btSqrt(t*t+1);
const btScalar s=c*t;
mulPQ(a,c,s,p,q);
mulTPQ(a,c,s,p,q);
mulPQ(v,c,s,p,q);
} else break;
} else break;
} while((++iterations)<maxiterations);
if(values)
{
*values=btVector3(a[0][0],a[1][1],a[2][2]);
}
return(iterations);
}
private:
static inline void mulTPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
{
const btScalar m[2][3]={ {a[p][0],a[p][1],a[p][2]},
{a[q][0],a[q][1],a[q][2]}};
int i;
for(i=0;i<3;++i) a[p][i]=c*m[0][i]-s*m[1][i];
for(i=0;i<3;++i) a[q][i]=c*m[1][i]+s*m[0][i];
}
static inline void mulPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
{
const btScalar m[2][3]={ {a[0][p],a[1][p],a[2][p]},
{a[0][q],a[1][q],a[2][q]}};
int i;
for(i=0;i<3;++i) a[i][p]=c*m[0][i]-s*m[1][i];
for(i=0;i<3;++i) a[i][q]=c*m[1][i]+s*m[0][i];
}
};
//
// Polar decomposition,
// "Computing the Polar Decomposition with Applications", Nicholas J. Higham, 1986.
//
static inline int PolarDecompose( const btMatrix3x3& m,btMatrix3x3& q,btMatrix3x3& s)
{
static const btPolarDecomposition polar;
return polar.decompose(m, q, s);
}
//
// btSoftColliders
//
struct btSoftColliders
{
//
// ClusterBase
//
struct ClusterBase : btDbvt::ICollide
{
btScalar erp;
btScalar idt;
btScalar m_margin;
btScalar friction;
btScalar threshold;
ClusterBase()
{
erp =(btScalar)1;
idt =0;
m_margin =0;
friction =0;
threshold =(btScalar)0;
}
bool SolveContact( const btGjkEpaSolver2::sResults& res,
btSoftBody::Body ba,const btSoftBody::Body bb,
btSoftBody::CJoint& joint)
{
if(res.distance<m_margin)
{
btVector3 norm = res.normal;
norm.normalize();//is it necessary?
const btVector3 ra=res.witnesses[0]-ba.xform().getOrigin();
const btVector3 rb=res.witnesses[1]-bb.xform().getOrigin();
const btVector3 va=ba.velocity(ra);
const btVector3 vb=bb.velocity(rb);
const btVector3 vrel=va-vb;
const btScalar rvac=btDot(vrel,norm);
btScalar depth=res.distance-m_margin;
// printf("depth=%f\n",depth);
const btVector3 iv=norm*rvac;
const btVector3 fv=vrel-iv;
joint.m_bodies[0] = ba;
joint.m_bodies[1] = bb;
joint.m_refs[0] = ra*ba.xform().getBasis();
joint.m_refs[1] = rb*bb.xform().getBasis();
joint.m_rpos[0] = ra;
joint.m_rpos[1] = rb;
joint.m_cfm = 1;
joint.m_erp = 1;
joint.m_life = 0;
joint.m_maxlife = 0;
joint.m_split = 1;
joint.m_drift = depth*norm;
joint.m_normal = norm;
// printf("normal=%f,%f,%f\n",res.normal.getX(),res.normal.getY(),res.normal.getZ());
joint.m_delete = false;
joint.m_friction = fv.length2()<(rvac*friction*rvac*friction)?1:friction;
joint.m_massmatrix = ImpulseMatrix( ba.invMass(),ba.invWorldInertia(),joint.m_rpos[0],
bb.invMass(),bb.invWorldInertia(),joint.m_rpos[1]);
return(true);
}
return(false);
}
};
//
// CollideCL_RS
//
struct CollideCL_RS : ClusterBase
{
btSoftBody* psb;
const btCollisionObjectWrapper* m_colObjWrap;
void Process(const btDbvtNode* leaf)
{
btSoftBody::Cluster* cluster=(btSoftBody::Cluster*)leaf->data;
btSoftClusterCollisionShape cshape(cluster);
const btConvexShape* rshape=(const btConvexShape*)m_colObjWrap->getCollisionShape();
///don't collide an anchored cluster with a static/kinematic object
if(m_colObjWrap->getCollisionObject()->isStaticOrKinematicObject() && cluster->m_containsAnchor)
return;
btGjkEpaSolver2::sResults res;
if(btGjkEpaSolver2::SignedDistance( &cshape,btTransform::getIdentity(),
rshape,m_colObjWrap->getWorldTransform(),
btVector3(1,0,0),res))
{
btSoftBody::CJoint joint;
if(SolveContact(res,cluster,m_colObjWrap->getCollisionObject(),joint))//prb,joint))
{
btSoftBody::CJoint* pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
*pj=joint;psb->m_joints.push_back(pj);
if(m_colObjWrap->getCollisionObject()->isStaticOrKinematicObject())
{
pj->m_erp *= psb->m_cfg.kSKHR_CL;
pj->m_split *= psb->m_cfg.kSK_SPLT_CL;
}
else
{
pj->m_erp *= psb->m_cfg.kSRHR_CL;
pj->m_split *= psb->m_cfg.kSR_SPLT_CL;
}
}
}
}
void ProcessColObj(btSoftBody* ps,const btCollisionObjectWrapper* colObWrap)
{
psb = ps;
m_colObjWrap = colObWrap;
idt = ps->m_sst.isdt;
m_margin = m_colObjWrap->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin();
///Bullet rigid body uses multiply instead of minimum to determine combined friction. Some customization would be useful.
friction = btMin(psb->m_cfg.kDF,m_colObjWrap->getCollisionObject()->getFriction());
btVector3 mins;
btVector3 maxs;
ATTRIBUTE_ALIGNED16(btDbvtVolume) volume;
colObWrap->getCollisionShape()->getAabb(colObWrap->getWorldTransform(),mins,maxs);
volume=btDbvtVolume::FromMM(mins,maxs);
volume.Expand(btVector3(1,1,1)*m_margin);
ps->m_cdbvt.collideTV(ps->m_cdbvt.m_root,volume,*this);
}
};
//
// CollideCL_SS
//
struct CollideCL_SS : ClusterBase
{
btSoftBody* bodies[2];
void Process(const btDbvtNode* la,const btDbvtNode* lb)
{
btSoftBody::Cluster* cla=(btSoftBody::Cluster*)la->data;
btSoftBody::Cluster* clb=(btSoftBody::Cluster*)lb->data;
bool connected=false;
if ((bodies[0]==bodies[1])&&(bodies[0]->m_clusterConnectivity.size()))
{
connected = bodies[0]->m_clusterConnectivity[cla->m_clusterIndex+bodies[0]->m_clusters.size()*clb->m_clusterIndex];
}
if (!connected)
{
btSoftClusterCollisionShape csa(cla);
btSoftClusterCollisionShape csb(clb);
btGjkEpaSolver2::sResults res;
if(btGjkEpaSolver2::SignedDistance( &csa,btTransform::getIdentity(),
&csb,btTransform::getIdentity(),
cla->m_com-clb->m_com,res))
{
btSoftBody::CJoint joint;
if(SolveContact(res,cla,clb,joint))
{
btSoftBody::CJoint* pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
*pj=joint;bodies[0]->m_joints.push_back(pj);
pj->m_erp *= btMax(bodies[0]->m_cfg.kSSHR_CL,bodies[1]->m_cfg.kSSHR_CL);
pj->m_split *= (bodies[0]->m_cfg.kSS_SPLT_CL+bodies[1]->m_cfg.kSS_SPLT_CL)/2;
}
}
} else
{
static int count=0;
count++;
//printf("count=%d\n",count);
}
}
void ProcessSoftSoft(btSoftBody* psa,btSoftBody* psb)
{
idt = psa->m_sst.isdt;
//m_margin = (psa->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin())/2;
m_margin = (psa->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin());
friction = btMin(psa->m_cfg.kDF,psb->m_cfg.kDF);
bodies[0] = psa;
bodies[1] = psb;
psa->m_cdbvt.collideTT(psa->m_cdbvt.m_root,psb->m_cdbvt.m_root,*this);
}
};
//
// CollideSDF_RS
//
struct CollideSDF_RS : btDbvt::ICollide
{
void Process(const btDbvtNode* leaf)
{
btSoftBody::Node* node=(btSoftBody::Node*)leaf->data;
DoNode(*node);
}
void DoNode(btSoftBody::Node& n) const
{
const btScalar m=n.m_im>0?dynmargin:stamargin;
btSoftBody::RContact c;
if( (!n.m_battach)&&
psb->checkContact(m_colObj1Wrap,n.m_x,m,c.m_cti))
{
const btScalar ima=n.m_im;
const btScalar imb= m_rigidBody? m_rigidBody->getInvMass() : 0.f;
const btScalar ms=ima+imb;
if(ms>0)
{
const btTransform& wtr=m_rigidBody?m_rigidBody->getWorldTransform() : m_colObj1Wrap->getCollisionObject()->getWorldTransform();
static const btMatrix3x3 iwiStatic(0,0,0,0,0,0,0,0,0);
const btMatrix3x3& iwi=m_rigidBody?m_rigidBody->getInvInertiaTensorWorld() : iwiStatic;
const btVector3 ra=n.m_x-wtr.getOrigin();
const btVector3 va=m_rigidBody ? m_rigidBody->getVelocityInLocalPoint(ra)*psb->m_sst.sdt : btVector3(0,0,0);
const btVector3 vb=n.m_x-n.m_q;
const btVector3 vr=vb-va;
const btScalar dn=btDot(vr,c.m_cti.m_normal);
const btVector3 fv=vr-c.m_cti.m_normal*dn;
const btScalar fc=psb->m_cfg.kDF*m_colObj1Wrap->getCollisionObject()->getFriction();
c.m_node = &n;
c.m_c0 = ImpulseMatrix(psb->m_sst.sdt,ima,imb,iwi,ra);
c.m_c1 = ra;
c.m_c2 = ima*psb->m_sst.sdt;
c.m_c3 = fv.length2()<(dn*fc*dn*fc)?0:1-fc;
c.m_c4 = m_colObj1Wrap->getCollisionObject()->isStaticOrKinematicObject()?psb->m_cfg.kKHR:psb->m_cfg.kCHR;
psb->m_rcontacts.push_back(c);
if (m_rigidBody)
m_rigidBody->activate();
}
}
}
btSoftBody* psb;
const btCollisionObjectWrapper* m_colObj1Wrap;
btRigidBody* m_rigidBody;
btScalar dynmargin;
btScalar stamargin;
};
//
// CollideVF_SS
//
struct CollideVF_SS : btDbvt::ICollide
{
void Process(const btDbvtNode* lnode,
const btDbvtNode* lface)
{
btSoftBody::Node* node=(btSoftBody::Node*)lnode->data;
btSoftBody::Face* face=(btSoftBody::Face*)lface->data;
btVector3 o=node->m_x;
btVector3 p;
btScalar d=SIMD_INFINITY;
ProjectOrigin( face->m_n[0]->m_x-o,
face->m_n[1]->m_x-o,
face->m_n[2]->m_x-o,
p,d);
const btScalar m=mrg+(o-node->m_q).length()*2;
if(d<(m*m))
{
const btSoftBody::Node* n[]={face->m_n[0],face->m_n[1],face->m_n[2]};
const btVector3 w=BaryCoord(n[0]->m_x,n[1]->m_x,n[2]->m_x,p+o);
const btScalar ma=node->m_im;
btScalar mb=BaryEval(n[0]->m_im,n[1]->m_im,n[2]->m_im,w);
if( (n[0]->m_im<=0)||
(n[1]->m_im<=0)||
(n[2]->m_im<=0))
{
mb=0;
}
const btScalar ms=ma+mb;
if(ms>0)
{
btSoftBody::SContact c;
c.m_normal = p/-btSqrt(d);
c.m_margin = m;
c.m_node = node;
c.m_face = face;
c.m_weights = w;
c.m_friction = btMax(psb[0]->m_cfg.kDF,psb[1]->m_cfg.kDF);
c.m_cfm[0] = ma/ms*psb[0]->m_cfg.kSHR;
c.m_cfm[1] = mb/ms*psb[1]->m_cfg.kSHR;
psb[0]->m_scontacts.push_back(c);
}
}
}
btSoftBody* psb[2];
btScalar mrg;
};
};
#endif //_BT_SOFT_BODY_INTERNALS_H
|