/usr/include/Bpp/Phyl/OptimizationTools.h is in libbpp-phyl-dev 2.1.0-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 | //
// File: OptimizationTools.h
// Created by: Julien Dutheil
// Created on: Sun Dec 14 09:43:32 2003
//
/*
Copyright or © or Copr. Bio++ Development Team, (November 16, 2004)
This software is a computer program whose purpose is to provide classes
for phylogenetic data analysis.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
#ifndef _OPTIMIZATIONTOOLS_H_
#define _OPTIMIZATIONTOOLS_H_
#include "Likelihood/ClockTreeLikelihood.h"
#include "Likelihood/NNIHomogeneousTreeLikelihood.h"
#include "Likelihood/ClockTreeLikelihood.h"
#include "NNITopologySearch.h"
#include "Parsimony/DRTreeParsimonyScore.h"
#include "TreeTemplate.h"
#include "Distance/DistanceEstimation.h"
#include "Distance/DistanceMethod.h"
#include <Bpp/Io/OutputStream.h>
#include <Bpp/App/ApplicationTools.h>
#include <Bpp/Numeric/Function/SimpleNewtonMultiDimensions.h>
namespace bpp
{
/**
* @brief A listener which capture NaN function values and throw an exception in case this happens.
*/
class NaNListener: public OptimizationListener
{
private:
Optimizer* optimizer_;
Function* function_;
public:
NaNListener(Optimizer* optimizer, Function* function): optimizer_(optimizer), function_(function) {}
NaNListener(const NaNListener& lr):
optimizer_(lr.optimizer_),
function_(lr.function_)
{}
NaNListener& operator=(const NaNListener& lr)
{
optimizer_ = lr.optimizer_;
function_ = lr.function_;
return *this;
}
public:
void optimizationInitializationPerformed(const OptimizationEvent &event) {}
void optimizationStepPerformed(const OptimizationEvent &event) throw (Exception)
{
if (isnan(optimizer_->getFunction()->getValue()))
{
cerr << "Oups... something abnormal happened!" << endl;
function_->getParameters().printParameters(cerr);
throw Exception("Optimization failed because likelihood function returned NaN.");
}
}
bool listenerModifiesParameters () const { return false; }
};
/**
* @brief Listener used internally by the optimizeTreeNNI method.
*/
class NNITopologyListener :
public virtual TopologyListener
{
private:
NNITopologySearch* topoSearch_;
ParameterList parameters_;
double tolerance_;
OutputStream* messenger_;
OutputStream* profiler_;
unsigned int verbose_;
unsigned int optimizeCounter_;
unsigned int optimizeNumerical_;
std::string optMethod_;
unsigned int nStep_;
bool reparametrization_;
public:
/**
* @brief Build a new NNITopologyListener object.
*
* This listener listens to a NNITopologySearch object, and optimizes numerical parameters every *n* topological movements.
* Optimization is performed using the optimizeNumericalParameters method (see there documentation for more details).
*
* @param ts The NNITopologySearch object attached to this listener.
* @param parameters The list of parameters to optimize. Use tl->getIndependentParameters() in order to estimate all parameters.
* @param tolerance Tolerance to use during optimizaton.
* @param messenger Where to output messages.
* @param profiler Where to output optimization steps.
* @param verbose Verbose level during optimization.
* @param optMethod Optimization method to use.
* @param nStep The number of optimization steps to perform.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
*/
NNITopologyListener(
NNITopologySearch* ts,
const ParameterList& parameters,
double tolerance,
OutputStream* messenger,
OutputStream* profiler,
unsigned int verbose,
const std::string& optMethod,
unsigned int nStep,
bool reparametrization) :
topoSearch_(ts),
parameters_(parameters),
tolerance_(tolerance),
messenger_(messenger),
profiler_(profiler),
verbose_(verbose),
optimizeCounter_(0),
optimizeNumerical_(1),
optMethod_(optMethod),
nStep_(nStep),
reparametrization_(reparametrization) {}
NNITopologyListener(const NNITopologyListener& tl) :
topoSearch_(tl.topoSearch_),
parameters_(tl.parameters_),
tolerance_(tl.tolerance_),
messenger_(tl.messenger_),
profiler_(tl.profiler_),
verbose_(tl.verbose_),
optimizeCounter_(tl.optimizeCounter_),
optimizeNumerical_(tl.optimizeNumerical_),
optMethod_(tl.optMethod_),
nStep_(tl.nStep_),
reparametrization_(tl.reparametrization_)
{}
NNITopologyListener& operator=(const NNITopologyListener& tl)
{
topoSearch_ = tl.topoSearch_;
parameters_ = tl.parameters_;
tolerance_ = tl.tolerance_;
messenger_ = tl.messenger_;
profiler_ = tl.profiler_;
verbose_ = tl.verbose_;
optimizeCounter_ = tl.optimizeCounter_;
optimizeNumerical_ = tl.optimizeNumerical_;
optMethod_ = tl.optMethod_;
nStep_ = tl.nStep_;
reparametrization_ = tl.reparametrization_;
return *this;
}
NNITopologyListener* clone() const { return new NNITopologyListener(*this); }
virtual ~NNITopologyListener() {}
public:
void topologyChangeTested(const TopologyChangeEvent& event) {}
void topologyChangeSuccessful(const TopologyChangeEvent& event);
void setNumericalOptimizationCounter(unsigned int c) { optimizeNumerical_ = c; }
};
/**
* @brief Listener used internally by the optimizeTreeNNI2 method.
*/
class NNITopologyListener2 :
public TopologyListener
{
private:
NNITopologySearch* topoSearch_;
ParameterList parameters_;
double tolerance_;
OutputStream* messenger_;
OutputStream* profiler_;
unsigned int verbose_;
unsigned int optimizeCounter_;
unsigned int optimizeNumerical_;
std::string optMethod_;
bool reparametrization_;
public:
/**
* @brief Build a new NNITopologyListener2 object.
*
* This listener listens to a NNITopologySearch object, and optimizes numerical parameters every *n* topological movements.
* Optimization is performed using the optimizeNumericalParameters2 method (see there documentation for more details).
*
* @param ts The NNITopologySearch object attached to this listener.
* @param parameters The list of parameters to optimize. Use ts->getIndependentParameters() in order to estimate all parameters.
* @param tolerance Tolerance to use during optimizaton.
* @param messenger Where to output messages.
* @param profiler Where to output optimization steps.
* @param verbose Verbose level during optimization.
* @param optMethod Optimization method to use.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
*/
NNITopologyListener2(
NNITopologySearch* ts,
const ParameterList& parameters,
double tolerance,
OutputStream* messenger,
OutputStream* profiler,
unsigned int verbose,
const std::string& optMethod,
bool reparametrization) :
topoSearch_(ts),
parameters_(parameters),
tolerance_(tolerance),
messenger_(messenger),
profiler_(profiler),
verbose_(verbose),
optimizeCounter_(0),
optimizeNumerical_(1),
optMethod_(optMethod),
reparametrization_(reparametrization) {}
NNITopologyListener2(const NNITopologyListener2& tl) :
topoSearch_(tl.topoSearch_),
parameters_(tl.parameters_),
tolerance_(tl.tolerance_),
messenger_(tl.messenger_),
profiler_(tl.profiler_),
verbose_(tl.verbose_),
optimizeCounter_(tl.optimizeCounter_),
optimizeNumerical_(tl.optimizeNumerical_),
optMethod_(tl.optMethod_),
reparametrization_(tl.reparametrization_)
{}
NNITopologyListener2& operator=(const NNITopologyListener2& tl)
{
topoSearch_ = tl.topoSearch_;
parameters_ = tl.parameters_;
tolerance_ = tl.tolerance_;
messenger_ = tl.messenger_;
profiler_ = tl.profiler_;
verbose_ = tl.verbose_;
optimizeCounter_ = tl.optimizeCounter_;
optimizeNumerical_ = tl.optimizeNumerical_;
optMethod_ = tl.optMethod_;
reparametrization_ = tl.reparametrization_;
return *this;
}
NNITopologyListener2* clone() const { return new NNITopologyListener2(*this); }
virtual ~NNITopologyListener2() {}
public:
void topologyChangeTested(const TopologyChangeEvent& event) {}
void topologyChangeSuccessful(const TopologyChangeEvent& event);
void setNumericalOptimizationCounter(unsigned int c) { optimizeNumerical_ = c; }
};
/**
* @brief Optimization methods for phylogenetic inference.
*
* This class provides optimization methods for phylogenetics.
* Parameters of the optimization methods are set to work with TreeLikelihood
* object. Some non trivial parameters are left to the user choice (tolerance, maximum
* number of function evaluation, output streams).
*/
class OptimizationTools
{
public:
OptimizationTools();
virtual ~OptimizationTools();
public:
static std::string OPTIMIZATION_GRADIENT;
static std::string OPTIMIZATION_NEWTON;
static std::string OPTIMIZATION_BRENT;
static std::string OPTIMIZATION_BFGS;
/**
* @brief Optimize numerical parameters (branch length, substitution model & rate distribution) of a TreeLikelihood function.
*
* Uses Newton's method for branch length and Brent or BFGS one dimensional method for other parameters.
*
* A condition over function values is used as a stop condition for the algorithm.
*
* @see BrentOneDimension, BFGSMultiDimensions
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use tl->getIndependentParameters() in order to estimate all parameters.
* @param listener A pointer toward an optimization listener, if needed.
* @param nstep The number of progressive steps to perform (see NewtonBrentMetaOptimizer). 1 means full precision from start.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
* @param verbose The verbose level.
* @param optMethodDeriv Optimization type for derivable parameters (first or second order derivatives).
* @see OPTIMIZATION_NEWTON, OPTIMIZATION_GRADIENT
* @param optMethodModel Optimization type for model parameters (Brent or BFGS).
* @see OPTIMIZATION_BRENT, OPTIMIZATION_BFGS
* @throw Exception any exception thrown by the Optimizer.
*/
static unsigned int optimizeNumericalParameters(
DiscreteRatesAcrossSitesTreeLikelihood* tl,
const ParameterList& parameters,
OptimizationListener* listener = 0,
unsigned int nstep = 1,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
bool reparametrization = false,
unsigned int verbose = 1,
const std::string& optMethodDeriv = OPTIMIZATION_NEWTON,
const std::string& optMethodModel = OPTIMIZATION_BRENT)
throw (Exception);
/**
* @brief Optimize numerical parameters (branch length, substitution model & rate distribution) of a TreeLikelihood function.
*
* Uses Newton's method for all parameters, branch length derivatives are computed analytically, derivatives for other parameters numerically.
*
* @see PseudoNewtonOptimizer
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use tl->getIndependentParameters() in order to estimate all parameters.
* @param listener A pointer toward an optimization listener, if needed.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
* @param useClock Tell if branch lengths have to be optimized under a global molecular clock constraint.
* @param verbose The verbose level.
* @param optMethodDeriv Optimization type for derivable parameters (first or second order derivatives).
* @see OPTIMIZATION_NEWTON, OPTIMIZATION_GRADIENT
* @throw Exception any exception thrown by the Optimizer.
*/
static unsigned int optimizeNumericalParameters2(
DiscreteRatesAcrossSitesTreeLikelihood* tl,
const ParameterList& parameters,
OptimizationListener* listener = 0,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
bool reparametrization = false,
bool useClock = false,
unsigned int verbose = 1,
const std::string& optMethodDeriv = OPTIMIZATION_NEWTON)
throw (Exception);
/**
* @brief Optimize branch lengths parameters of a TreeLikelihood function.
*
* Uses Newton's method.
*
* A condition over function values is used as a stop condition for the algorithm.
*
* @see NewtonBrentMetaOptimizer
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. The intersection of branch length parameters and the input set will be used. Use tl->getBranchLengthsParameters() in order to estimate all branch length parameters.
* @param listener A pointer toward an optimization listener, if needed.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param verbose The verbose level.
* @param optMethodDeriv Optimization type for derivable parameters (first or second order derivatives).
* @see OPTIMIZATION_NEWTON, OPTIMIZATION_GRADIENT
* @throw Exception any exception thrown by the Optimizer.
*/
static unsigned int optimizeBranchLengthsParameters(
DiscreteRatesAcrossSitesTreeLikelihood* tl,
const ParameterList& parameters,
OptimizationListener* listener = 0,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
unsigned int verbose = 1,
const std::string& optMethodDeriv = OPTIMIZATION_NEWTON)
throw (Exception);
/**
* @brief Optimize numerical parameters assuming a global clock (branch heights, substitution model & rate distribution) of a ClockTreeLikelihood function.
*
* Uses Newton or conjugate gradient method for branch length and Brent's one dimensional method for other parameters
* (NewtonBrentMetaOptimizer).
* Derivatives are computed analytically.
*
* A condition over function values is used as a stop condition for the algorithm.
*
* @see NewtonBrentMetaOptimizer
*
* @param cl A pointer toward the ClockTreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use cl->getIndependentParameters() in order to estimate all parameters.
* @param listener A pointer toward an optimization listener, if needed.
* @param nstep The number of progressive steps to perform (see NewtonBrentMetaOptimizer). 1 means full precision from start.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param verbose The verbose level.
* @param optMethodDeriv Optimization type for derivable parameters (first or second order derivatives).
* @see OPTIMIZATION_NEWTON, OPTIMIZATION_GRADIENT
* @throw Exception any exception thrown by the Optimizer.
* @deprecated See optimizeNumericalParameters2 as a more general replacement.
*/
static unsigned int optimizeNumericalParametersWithGlobalClock(
DiscreteRatesAcrossSitesClockTreeLikelihood* cl,
const ParameterList& parameters,
OptimizationListener* listener = 0,
unsigned int nstep = 1,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
unsigned int verbose = 1,
const std::string& optMethodDeriv = OPTIMIZATION_GRADIENT)
throw (Exception);
/**
* @brief Optimize numerical parameters assuming a global clock (branch heights, substitution model & rate distribution) of a ClockTreeLikelihood function.
*
* Uses Newton or conjugate gradient method for all parameters, branch length derivatives are computed analytically, derivatives for other parameters numerically.
*
* @see PseudoNewtonOptimizer
*
* @param cl A pointer toward the ClockTreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use cl->getIndependentParameters() in order to estimate all parameters.
* @param listener A pointer toward an optimization listener, if needed.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param verbose The verbose level.
* @param optMethodDeriv Optimization type for derivable parameters (first or second order derivatives).
* @see OPTIMIZATION_NEWTON, OPTIMIZATION_GRADIENT
* @throw Exception any exception thrown by the Optimizer.
* @deprecated See optimizeNumericalParameters2 as a more general replacement.
*/
static unsigned int optimizeNumericalParametersWithGlobalClock2(
DiscreteRatesAcrossSitesClockTreeLikelihood* cl,
const ParameterList& parameters,
OptimizationListener* listener = 0,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
unsigned int verbose = 1,
const std::string& optMethodDeriv = OPTIMIZATION_GRADIENT)
throw (Exception);
private:
class ScaleFunction :
public virtual Function,
public ParametrizableAdapter
{
private:
TreeLikelihood* tl_;
mutable ParameterList brLen_, lambda_;
public:
ScaleFunction(TreeLikelihood* tl);
ScaleFunction(const ScaleFunction& sf) :
tl_(sf.tl_),
brLen_(sf.brLen_),
lambda_(sf.lambda_)
{}
ScaleFunction& operator=(const ScaleFunction& sf)
{
tl_ = sf.tl_;
brLen_ = sf.brLen_;
lambda_ = sf.lambda_;
return *this;
}
virtual ~ScaleFunction();
#ifndef NO_VIRTUAL_COV
ScaleFunction*
#else
Clonable*
#endif
clone() const { return new ScaleFunction(*this); }
public:
void setParameters(const ParameterList& lambda) throw (ParameterNotFoundException, ConstraintException);
double getValue() const throw (ParameterException);
const ParameterList& getParameters() const throw (Exception) { return lambda_; }
const Parameter& getParameter(const std::string& name) const throw (ParameterNotFoundException)
{
if (name == "lambda") return lambda_[0];
else throw ParameterNotFoundException("ScaleFunction::getParameter.", name);
}
double getParameterValue(const std::string& name) const throw (ParameterNotFoundException)
{
return lambda_.getParameter(name).getValue();
}
size_t getNumberOfParameters() const { return 1; }
size_t getNumberOfIndependentParameters() const { return 1; }
};
public:
/**
* @brief Optimize the scale of a TreeLikelihood.
*
* This method only works on branch lengths parameters.
* It multiply all branch length by a factor 'x' which is optimized
* using Brent's algorithm in one dimension.
* This method may be usefull for scaling a tree whose branch lengths
* come from the Neighbor-Joining algorithm for instance.
*
* Practically, and contrarily to what one may expect, this does not
* speed up the optimization!
*
* A condition over parameters is used as a stop condition for the algorithm.
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param tolerance The tolerance to use in the algorithm.
* @param tlEvalMax The maximum number of function evaluations.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param verbose The verbose level.
* @throw Exception any exception thrown by the optimizer.
*/
static unsigned int optimizeTreeScale(
TreeLikelihood* tl,
double tolerance = 0.000001,
int tlEvalMax = 1000000,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
unsigned int verbose = 1)
throw (Exception);
/**
* @brief Optimize all parameters from a TreeLikelihood object, including tree topology using Nearest Neighbor Interchanges.
*
* This function takes as input a TreeLikelihood object implementing the NNISearchable interface.
*
* Details:
* A NNITopologySearch object is instanciated and is associated an additional TopologyListener.
* This listener is used to re-estimate numerical parameters after one or several topology change.
* By default, the PHYML option is used for the NNITopologySearch object, and numerical parameters are re-estimated
* every 4 NNI runs (as in the phyml software).
*
* The optimizeNumericalParameters method is used for estimating numerical parameters.
* The tolerance passed to this function is specified as input parameters.
* They are generally very high to avoid local optima.
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use tl->getIndependentParameters() in order to estimate all parameters.
* @param optimizeNumFirst Tell if we must optimize numerical parameters before searching topology.
* @param tolBefore The tolerance to use when estimating numerical parameters before topology search (if optimizeNumFirst is set to 'true').
* @param tolDuring The tolerance to use when estimating numerical parameters during the topology search.
* @param tlEvalMax The maximum number of function evaluations.
* @param numStep Number of NNI rounds before re-estimating numerical parameters.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
* @param verbose The verbose level.
* @param optMethod Option passed to optimizeNumericalParameters.
* @param nStep Option passed to optimizeNumericalParameters.
* @param nniMethod NNI algorithm to use.
* @return A pointer toward the final likelihood object.
* This pointer may be the same as passed in argument (tl), but in some cases the algorithm
* clone this object. We may change this bahavior in the future...
* You hence should write something like
* @code
* tl = OptimizationTools::optimizeTreeNNI(tl, ...);
* @endcode
* @throw Exception any exception thrown by the optimizer.
*/
static NNIHomogeneousTreeLikelihood* optimizeTreeNNI(
NNIHomogeneousTreeLikelihood* tl,
const ParameterList& parameters,
bool optimizeNumFirst = true,
double tolBefore = 100,
double tolDuring = 100,
int tlEvalMax = 1000000,
unsigned int numStep = 1,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
bool reparametrization = false,
unsigned int verbose = 1,
const std::string& optMethod = OptimizationTools::OPTIMIZATION_NEWTON,
unsigned int nStep = 1,
const std::string& nniMethod = NNITopologySearch::PHYML)
throw (Exception);
/**
* @brief Optimize all parameters from a TreeLikelihood object, including tree topology using Nearest Neighbor Interchanges.
*
* This function takes as input a TreeLikelihood object implementing the NNISearchable interface.
*
* Details:
* A NNITopologySearch object is instanciated and is associated an additional TopologyListener.
* This listener is used to re-estimate numerical parameters after one or several topology change.
* By default, the PHYML option is used for the NNITopologySearch object, and numerical parameters are re-estimated
* every 4 NNI runs (as in the phyml software).
*
* The optimizeNumericalParameters2 method is used for estimating numerical parameters.
* The tolerance passed to this function is specified as input parameters.
* They are generally very high to avoid local optima.
*
* @param tl A pointer toward the TreeLikelihood object to optimize.
* @param parameters The list of parameters to optimize. Use tl->getIndependentParameters() in order to estimate all parameters.
* @param optimizeNumFirst Tell if we must optimize numerical parameters before searching topology.
* @param tolBefore The tolerance to use when estimating numerical parameters before topology search (if optimizeNumFirst is set to 'true').
* @param tolDuring The tolerance to use when estimating numerical parameters during the topology search.
* @param tlEvalMax The maximum number of function evaluations.
* @param numStep Number of NNI rounds before re-estimating numerical parameters.
* @param messageHandler The massage handler.
* @param profiler The profiler.
* @param reparametrization Tell if parameters should be transformed in order to remove constraints.
* This can improve optimization, but is a bit slower.
* @param verbose The verbose level.
* @param optMethod Option passed to optimizeNumericalParameters2.
* @param nniMethod NNI algorithm to use.
* @return A pointer toward the final likelihood object.
* This pointer may be the same as passed in argument (tl), but in some cases the algorithm
* clone this object. We may change this bahavior in the future...
* You hence should write something like
* @code
* tl = OptimizationTools::optimizeTreeNNI2(tl, ...);
* @endcode
* @throw Exception any exception thrown by the optimizer.
*/
static NNIHomogeneousTreeLikelihood* optimizeTreeNNI2(
NNIHomogeneousTreeLikelihood* tl,
const ParameterList& parameters,
bool optimizeNumFirst = true,
double tolBefore = 100,
double tolDuring = 100,
int tlEvalMax = 1000000,
unsigned int numStep = 1,
OutputStream* messageHandler = ApplicationTools::message,
OutputStream* profiler = ApplicationTools::message,
bool reparametrization = false,
unsigned int verbose = 1,
const std::string& optMethod = OptimizationTools::OPTIMIZATION_NEWTON,
const std::string& nniMethod = NNITopologySearch::PHYML)
throw (Exception);
/**
* @brief Optimize tree topology from a DRTreeParsimonyScore using Nearest Neighbor Interchanges.
*
* @param tp A pointer toward the DRTreeParsimonyScore object to optimize.
* @param verbose The verbose level.
* @return A pointer toward the final parsimony score object.
* This pointer may be the same as passed in argument (tl), but in some cases the algorithm
* clone this object. We may change this bahavior in the future...
* You hence should write something like
* @code
* tp = OptimizationTools::optimizeTreeNNI(tp, ...);
* @endcode
*/
static DRTreeParsimonyScore* optimizeTreeNNI(
DRTreeParsimonyScore* tp,
unsigned int verbose = 1);
/**
* @brief Estimate a distance matrix using maximum likelihood.
*
* This method estimate a distance matrix using a DistanceEstimation object.
* The main issue here is to estimate non-branch lengths parameters, as substitution model and rate distribution parameters.
* Twoe options are provideed here:
* - DISTANCEMETHOD_INIT (default) keep parameters to there initial value,
* - DISTANCEMETHOD_PAIRWISE estimated parameters in a pairwise manner, which is standard but not that satisfying...
*
* @param estimationMethod The distance estimation object to use.
* @param parametersToIgnore A list of parameters to ignore while optimizing parameters.
* @param param String describing the type of optimization to use.
* @param verbose Verbose level.
*
* @see buildDistanceTree for a procedure to jointly estimate the distance matrix and underlying tree.
*/
static DistanceMatrix* estimateDistanceMatrix(
DistanceEstimation& estimationMethod,
const ParameterList& parametersToIgnore,
const std::string& param = DISTANCEMETHOD_INIT,
unsigned int verbose = 0) throw (Exception);
/**
* @brief Build a tree using a distance method.
*
* This method estimate a distance matrix using a DistanceEstimation object, and then builds the phylogenetic tree using a AgglomerativeDistanceMethod object.
* The main issue here is to estimate non-branch lengths parameters, as substitution model and rate distribution parameters.
* Three options are provideed here:
* - DISTANCEMETHOD_INIT (default) keep parameters to there initial value,
* - DISTANCEMETHOD_PAIRWISE estimated parameters in a pairwise manner, which is standard but not that satisfying...
* - DISTANCEMETHOD_ITERATIONS uses Ninio et al's iterative algorithm, which uses Maximum Likelihood to estimate these parameters, and then update the distance matrix.
* Ninio M, Privman E, Pupko T, Friedman N.
* Phylogeny reconstruction: increasing the accuracy of pairwise distance estimation using Bayesian inference of evolutionary rates.
* Bioinformatics. 2007 Jan 15;23(2):e136-41.
*
* @param estimationMethod The distance estimation object to use.
* @param reconstructionMethod The tree reconstruction object to use.
* @param parametersToIgnore A list of parameters to ignore while optimizing parameters.
* @param optimizeBrLen Tell if branch lengths should be optimized together with other parameters. This may lead to more accurate parameter estimation, but is slower.
* @param param String describing the type of optimization to use.
* @param tolerance Threshold on likelihood for stopping the iterative procedure. Used only with param=DISTANCEMETHOD_ITERATIONS.
* @param tlEvalMax Maximum number of likelihood computations to perform when optimizing parameters. Used only with param=DISTANCEMETHOD_ITERATIONS.
* @param profiler Output stream used by optimizer. Used only with param=DISTANCEMETHOD_ITERATIONS.
* @param messenger Output stream used by optimizer. Used only with param=DISTANCEMETHOD_ITERATIONS.
* @param verbose Verbose level.
*/
static TreeTemplate<Node>* buildDistanceTree(
DistanceEstimation& estimationMethod,
AgglomerativeDistanceMethod& reconstructionMethod,
const ParameterList& parametersToIgnore,
bool optimizeBrLen = false,
const std::string& param = DISTANCEMETHOD_INIT,
double tolerance = 0.000001,
unsigned int tlEvalMax = 1000000,
OutputStream* profiler = 0,
OutputStream* messenger = 0,
unsigned int verbose = 0) throw (Exception);
public:
static std::string DISTANCEMETHOD_INIT;
static std::string DISTANCEMETHOD_PAIRWISE;
static std::string DISTANCEMETHOD_ITERATIONS;
};
} // end of namespace bpp.
#endif // _OPTIMIZATIONTOOLS_H_
|