This file is indexed.

/usr/include/alberta/alberta.h is in libalberta-dev 3.0.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
/*******************************************************************************
 * ALBERTA:  an Adaptive multi Level finite element toolbox using
 *           Bisectioning refinement and Error control by Residual
 *           Techniques for scientific Applications
 *
 * file: alberta.h
 *
 * description: public header file of the ALBERTA package
 *
 *******************************************************************************
 *
 *  authors:   Alfred Schmidt
 *             Zentrum fuer Technomathematik
 *             Fachbereich 3 Mathematik/Informatik
 *             Universitaet Bremen
 *             Bibliothekstr. 2
 *             D-28359 Bremen, Germany
 *
 *             Kunibert G. Siebert
 *             Institut fuer Mathematik
 *             Universitaet Augsburg
 *             Universitaetsstr. 14
 *             D-86159 Augsburg, Germany
 *
 *             Daniel Koester
 *             Institut fuer Mathematik
 *             Universitaet Augsburg
 *             Universitaetsstr. 14
 *             D-86159 Augsburg, Germany
 *
 *             Claus-Justus Heine
 *             Abteilung fuer Angewandte Mathematik
 *             Universitaet Freiburg
 *             Hermann-Herder-Strasse 10
 *             79104 Freiburg, Germany
 *
 *  http://www.alberta-fem.de
 *
 *  (c) by A. Schmidt and K.G. Siebert (1996-2005),
 *                          D. Koester (2002-2005),
 *                         C.-J. Heine (2002-2009).
 *
 ******************************************************************************/

/*******************************************************************************
 *  Header-File for ALBERTA utilities
 ******************************************************************************/
#ifndef _ALBERTA_H_
#define _ALBERTA_H_

#include <alberta/alberta_util.h>

#ifdef __cplusplus
extern "C" {
#elif 0
} /* some editors try to indent because of the brace above */
#endif

/* The version string used for disk-IO. Note the space after the
 * version number, the version number is expected to be of the forn
 * "X.Y " or "X.YZ". The IO version must not necessarily relate to the
 * version of the library.
 */

#define ALBERTA_MAGIC   "ALBERTA: Version "
#define ALBERTA_VERSION ALBERTA_MAGIC"2.3 "

/*******************************************************************************
 *  Definition of the space dimension and of parameters depending on the
 *  space dimension:
 *
 *  DIM_OF_WORLD:   space dimension
 *
 *  The ?D-suffix signals different simplex dimensions (formerly ==DIM).
 ******************************************************************************/

#ifndef DIM_OF_WORLD
# error DIM_OF_WORLD UNDEFINED
#endif

#ifndef ALBERTA_DEBUG
/* #warning is a GNU extension, and there is no way to get at compiler
 * switches like -Werror form here, so do NOT use it.
 */
/* # warning ALBERTA_DEBUG WAS NOT DEFINED! DEFAULTING TO 0. */
# define ALBERTA_DEBUG 0
#endif

/* meshes of at most this dimension are supported. This macro can
 * be use to lay-out static arrays.
 */
#define DIM_LIMIT 3

/* The master dimension limit, meshes of higher dimension are not
 * supported.
 */
#define DIM_MAX MIN(DIM_OF_WORLD, DIM_LIMIT)

/* Various constants for dimension dependent geometrical quantities
 *
 * A note about the terminology: caused by historic reasons the
 * terminology for simplexes is of naive nature: 1d and 2d simplexes
 * do not have faces (unluckily). Instead, 1d simplexes have vertices
 * and 2d simplexes have edges. Of course, 3d simplexes also have
 * vertices and edges, but: those are _very_ different from 1d and 2d
 * vertices and edges.
 *
 * The best solution would be to reserve the name "face" for a
 * co-dimension one face-simplex. Unluckily, there does not seem to be
 * consense about this. Therefore, the naive ALBERTA notion of "face"
 * is maintained, but supplemented by the notion of a "wall", which
 * denotes a co-dimension one (1) face-simplex. Whenever the notation
 * "wall" is used somewhere in ALBERTA then it denotes stuff
 * concerning co-dimension 1 simplexes (i.e. "faces"). Like WALL_QUAD,
 * EL_INFO->wall_bound, wall-transformation (for periodic boundaries)
 * etc.
 *
 * In my opionion this is a FIXME. "face" should be used everywhere to
 * denote a co-dimension 1 face-simplex. In German "Face" means "Seite".
 *
 * cH.
 */
#define N_VERTICES(DIM)   ((DIM)+1)
#define N_EDGES(DIM)      ((DIM)*((DIM)+1)/2)
#define N_WALLS(DIM)      ((DIM)+1) /* number of codim 1 subsimplexes */
#define N_FACES(DIM)      (((DIM) == 3) * N_WALLS(DIM))
#define N_NEIGH(DIM)      (((DIM) != 0) * N_WALLS(DIM))
#define N_LAMBDA(DIM)     N_VERTICES(DIM)
#define DIM_FAC(DIM)      ((DIM) < 2 ? 1 : (DIM) == 2 ? 2 : 6)

#define VERTEX_OF_EDGE(DIM, EDGE)		\
  ((DIM) == 1					\
   ? vertex_of_edge_1d[(EDGE)]			\
   : ((DIM == 2)				\
      ? vertex_of_edge_2d[(EDGE)]		\
      : vertex_of_edge_3d[(EDGE)]))

#define VERTEX_OF_WALL(DIM, WALL)		\
  ((DIM) == 1					\
   ? vertex_of_wall_1d[(WALL)]			\
   : ((DIM == 2)				\
      ? vertex_of_wall_2d[(WALL)]		\
      : vertex_of_wall_3d[(WALL)]))

#define N_VERTICES_0D     N_VERTICES(0)
#define N_EDGES_0D        N_EDGES(0)
#define N_FACES_0D        N_FACES(0)
#define N_NEIGH_0D        N_NEIGH(0)
#define N_WALLS_0D        N_WALLS(0)
#define N_LAMBDA_0D       N_LAMBDA(0)
#define DIM_FAC_0D        DIM_FAC(0)
#define VERTEX_OF_EDGE_0D NULL
#define VERTEX_OF_WALL_0D NULL

#define N_VERTICES_1D     N_VERTICES(1)
#define N_EDGES_1D        N_EDGES(1)
#define N_FACES_1D        N_FACES(1)
#define N_NEIGH_1D        N_NEIGH(1)
#define N_WALLS_1D        N_WALLS(1)
#define N_LAMBDA_1D       N_LAMBDA(1)
#define DIM_FAC_1D        DIM_FAC(1)
#define VERTEX_OF_EDGE_1D(E) VERTEX_OF_EDGE(1, E)
#define VERTEX_OF_WALL_1D(W) VERTEX_OF_WALL(1, W)

#define N_VERTICES_2D     N_VERTICES(2)
#define N_EDGES_2D        N_EDGES(2)
#define N_FACES_2D        N_FACES(2)
#define N_NEIGH_2D        N_NEIGH(2)
#define N_WALLS_2D        N_WALLS(2)
#define N_LAMBDA_2D       N_LAMBDA(2)
#define DIM_FAC_2D        DIM_FAC(2)
#define VERTEX_OF_EDGE_2D(E) VERTEX_OF_EDGE(2, E)
#define VERTEX_OF_WALL_2D(W) VERTEX_OF_WALL(2, W)

#define N_VERTICES_3D     N_VERTICES(3)
#define N_EDGES_3D        N_EDGES(3)
#define N_FACES_3D        N_FACES(3)
#define N_NEIGH_3D        N_NEIGH(3)
#define N_WALLS_3D        N_WALLS(3)
#define N_LAMBDA_3D       N_LAMBDA(3)
#define DIM_FAC_3D        DIM_FAC(3)
#define VERTEX_OF_EDGE_3D(E) VETEX_OF_EDGE(3, E)
#define VERTEX_OF_WALL_3D(W) VERTEX_OF_WALL(3, W)

/* The maximal number for a given DIM_OF_WORLD.
 */
#define N_LAMBDA_MAX    N_VERTICES(DIM_MAX)
#define N_VERTICES_MAX  N_VERTICES(DIM_MAX)
#define N_EDGES_MAX     N_EDGES(DIM_MAX)
#define N_FACES_MAX     N_FACES(DIM_MAX)
#define N_NEIGH_MAX     N_NEIGH(DIM_MAX)
#define N_WALLS_MAX     N_WALLS(DIM_MAX)
#define DIM_FAC_MAX     DIM_FAC(DIM_MAX)

/* The maximal number which can possibly occur within ALBERTA. These
 * macros can be used to layout static arrays. Of course, DIM_LIMIT is
 * hard-wired to 3, and that will not change.
 */
#define N_LAMBDA_LIMIT    N_VERTICES(DIM_LIMIT)
#define N_VERTICES_LIMIT  N_VERTICES(DIM_LIMIT)
#define N_EDGES_LIMIT     N_EDGES(DIM_LIMIT)
#define N_FACES_LIMIT     N_FACES(DIM_LIMIT)
#define N_NEIGH_LIMIT     N_NEIGH(DIM_LIMIT)
#define N_WALLS_LIMIT     N_WALLS(DIM_LIMIT)
#define DIM_FAC_LIMIT     DIM_FAC(DIM_LIMIT)

/* As N_LAMBDA depends on DIM_MAX, we provide some convenience
 * macros for initializing arrays etc.
 */
#if DIM_MAX == 0
# define INIT_BARY_0D(a)           { 1.0 }
# define INIT_BARY_1D(a, b)        { 1.0 }
# define INIT_BARY_2D(a, b, c)     { 1.0 }
# define INIT_BARY_3D(a, b, c, d)  { 1.0 }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_0D(a)
#elif DIM_MAX == 1
# define INIT_BARY_0D(a)           { (a), 0.0 }
# define INIT_BARY_1D(a, b)        { (a), (b) }
# define INIT_BARY_2D(a, b, c)     { (a), (b) }
# define INIT_BARY_3D(a, b, c, d)  { (a), (b) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_1D(a, b)
#elif DIM_MAX == 2
# define INIT_BARY_0D(a)           { (a), 0.0, 0.0 }
# define INIT_BARY_1D(a, b)        { (a), (b), 0.0 }
# define INIT_BARY_2D(a, b, c)     { (a), (b), (c) }
# define INIT_BARY_3D(a, b, c, d)  { (a), (b), (c) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_2D(a, b, c)
#elif DIM_MAX == 3
# define INIT_BARY_0D(a)           { (a), 0.0, 0.0, 0.0 }
# define INIT_BARY_1D(a, b)        { (a), (b), 0.0, 0.0 }
# define INIT_BARY_2D(a, b, c)     { (a), (b), (c), 0.0 }
# define INIT_BARY_3D(a, b, c, d)  { (a), (b), (c), (d) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_3D(a, b, c, d)
#else
# error Unsupported DIM_MAX
#endif

/* Various matrix and vector types. Please use them as apropriate.
 *
 * A famous fortune reading (grin):
 *
 * The primary purpose of the DATA statement is to give names to
 * constants; instead of referring to pi as 3.141592653589793 at every
 * appearance, the variable PI can be given that value with a DATA
 * statement and used instead of the longer form of the constant.
 * This also simplifies modifying the program, should the value of pi
 * change.
 *
 *              -- FORTRAN manual for Xerox Computers
 *
 */
typedef REAL            REAL_B[N_LAMBDA_MAX];
typedef REAL_B          REAL_BB[N_LAMBDA_MAX];
typedef REAL            REAL_D[DIM_OF_WORLD];
typedef REAL_D          REAL_DD[DIM_OF_WORLD];
typedef REAL_D          REAL_BD[N_LAMBDA_MAX];
typedef REAL_BD         REAL_BBD[N_LAMBDA_MAX];
typedef REAL_DD         REAL_DDD[DIM_OF_WORLD];
typedef REAL_DD         REAL_BDD[N_LAMBDA_MAX];
typedef REAL_BDD        REAL_BBDD[N_LAMBDA_MAX];
typedef REAL_B          REAL_DB[DIM_OF_WORLD];
typedef REAL_BB         REAL_DBB[DIM_OF_WORLD];
typedef REAL_BB         REAL_BBB[N_LAMBDA_MAX];
typedef REAL_BBB        REAL_BBBB[N_LAMBDA_MAX];
typedef REAL_BBB        REAL_DBBB[DIM_OF_WORLD];
typedef REAL_BBBB       REAL_DBBBB[DIM_OF_WORLD];
typedef REAL_DB         REAL_BDB[N_LAMBDA_MAX];
typedef REAL_DBB        REAL_BDBB[N_LAMBDA_MAX];

/******************************************************************************/

/* The maximum number of quadrature points and local basis functions
 * for each dimension. Useful to define C99 variable size arrays.
 * Note that those fields are intentionlly are NOT labeled "const", it
 * is possible to generate quadrature formulas of arbitrary degree
 * using "get_product_quad(). The INIT_ELEMENT() frame-work provides
 * means to introduce quadratures with per-element initialization,
 * etc. An application may install new quadrature rules using
 * "register_quadrature()" or "add_quadrature()". Similar thing hold
 * for basis functions.
 */
extern int n_quad_points_max[];
extern int n_bas_fcts_max[];

/*******************************************************************************
 *  access to element index via element or element_info structure
 ******************************************************************************/

#if ALBERTA_DEBUG
#define INDEX(el)   ((el) ? (el)->index : -1)
#else
#define INDEX(el)   -1
#endif

/*******************************************************************************
 *  access to leaf data (only for leaf elements)
 ******************************************************************************/

#define IS_LEAF_EL(el) (!(el)->child[0])
#define LEAF_DATA(el)  ((void *)(el)->child[1])

/*******************************************************************************
 *  boundary types
 ******************************************************************************/

#define INTERIOR      0
#define DIRICHLET     1
#define NEUMANN      -1

#define IS_NEUMANN(bound) ((bound) <= NEUMANN)
#define IS_DIRICHLET(bound) ((bound) >= DIRICHLET)
#define IS_INTERIOR(bound) ((bound) == 0)

/*******************************************************************************
 *  node types (indices in n_dof[] vectors, e.g.)
 ******************************************************************************/

/* Be careful: in 1D we have only VERTEX and CENTER nodes (although
 * that violates the usual geometric meaning of VERTEX/EDGE/FACE:
 * looking at the 2d/3d code one really would expect 1d CENTER DOFs to
 * be 1d EDGE DOFs, but this is not the case).
 *
 * So:
 *
 * 1d: VERTEX and CENTER, EL_INFO->wall_bound refers to VERTEX boundary type
 * 2d: VERTEX and CENTER and EDGE, EL_INFO->wall_bound refers to EDGEs
 * 3d: FACE comes into play, EL_INFO->wall_bound refers to FACEs
 */
enum node_types {
  VERTEX = 0,
  CENTER,
  EDGE,
  FACE,
  N_NODE_TYPES
};

/*******************************************************************************
 *  basic types of the grid
 ******************************************************************************/

typedef signed int              DOF;
typedef enum node_types         NODE_TYPES;
#define N_BNDRY_TYPES 256
typedef U_CHAR                  BNDRY_TYPE;
typedef BITS_256                BNDRY_FLAGS;
typedef struct el               EL;
typedef struct macro_el         MACRO_EL;
typedef struct el_info          EL_INFO;
typedef struct el_geom_cache    EL_GEOM_CACHE;
typedef struct rc_list_el       RC_LIST_EL;
typedef struct mesh             MESH;

typedef struct parametric       PARAMETRIC;
typedef struct traverse_stack   TRAVERSE_STACK;

typedef struct adapt_stat       ADAPT_STAT;
typedef struct adapt_instat     ADAPT_INSTAT;

#ifndef DOF_ADMIN_DEF
typedef struct dof_admin          DOF_ADMIN;
typedef struct dof_int_vec        DOF_INT_VEC;
typedef struct dof_dof_vec        DOF_DOF_VEC;
typedef struct dof_uchar_vec      DOF_UCHAR_VEC;
typedef struct dof_schar_vec      DOF_SCHAR_VEC;
typedef struct dof_real_vec       DOF_REAL_VEC;
typedef struct dof_real_d_vec     DOF_REAL_D_VEC;
typedef struct dof_real_dd_vec    DOF_REAL_DD_VEC;
typedef struct dof_ptr_vec        DOF_PTR_VEC;
typedef struct dof_real_vec_d     DOF_REAL_VEC_D;
typedef struct dof_matrix         DOF_MATRIX;
typedef struct matrix_row         MATRIX_ROW;
typedef struct matrix_row_real    MATRIX_ROW_REAL;
typedef struct matrix_row_real_d  MATRIX_ROW_REAL_D;
typedef struct matrix_row_real_dd MATRIX_ROW_REAL_DD;
#endif

typedef struct el_matrix        EL_MATRIX;
typedef struct el_int_vec       EL_INT_VEC;
typedef struct el_dof_vec       EL_DOF_VEC;
typedef struct el_uchar_vec     EL_UCHAR_VEC;
typedef struct el_schar_vec     EL_SCHAR_VEC;
typedef struct el_bndry_vec     EL_BNDRY_VEC;
typedef struct el_ptr_vec       EL_PTR_VEC;
typedef struct el_real_vec      EL_REAL_VEC;
typedef struct el_real_dd_vec   EL_REAL_DD_VEC;
typedef struct el_real_d_vec    EL_REAL_D_VEC;
typedef struct el_real_vec_d    EL_REAL_VEC_D;

typedef struct bas_fcts         BAS_FCTS;
typedef struct fe_space         FE_SPACE;

typedef struct quadrature       QUAD;
typedef struct quadrature       QUADRATURE;
typedef struct quad_fast        QUAD_FAST;

typedef struct quad_el_cache    QUAD_EL_CACHE;

typedef struct wall_quadrature WALL_QUAD;
typedef struct wall_quad_fast  WALL_QUAD_FAST;

typedef struct macro_data       MACRO_DATA;
typedef struct node_projection  NODE_PROJ;
typedef struct node_projection  NODE_PROJECTION;
typedef struct aff_trafo        AFF_TRAFO;

typedef struct dof_comp_hook    DOF_COMP_HOOK;

typedef REAL (*LOC_FCT_AT_QP)(const EL_INFO *el_info,
			      const QUAD *quad, int iq,
			      void *ud);
typedef const REAL *(*LOC_FCT_D_AT_QP)(REAL_D result,
				       const EL_INFO *el_info,
				       const QUAD *quad, int iq,
				       void *ud);
typedef const REAL *(*GRD_LOC_FCT_AT_QP)(REAL_D res,
					 const EL_INFO *el_info,
					 const REAL_BD Lambda,
					 const QUAD *quad, int iq,
					 void *ud);
typedef const REAL_D *(*GRD_LOC_FCT_D_AT_QP)(REAL_DD res,
					     const EL_INFO *el_info,
					     const REAL_BD Lambda,
					     const QUAD *quad, int iq,
					     void *ud);

typedef REAL (*FCT_AT_X)(const REAL_D x);
typedef const REAL *(*GRD_FCT_AT_X)(const REAL_D x, REAL_D result);
typedef const REAL_D *(*D2_FCT_AT_X)(const REAL_D x, REAL_DD result);

typedef const REAL    *(*FCT_D_AT_X)(const REAL_D x, REAL_D result);
typedef const REAL_D  *(*GRD_FCT_D_AT_X)(const REAL_D x, REAL_DD result);
typedef const REAL_DD *(*D2_FCT_D_AT_X)(const REAL_D x, REAL_DDD result);


/*******************************************************************************
 * Macro for calling STRUCT->init_element() routines, per element
 * initializers for (at least) QUAD, BAS_FCTS, QUAD_FAST, WALL_QUAD,
 * WALL_QUAD_FAST
 ******************************************************************************/

/* INIT_ELEMENT(el_info, object)
 *
 * The following convention holds:
 *
 * a) This macro evaluates to INIT_EL_TAG_DFLT when no
 *    element-initializer is present.
 *
 * b) An init_element() method MUST allow a NULL pointer for the
 *    el_info argument. If called with el_info == NULL the
 *    init_element() method must restore its default behaviour. The
 *    "default case" is what the implementation defines as default;
 *    for performance reasons the default case should be the one which
 *    applies to the majority of mesh elements.
 *
 * c) The return value of the init_element() method must be
 *    INIT_EL_TAG_DFLT for the default case.
 *
 * d) The return value of the init_element() method must be
 *    INIT_EL_TAG_NULL for the NULL case, meaning, e.g., the number of
 *    basis functions is 0, or the number of quadrature points is
 *    zero. The application can assume that in the NULL case the
 *    structure does not contain any real data.
 *
 * e) In all other cases the return value is a tag which is used to
 *    efficiently cache values of intermediate computations, e.g. the
 *    values of basis functions at quadrature points. This tag should
 *    be locally unique, meaning that consecutive invocations of
 *    init_element() should return different tags for different
 *    simplexes. This can be used for optimizations: if the tag
 *    returned by an init_element() routine does not change, then the
 *    calling function may assume that the underlying object has not
 *    changed.
 */

enum {
  INIT_EL_TAG_NONE = 0, /* invalid tag */
  INIT_EL_TAG_DFLT = 1, /* default case */
  INIT_EL_TAG_NULL = 2  /* something is 0, e.g. no quad-points, basis
			 * functions are identically zero and so on.
			 */
};

typedef unsigned int INIT_EL_TAG;
typedef INIT_EL_TAG (*INIT_ELEMENT_FCT)(const EL_INFO *el_info, void *thisptr);

/* Tag context. */
typedef struct init_el_tag_ctx {
  INIT_EL_TAG  tag;
  unsigned int cnt;
} INIT_EL_TAG_CTX;

#define INIT_EL_TAG_CTX_INIT(ctx)		\
  {						\
    (ctx)->tag = INIT_EL_TAG_DFLT;		\
    (ctx)->cnt = 0;				\
  }

/* Generate a new unique tag != NULL & DFLT */
#define INIT_EL_TAG_CTX_UNIQ(ctx)			\
  {							\
    (ctx)->tag = INIT_EL_TAG_NULL + (++((ctx)->cnt));	\
    if ((ctx)->tag == INIT_EL_TAG_NONE) {		\
      (ctx)->cnt = 1;					\
      (ctx)->tag = INIT_EL_TAG_NULL + 1;		\
    }							\
  }
#define INIT_EL_TAG_CTX_NULL(ctx) (ctx)->tag = INIT_EL_TAG_NULL
#define INIT_EL_TAG_CTX_DFLT(ctx) (ctx)->tag = INIT_EL_TAG_DFLT
#define INIT_EL_TAG_CTX_TAG(ctx)  (ctx)->tag

#define INIT_ELEMENT_METHOD(obj)         (obj)->init_element
#define INIT_ELEMENT_FLAGS(obj)          (obj)->fill_flags
#define INIT_ELEMENT_DEFUN(obj, init_el, flags)			\
  {								\
    INIT_ELEMENT_METHOD(obj) = init_el;				\
    INIT_ELEMENT_FLAGS(obj) = (flags);				\
    INIT_EL_TAG_CTX_INIT(&(obj)->tag_ctx);			\
  }

#define INIT_OBJECT(object) (void)INIT_ELEMENT(NULL, object)
#define INIT_ELEMENT_DECL			\
  INIT_ELEMENT_FCT init_element;		\
  FLAGS fill_flags;				\
  INIT_EL_TAG_CTX tag_ctx

#define INIT_ELEMENT_INITIALIZER(init_el, flags)	\
  (init_el), (flags), { INIT_EL_TAG_DFLT, 0 }

#define INIT_ELEMENT(el_info, object)					\
  (INIT_ELEMENT_NEEDED(object)						\
   ? INIT_ELEMENT_METHOD(object)(el_info, (void *)object) : INIT_EL_TAG_DFLT)

#define INIT_ELEMENT_NEEDED(object) (INIT_ELEMENT_METHOD(object) != NULL)
#define INIT_ELEMENT_SETUP(el_info, object, tagvar, null_action, chg_action) \
  {									\
    INIT_EL_TAG AI_init_el_tag;						\
									\
    AI_init_el_tag = INIT_ELEMENT(el_info, object);			\
    if (AI_init_el_tag == (INIT_EL_TAG)INIT_EL_TAG_NULL) {		\
      (tagvar) = INIT_EL_TAG_NULL;					\
      null_action;							\
    } else if (AI_init_el_tag != (tagvar)) {				\
      (tagvar) = AI_init_el_tag;					\
      chg_action;							\
    }									\
  }

/* Initialization of single items of DOF-chain */
#define INIT_OBJECT_SINGLE(object) (void)INIT_ELEMENT_SINGLE(NULL, object)
#define INIT_ELEMENT_SINGLE(el_info, object)				\
  (INIT_ELEMENT_NEEDED((object)->unchained)				\
   ? INIT_ELEMENT_METHOD((object)->unchained)(el_info, (void *)object)	\
   : INIT_EL_TAG_DFLT)

/*******************************************************************************
 *  node projection descriptor:
 *
 *  a function pointer which calculates the projected location of a
 *  new vertex resulting from refinement.
 *
 ******************************************************************************/

struct node_projection
{
  void (*func)(REAL_D old_coord, const EL_INFO *eli, const REAL_B lambda);
};

/*******************************************************************************
 *  The geometric connectivity of periodic meshes is described by wall-
 *  transformations, affine isometries which map the current mesh to its
 *  periodic neighbour accross the wall of an element.
 *  The transformation operates as usual: Mx + t
 ******************************************************************************/

struct aff_trafo
{
  REAL_DD M;
  REAL_D  t;
};

/*******************************************************************************
 *  one single element (triangle) of the grid:
 *******************************************************************************
 *
 *  position of the nodes in 1d:
 *
 *  0 _____ 1   or  0 _____ 1
 *                      2
 *
 *                          child[0]     child[1]
 *  refinement:  0 _____ 1    0 ___ 1  0 ___ 1
 *                               2        2
 *
 *******************************************************************************
 *
 *  position of the nodes in 2d
 *         2                 2                   2                 2
 *        /\       or       /\        or        /\       or       /\
 *       /  \             4/  \ 3              /  \             4/  \ 3
 *      /    \            /    \              /  3 \            /  6 \
 *    0/______\1        0/______\1          0/______\1        0/______\1
 *                           5                                     5
 *
 *  refinement:           2          child[0]  0    1   child[1]
 *                       /\                   /|    |\
 *                     4/  \ 3  -->         5/ |4  3| \ 5
 *                     /  6 \               /6 |    |6 \
 *                   0/______\1           1/___|    |___\0
 *                        5                  3  2  2  4
 *
 *******************************************************************************
 *
 *  3d refinement: vertex numbering after (Baensch +) Kossaczky
 *
 *  edges:
 *  E0:  between V0, V1
 *  E1:  between V0, V2
 *  E2:  between V0, V3
 *  E3:  between V1, V2
 *  E4:  between V1, V3
 *  E5:  between V2, V3
 *
 *  Always edge 0 (between vertices 0 and 1) is bisected.
 *
 *                                        V1
 *                                      -+
 *                                 ****- ||
 *                     E0    ****--      | |
 *                     ****--           |   | E3
 *               ****--                 |    |
 *         ****--                      |      |
 *     V0 +. . . . . . . . . . . . . . | . . . |
 *         ---               (E1)     |         +  V2
 *            ---                     |         /
 *               ---                 |E4      /
 *                  ---              |      /
 *                 E2  ---          |     / E5
 *                        ---       |   /
 *                           ---   |  /
 *                              ---|/
 *                                 +
 *                                 V3
 *
 *******************************************************************************
 *  child:        pointers to the two children of the element
 *                if (child[0]==NULL) element is a leaf of the
 *                        tree
 *  dof:          vector of pointers to dof vectors :-)
 *  new_coord:    in case of curved boundary, coords of ref.edge midpoint
 *  index:        global element index (only for test purposes)
 *  mark:         element is a leaf:
 *                   mark == 0         do not refine/coarsen
 *                   mark > 0          refine (mark times)
 *                   mark < 0          may be coarsened (mark times)
 ******************************************************************************/

struct el
{
  EL         *child[2];
  DOF        **dof;
  S_CHAR     mark;
  REAL       *new_coord;

#if ALBERTA_DEBUG
  int        index;
#endif
};

/*******************************************************************************
 *   child_vertex_3d[el_type][child][i] =
 *       parent's local vertex index of new vertex i
 *       4 stands for the newly generated vertex
 *******************************************************************************
 *   child_edge_3d[el_type][child][i] =
 *       parent's local edge index of new edge i
 *       new edge 2 is half of old edge 0,
 *       new edges 4,5 are really new edges, and value is different:
 *         child_edge_3d[][][4,5] = index of same edge in other child
 *******************************************************************************
 *  vertex_of_edge_?d[edge][i], i = 1,2 are the two vertices of edge
 ******************************************************************************/
/* The numbering of the vertices of all sub-simplices is given by the
 * following fields.
 *
 * Note that we favour a lexicographical ordering of wall (face)
 * indices in favour of a cyclic ordering in 3d, while we use a cyclic
 * ordering in 2d.
 *
 * Note that all arrays contain "excess" element; this way it is
 * possible to avoid modulo calculus just to keep the array index in
 * range, i.e. it is legal to index like follows:
 *
 * w_3d = 3;
 * v_2d = 2;
 * for (w = 0; w < N_WALLS_3D; w++) {
 *   for (v = 0; v < N_VERTICES_2D; v++) {
 *     DO SOMETHING WITH vertex_of_wall_3d[w_3d + w][v_2d+v]
 *   }
 * }
 */
static const int vertex_of_edge_1d[N_EDGES_1D][2*N_VERTICES_1D-1] = {
  {0, 1, 0}
};
static const int vertex_of_wall_1d[2*N_WALLS_1D-1][N_VERTICES_0D] = {
  { 1 }, { 0 }, { 1 }
};
static const int vertex_of_edge_2d[2*N_EDGES_2D-1][2*N_VERTICES_1D-1] = {
  {1, 2, 1}, {2, 0, 2}, {0, 1, 0}, {1, 2, 1}, {2, 0, 2}
};
#define vertex_of_wall_2d vertex_of_edge_2d
static const int vertex_of_edge_3d[N_EDGES_3D][2*N_VERTICES_1D-1] = {
  {0, 1, 0}, {0, 2, 0}, {0, 3, 0}, {1, 2, 1}, {1, 3, 1}, {2, 3, 2}
};
static const int vertex_of_wall_3d[2*N_WALLS_3D-1][2*N_VERTICES_2D-1] = {
  {1, 2, 3, 1, 2}, {0, 2, 3, 0, 2}, {0, 1, 3, 0, 1}, {0, 1, 2, 0, 1},
  {1, 2, 3, 1, 2}, {0, 2, 3, 0, 2}, {0, 1, 3, 0, 1},
};

/*******************************************************************************
 *  edge_of_vertices_3d[i][j]: gives the local index of edge with vertices i, j
 ******************************************************************************/
static const int edge_of_vertices_3d[N_VERTICES_3D][N_VERTICES_3D] = {
  {-1,  0,  1,  2 },
  { 0, -1,  3,  4 },
  { 1,  3, -1,  5 },
  { 2,  4,  5, -1 }
};

/*******************************************************************************
 *  face_of_edge_3d[e][0/1]: gives the local number of the two adjacent faces
 ******************************************************************************/
static const int face_of_edge_3d[N_EDGES_3D][2] = {
  { 2, 3 }, { 1, 3 }, { 1, 2 }, { 0, 3 }, { 0, 2 }, { 0, 1 }
};

/* defined in element_Xd.c: permuted ordering of wall vertices to be
 * able to match quadrature points of neighbouring elements on the
 * separating wall.
 *
 * wall_orientation[_rel]_Xd() returns an index into those arrays.
 */
extern
const int sorted_wall_vertices_1d[N_WALLS_1D][DIM_FAC_1D][2*N_VERTICES_0D-1];
extern
const int sorted_wall_vertices_2d[N_WALLS_2D][DIM_FAC_2D][2*N_VERTICES_1D-1];
extern
const int sorted_wall_vertices_3d[N_WALLS_3D][DIM_FAC_3D][2*N_VERTICES_2D-1];

/*******************************************************************************
 * PARAMETRIC structure, entry in MESH structure
 * description of parametric meshes and elements
 ******************************************************************************/

/*
 * The values to pass as "flags" argument to
 * use_lagrange_parametric(..., flags)
 */
typedef enum param_strategy {
  PARAM_ALL = 0,            /* all elements are to be parametric */
  PARAM_CURVED_CHILDS = 1,  /* bisection along {\lambda_0 = \lambda_1} */
  PARAM_STRAIGHT_CHILDS = 2 /* bisection along straight lines/planes */
} PARAM_STRATEGY;

#define PARAM_STRATEGY_MASK				\
  (PARAM_ALL|PARAM_CURVED_CHILDS|PARAM_STRAIGHT_CHILDS)
#define PARAM_PERIODIC_COORDS 0x04 /* The coordinates themselves are
				    * periodic, normally parametric
				    * coordinates of a periodic mesh
				    * are _NOT_ periodic.
				    */

/* General hook-structure for parametric
 * meshes. use_lagrange_parametric() populates this struture for the
 * standard conforming iso-parametric geometry approximations.
 */
struct parametric
{
  const char *name; /* textual description analogous to BAS_FCTS. */

  /* true: some elements may be non-parametric */
  bool not_all;

  /* true: standard routines coord_to_world, etc. may be used to get
   * data about the reference triangulation. Set to "false" by
   * default.
   */
  bool use_reference_mesh;

  /* init_element(el_info, param) == false : non-parametric element,
   * init_element(el_info, param) == true  : parametric element.
   *
   * NOTE: If PARAMETRIC::init_element(el_info, ...) returns false,
   * then it is supposed to fill el_info->coord with the current
   * element's coordinate information despite the fact the "el_info"
   * is _CONST_. This way the normal per-element functions can be used
   * (e.g. el_det(), el_grd_lambda() etc.) instead of the parametric
   * ones. This simplifies the program flow (and source code) for
   * partially parametric meshes a _LOT_.
   */
  bool (*init_element)(const EL_INFO *el_info, const PARAMETRIC *parametric);

  void (*vertex_coords)(EL_INFO *info);

  void (*coord_to_world)(const EL_INFO *info, const QUAD *quad,
			 int n, const REAL_B lambda[], REAL_D *world);

  /* Be careful with this function, for some world coordinates there
   * are no barycentric coordinates. Works best if world is not too
   * far away from our simplex. */
  void (*world_to_coord)(const EL_INFO *info, int N,
			 const REAL_D world[],
			 REAL_B lambda[], int k[]);
  void (*det)(const EL_INFO *info, const QUAD *quad,
	      int n, const REAL_B lambda[], REAL dets[]);
  void (*grd_lambda)(const EL_INFO *info,  const QUAD *quad,
		     int n, const REAL_B lambda[],
		     REAL_BD Lambda[], REAL_BDD DLambda[], REAL dets[]);
  void (*grd_world)(const EL_INFO *info,  const QUAD *quad,
		    int n, const REAL_B lambda[],
		    REAL_BD grd_Xtr[], REAL_BDB D2_Xtr[], REAL_BDBB D3_Xtr[]);
  void (*wall_normal)(const EL_INFO *el_info, int wall,
		      const QUAD *wall_quad,
		      int n, const REAL_B lambda[],
		      REAL_D nu[], REAL_DB grd_nu[], REAL_DBB D2_nu[],
		      REAL dets[]);

  /* inherit_parametric is used by get_submesh(), unchain_parametric()
   * is used by unchain_submesh(). Can be left out if the sub-mesh
   * feature is not used.
   */
  void (*inherit_parametric)(MESH *slave);
  void (*unchain_parametric)(MESH *slave);

  void *data; /* private data for specific implementations */
};

/*******************************************************************************
 * EL_GEOM_CACHE structure; geometric information for non-parametric
 * meshes which is not generated during mesh-traversal, but needed in
 * several places. Data like det, Lambda, wall-normals, wall-det.
 * Access to this cache _MUST_ go through fill_el_geom_cache(). See
 * also fill_quad_el_cache(el_info), especially for parametric meshes.
 ******************************************************************************/

struct el_geom_cache
{
  EL      *current_el;
  FLAGS   fill_flag;
  REAL    det;
  REAL_BD Lambda;
  int     orientation[N_WALLS_MAX][2];
  int     rel_orientation[N_WALLS_MAX];
  REAL    wall_det[N_WALLS_MAX];
  REAL_D  wall_normal[N_WALLS_MAX];
};

#define FILL_EL_DET    (1 << 0)
#define FILL_EL_LAMBDA (1 << 1)

#define FILL_EL_WALL_SHIFT(wall)       (2 + 4*(wall))
#define FILL_EL_WALL_MASK(wall)        (0x7 << FILL_EL_WALL_SHIFT(wall))

#define FILL_EL_WALL_DET(wall)             (1 << (FILL_EL_WALL_SHIFT(wall)+0))
#define FILL_EL_WALL_NORMAL(wall)          (1 << (FILL_EL_WALL_SHIFT(wall)+1))
#define FILL_EL_WALL_ORIENTATION(wall)     (1 << (FILL_EL_WALL_SHIFT(wall)+2))
#define FILL_EL_WALL_REL_ORIENTATION(wall) (1 << (FILL_EL_WALL_SHIFT(wall)+3))

#define FILL_EL_WALL_DETS			\
  (FILL_EL_WALL_DET(0)|FILL_EL_WALL_DET(1)|	\
   FILL_EL_WALL_DET(2)|FILL_EL_WALL_DET(3))

#define FILL_EL_WALL_NORMALS				\
  (FILL_EL_WALL_NORMAL(0)|FILL_EL_WALL_NORMAL(1)|	\
   FILL_EL_WALL_NORMAL(2)|FILL_EL_WALL_NORMAL(3))

#define FILL_EL_WALL_ORIENTATIONS				\
  (FILL_EL_WALL_ORIENTATION(0)|FILL_EL_WALL_ORIENTATION(1)|	\
   FILL_EL_WALL_ORIENTATION(2)|FILL_EL_WALL_ORIENTATION(3))

#define FILL_EL_WALL_REL_ORIENTATIONS					\
  (FILL_EL_WALL_REL_ORIENTATION(0)|FILL_EL_WALL_REL_ORIENTATION(1)|	\
   FILL_EL_WALL_REL_ORIENTATION(2)|FILL_EL_WALL_REL_ORIENTATION(3))

static inline const EL_GEOM_CACHE *
fill_el_geom_cache(const EL_INFO *el_info, FLAGS fill_flag);

/*******************************************************************************
 *  additional information to elements during hierarchy traversal
 *******************************************************************************
 *
 * mesh:           pointer to the mesh structure
 * coord:          world coordinates of the vertices. For curved
 *                 parametric meshes the corresponding information is
 *                 filled by the function hooks in the PARAMETRIC
 *                 structur.
 * macro_el:       pointer to the macro-element we belong to.
 * el:             node in the mesh-tree.
 * parent:         pointer to an EL_INFO structure describing the parent of this
 *                 element in the mesh tree.
 * fill_flag:      copy of the fill-flags used to generate the EL_INFO
 *                 structure.
 * level:          the depth in the mesh-tree, level 0 means root-level (i.e.
 *                 an element of the macro triangulation).
 *
 * macro_wall:     Mapping of the boundary facets of the element to
 *                 the boundary facets of the containing macro
 *                 element. macro_wall[w] == -1 means that the
 *                 boundary facet number "w" is located in the
 *                 interior of the containing macro-element, i.e.
 *                 EL_INFO::macro_el.
 *
 * wall_bound:     Boundary type of the co-dim 1 facets (all
 *                 dimensions). Boundary types range from 0 (interior
 *                 faces) to 255. Boundary types are just markers
 *                 without interpretation, used to group boundary
 *                 facets which share common properties. Needs
 *                 FILL_BOUND.  Boundary types can also be access via
 *                 the EL_INFO::macro_wall[] component which is filled
 *                 all the time. There is also a support function
 *                 wall_bound() for this purpose.
 * vertex_bound:   Boundary type of the vertices. This is a bit-field:
 *                 bit N is set if any of the co-dim 1 facets the
 *                 vertex belongs to has boundary-type N. Needs FILL_BOUND.
 * edge_bound:     Boundary type of the edges (only 3d). Also a bit field,
 *                 obtained in the same manner as vertex_bound. Needs
 *                 FILL_BOUND.
 *
 * active_projection: node projection function for the new vertex
 *                 which would result from a refinement of the current
 *                 element. Needs FILL_PROJECTION.
 *
 * neigh:          pointer to the adjacent elements NULL-pointer for a
 *                 part of the boundary. Needs FILL_NEIGH.
 * opp_coord:      world coordinates of opposite vertices. Needs
 *                 FILL_NEIGH|FILL_COORD.
 * opp_vertex:     local indices of opposite vertices. Needs FILL_NEIGH.
 *
 * el_type:        type of the element, 0, 1, or 2. Only meaningful in 3d.
 * orientation:    orientation of the tetrahedron relative to the macro
 *                 element. This is only set for 3d, otherwise it is fixed
 *                 at 0. For DIM == 3 this gives the orientation
 *                 w.r.t. to the standard co-ordinate frame, for higher
 *                 dimenstion "absolute" orientation makes no sense; so
 *                 "orientation" will be 1 for all macro elements, regard-
 *                 less of their actual relative orientations.
 *
 * el_geom_cache:  A cache to store derived quantities which are not
 *                 computed during mesh-traversal, but are derived
 *                 from the co-ordinate information. Access to the
 *                 cache _must_ go through fill_el_geom_cache(). This
 *                 stuff needs -- of course -- the FILL_COORDS
 *                 fill-flag.
 *
 ******************************************************************************/

struct el_info
{
  MESH            *mesh;
  REAL_D          coord[N_VERTICES_MAX];
  const MACRO_EL  *macro_el;
  EL              *el;
  const EL_INFO   *parent;
  FLAGS           fill_flag;
  int             level;

  S_CHAR          macro_wall[N_WALLS_MAX];

  BNDRY_TYPE      wall_bound[N_WALLS_MAX];
  BNDRY_FLAGS     vertex_bound[N_VERTICES_MAX];
  BNDRY_FLAGS     edge_bound[N_EDGES_MAX];
#if DIM_MAX > 1
  BNDRY_TYPE      face_bound[MAX(1, N_FACES_MAX)];
#endif

  const NODE_PROJ *active_projection;

  EL              *neigh[N_NEIGH_MAX];
  S_CHAR          opp_vertex[N_NEIGH_MAX];
  REAL_D          opp_coord[N_NEIGH_MAX];

  U_CHAR          el_type;
  S_CHAR          orientation;

  struct master_info {
    EL         *el;
    int        opp_vertex;
    REAL_D     opp_coord;
    U_CHAR     el_type;
    S_CHAR     orientation;
  } master, mst_neigh;

  EL_GEOM_CACHE   el_geom_cache;
};

/* Some "standard" bit-field operations, meant to hide the
 * N_BNDRY_TYPES argument.
 */
#define BNDRY_FLAGS_INIT(flags)   bitfield_zap((flags), N_BNDRY_TYPES)
#define BNDRY_FLAGS_ALL(flags)    bitfield_fill((flags), N_BNDRY_TYPES)
#define BNDRY_FLAGS_CPY(to, from) bitfield_cpy((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_AND(to, from) bitfield_and((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_OR(to, from)  bitfield_or((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_XOR(to, from) bitfield_xor((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_CMP(a, b)     bitfield_cmp((a), (b), N_BNDRY_TYPES)

/* bit 0 flags boundary segments, if not set we are in the interior */
#define BNDRY_FLAGS_IS_INTERIOR(mask) (!bitfield_tst((mask), 0))

/* Set bit 0 to mark this as a boundary bit-mask. */
#define BNDRY_FLAGS_MARK_BNDRY(flags) bitfield_set((flags), INTERIOR)

/* Return TRUE if SEGMENT has BIT set _and_ BIT != 0. */
#define BNDRY_FLAGS_IS_AT_BNDRY(segment, bit)	\
  ((bit) && bitfield_tst((segment), (bit)))

/* Set a bit in the boundary-type mask. The precise meaning of BIT:
 *
 * BIT == 0: clear the boundary mask (meaning: interior node)
 * BIT >  0: set bit BIT and also bit 0 (meaning: boundary node)
 */
#define BNDRY_FLAGS_SET(flags, bit)		\
  if ((bit) != INTERIOR) {			\
    bitfield_set((flags), INTERIOR);		\
    bitfield_set((flags), (bit));		\
  } else {					\
    BNDRY_FLAGS_INIT(flags);			\
  }
/* return TRUE if SEGMENT and MASK have non-zero overlap */
#define BNDRY_FLAGS_IS_PARTOF(segment, mask)	\
  bitfield_andp((segment), (mask), 1 /* offset */, N_BNDRY_TYPES)
/* FindFirstBoundaryBit, return INTERIOR for interior nodes, otherwise the
 * number of the first bit set in MASK.
 */
#define BNDRY_FLAGS_FFBB(mask) bitfield_ffs(mask, 1 /* offset */, N_BNDRY_TYPES)

/*******************************************************************************
 * RC_LIST_EL structure to describe a refinement/coarsening patch.
 * el_info:        contains information about the patch element. This is not
 *                 a pointer since EL_INFO structures are often overwritten
 *                 during mesh traversal.
 * no:             index of the patch element in the patch.
 * flags:          see the RCLE_... defines below for a description.
 * neigh:          neighbours to the right/left in the orientation of the
 *                 edge, or NULL pointer for a boundary face. (dim == 3 only)
 * opp_vertex:     the opposite vertex of neigh[0/1]. (dim == 3 only)
 ******************************************************************************/

struct rc_list_el
{
  EL_INFO      el_info;
  int          no;
  FLAGS        flags;
  RC_LIST_EL   *neigh[2];
  int          opp_vertex[2];
};

/* Valid settings for RC_LIST_EL->flags. The "PERIODIC" flags can be
 * exploited in refine_interpol/coarse_restrict routines.
 */
#define RCLE_NONE               0x0      /* just nothing special */
#define RCLE_COARSE_EDGE_COMPAT (1 << 0) /* set if the coarsening edge
					  * of the patch element is
					  * the coarsening edge of the
					  * patch. Only for internal
					  * use.
					  */

/*******************************************************************************
 *  flags, which information should be present in the EL_INFO structure
 ******************************************************************************/

#define FILL_NOTHING            0x0000L
#define FILL_COORDS             0x0001L
#define FILL_BOUND              0x0002L
#define FILL_NEIGH              0x0004L
#define FILL_OPP_COORDS         0x0008L
#define FILL_ORIENTATION        0x0010L
#define FILL_PROJECTION         0x0020L
#define FILL_MACRO_WALLS        0x0040L
#define FILL_WALL_MAP           FILL_MACRO_WALLS
#define FILL_NON_PERIODIC       0x0080L
#define FILL_MASTER_INFO        0x0100L
#define FILL_MASTER_NEIGH       0x0200L

#define FILL_ANY					\
  (FILL_COORDS|FILL_BOUND|FILL_NEIGH|FILL_OPP_COORDS|	\
   FILL_ORIENTATION|FILL_PROJECTION|FILL_MACRO_WALLS|	\
   FILL_NON_PERIODIC|FILL_MASTER_INFO|FILL_MASTER_NEIGH)

/*******************************************************************************
 *  flags for mesh traversal
 ******************************************************************************/

#define CALL_EVERY_EL_PREORDER  0x010000L
#define CALL_EVERY_EL_INORDER   0x020000L
#define CALL_EVERY_EL_POSTORDER 0x040000L
#define CALL_LEAF_EL            0x080000L
#define CALL_LEAF_EL_LEVEL      0x100000L
#define CALL_EL_LEVEL           0x200000L
#define CALL_MG_LEVEL           0x400000L    /* used in multigrid methods */

#define TEST_FLAG(flags, el_info)				\
  TEST_EXIT(!((((el_info)->fill_flag)^(flags)) & (flags)),	\
	    "flag "#flags" not set\n")

#if ALBERTA_DEBUG==1
# define DEBUG_TEST_FLAG(flags, el_info)		\
  if((((el_info)->fill_flag)^(flags)) & (flags))	\
    print_error_funcname(funcName, __FILE__, __LINE__),	\
      print_error_msg_exit("flag "#flags" not set\n")
#else
# define DEBUG_TEST_FLAG(flags, el_info) do { funcName = funcName; } while (0)
#endif
/*******************************************************************************
 *  one single element of the macro triangulation:
 *******************************************************************************
 *  el:            pointer to the element data of the macro element
 *  coord:         world coordinates of the nodes on the macro element
 * wall_bound:     Boundary type of the co-dim 1 facets (all
 *                 dimensions). Boundary types range from 0 (interior
 *                 faces) to 127. Boundary types are just a markers
 *                 without interpretation, used to group boundary
 *                 facets which share common properties.
 * vertex_bound:   Boundary type of the vertices. This is a bit-field:
 *                 bit N is set if any of the co-dim 1 facets the
 *                 vertex belongs to has boundary-type N.
 *  edge_bound:    Boundary type of the edges (only 3d). Also a bit field,
 *                 obtained in the same manner as vertex_bound.
 *  projection:    possible node projection functions for all nodes [0]
 *                 or for specific edges or faces (dim > 1), which will
 *                 override entry [0].
 *  index:         unique global index of macro element
 *  neigh:         pointer to the adjacent macro elements
 *                 NULL-pointer for a part of the boundary
 *  opp_vertex:    local index of opposite vertex w.r.t. neighbour numbering
 *  neigh_vertices: local indices of common vertices of the periodic
 *                 neighbour, this component is set only for the virtual
 *                 neighbours on periodic meshes.
 *                 neigh_vertices[wall][loc_idx] is the local vertex number
 *                 on the neighbour the vertex with local number
 *                 (wall + 1 + loc_idx) % N_VERTICES(MESH_DIM) on this
 *                 element is mapped to.
 *  wall_trafo:    only for periodic meshes: the affine transformation which
 *                 maps the mesh across the corresponding wall to the
 *                 neighbour facet. The wall transformation must be
 *                 affine isometries.
 *  np_vertex_bound: boundary type of the vertices when treating a periodic
 *                 mesh as non-periodic
 *  np_edge_bound: like np_vertex_bound
 *  el_type:       type of corresponding element.
 *  orientation:   orientation of corresponding element, used in 3d.
 *
 ******************************************************************************/

struct macro_el
{
  EL          *el;
  REAL_D      *coord[N_VERTICES_MAX];

  BNDRY_TYPE  wall_bound[N_WALLS_MAX];
  BNDRY_FLAGS vertex_bound[N_VERTICES_MAX];
#if DIM_MAX > 1
  BNDRY_FLAGS edge_bound[N_EDGES_MAX];
#endif
#if DIM_MAX > 2
  BNDRY_TYPE  face_bound[N_FACES_MAX];
#endif

  NODE_PROJ   *projection[N_NEIGH_MAX + 1];

  int         index;

  MACRO_EL    *neigh[N_NEIGH_MAX];
  S_CHAR      opp_vertex[N_NEIGH_MAX];
  S_CHAR      neigh_vertices[N_NEIGH_MAX][N_VERTICES(DIM_MAX-1)];
  AFF_TRAFO   *wall_trafo[N_NEIGH_MAX];
  BNDRY_FLAGS np_vertex_bound[N_VERTICES_MAX];
#if DIM_MAX > 1
  BNDRY_FLAGS np_edge_bound[N_EDGES_MAX];
#endif

  S_CHAR      orientation;

  U_CHAR      el_type;

  /* The chain to the master macro element if we belong to a trace-mesh */
  struct {
    MACRO_EL    *macro_el;
    S_CHAR      opp_vertex;
    BNDRY_FLAGS vertex_bound[MAX(1, N_VERTICES(DIM_MAX-1))];
    BNDRY_FLAGS np_vertex_bound[MAX(1, N_VERTICES(DIM_MAX-1))];
#if DIM_MAX > 1
    BNDRY_FLAGS edge_bound[N_EDGES(MAX(1, DIM_MAX-1))];
    BNDRY_FLAGS np_edge_bound[N_EDGES(MAX(1, DIM_MAX-1))];
#endif
  } master;
};

/* Some support functions to access boundary-facet related data only
 * stored on the macro-element level.
 */

static inline BNDRY_TYPE wall_bound(const EL_INFO *el_info, int wall)
{
  int mwall = el_info->macro_wall[wall];

  if (mwall < 0) {
    return INTERIOR;
  }

  if ((el_info->fill_flag & FILL_NON_PERIODIC)) {
    return el_info->macro_el->wall_bound[mwall];
  }

  if (el_info->macro_el->neigh_vertices[mwall][0] < 0) {
    return el_info->macro_el->wall_bound[mwall];
  } else {
    return INTERIOR;
  }
}

static inline const AFF_TRAFO *wall_trafo(const EL_INFO *el_info, int wall)
{
  int mwall;

  if ((el_info->fill_flag & FILL_NON_PERIODIC)) {
    return NULL;
  }

  mwall = el_info->macro_wall[wall];

  return mwall < 0 ? NULL : el_info->macro_el->wall_trafo[mwall];
}

static inline const NODE_PROJ *wall_proj(const EL_INFO *el_info, int wall)
{
  if (wall < 0) {
    return el_info->macro_el->projection[0];
  } else {
    int mwall = el_info->macro_wall[wall];

    return el_info->macro_el->projection[mwall+1];
  }
}

/*******************************************************************************
 * index based storage of macro triangulations
 ******************************************************************************/

struct macro_data
{
  int dim;              /* dimension of the elements */

  int n_total_vertices;
  int n_macro_elements;

  REAL_D *coords;       /* Length will be n_total_vertices */

  int *mel_vertices;    /* mel_vertices[i*N_VERTICES(dim)+j]:
			 * global index of jth vertex of element i
			 */
  int *neigh;           /* neigh[i*N_NEIGH(dim)+j]:
			 * neighbour j of element i or -1 at boundaries
			 */
  int *opp_vertex;      /* opp_vertex[i*N_NEIGH(dim)+j]: if set (need not
			 * be) the local vertex number w.r.t. the neighbour
			 * of the vertex opposit the separating wall.
			 */
  BNDRY_TYPE *boundary; /* boundary[i*N_NEIGH(dim)+j]:
			 * boundary type of jth co-dim 1 facet of element i
			 *
			 * WARNING: In 1D the local index corresponds
			 * to vertex 1 & vice versa! (Consistent with
			 * macro_data.neigh)
			 */
  U_CHAR *el_type;      /* el_type[i]: type of element i only used in 3d! */
  int (*wall_vtx_trafos)[N_VERTICES(DIM_MAX-1)][2]; /* the wall trafos */
  /* Wall transformations are in terms of mappings between
   * vertices. i-th wall trafo: global vertex number
   * wall_vtx_trafos[i][v][0] maps to wall_vtx_trafos[i][v][1], v loops
   * through the local vertex number of the respective wall.
   */
  int n_wall_vtx_trafos;/* for periodic meshes: number of
			 * combinatorical wall trafos.
			 */
  int *el_wall_vtx_trafos;
  /* el_wall_vtx_trafos[i*N_WALLS(dim)+j] number of the wall
   * transformation of the j-th wall for the i-th element. > 0:
   * #wall_trafo+1. < 0: inverse of -(#wall_trafo+1)
   */
  AFF_TRAFO *wall_trafos; /* The group generators of the space group
			   * defining the periodic structure of the
			   * mesh.
			   */
  int n_wall_trafos;
  int *el_wall_trafos; /* N = el_wall_trafos[i*N_NEIGH(dim)+j]:
			*
			* number of the wall transformation mapping to
			* the neighbouring fundamental domain across
			* the given wall.
			*
			* If negative: inverse of generator -N-1
			* If positive:            generator +N-1
			*/
#if ALBERTA_DEBUG
  char **mel_comment;    /* for debugging */
#endif
};

#ifndef DOF_ADMIN_DEF
# define DOF_ADMIN_DEF

/*******************************************************************************
 *  dof handling
 ******************************************************************************/
/* presumably the largest native integer type */
# define DOF_FREE_UNIT_TYPE long
typedef unsigned DOF_FREE_UNIT_TYPE DOF_FREE_UNIT;
# define DOF_FREE_SIZE     ((int)(8*sizeof(DOF_FREE_UNIT)))
# define DOF_UNIT_ALL_FREE (~0UL)
extern const DOF_FREE_UNIT dof_free_bit[DOF_FREE_SIZE]; /* in dof_admin.c */
# define DOF_UNUSED (-1) /* el->dof[][] == DOF_UNUSED, mark unused DOFs */

# define FOR_ALL_DOFS(admin, todo)					\
  if ((admin)->hole_count == 0) {					\
    int dof;								\
									\
    for (dof = 0; dof < (admin)->used_count; dof++) {			\
      todo;								\
    }									\
  } else {								\
    DOF_FREE_UNIT _dfu, *_dof_free = (admin)->dof_free;			\
    int _i, _ibit, dof=0;						\
    int _n= ((admin)->size_used + DOF_FREE_SIZE-1) / DOF_FREE_SIZE;	\
									\
    for (_i = 0; _i < _n; _i++) {					\
      if ((_dfu = _dof_free[_i])) {					\
	if (_dfu == DOF_UNIT_ALL_FREE) {				\
	  dof += DOF_FREE_SIZE;						\
	} else {							\
	  for (_ibit = 0;						\
	       _ibit < DOF_FREE_SIZE;					\
	       _ibit++, dof++, _dfu >>= 1) {				\
	    if ((_dfu & 1) == 0) {					\
	      todo;							\
	    }								\
	  }								\
	}								\
      } else {								\
	for (_ibit = 0; _ibit < DOF_FREE_SIZE; _ibit++, dof++) {	\
	  todo;								\
	}								\
      }									\
    }									\
  }

# define FOR_ALL_FREE_DOFS(admin, todo)					\
  if ((admin)->hole_count == 0) {					\
    int dof;								\
    for (dof = (admin)->used_count; dof < (admin)->size; dof++) {	\
      todo;								\
    }									\
  } else {								\
    DOF_FREE_UNIT _dfu, *_dof_free = (admin)->dof_free;			\
    int _i, _ibit, dof=0;						\
    int _n= ((admin)->size + DOF_FREE_SIZE-1) / DOF_FREE_SIZE;		\
									\
    for (_i = 0; _i < _n; _i++) {					\
      if ((_dfu = _dof_free[_i])) {					\
	if (_dfu == DOF_UNIT_ALL_FREE) {				\
	  for (_ibit = 0 ; _ibit < DOF_FREE_SIZE; _ibit++, dof++) {	\
	    todo;							\
	  }								\
	} else {							\
	  for (_ibit = 0;						\
	       _ibit < DOF_FREE_SIZE;					\
	       _ibit++, dof++, _dfu >>= 1) {				\
	    if ((_dfu & 1) != 0) {					\
	      todo;							\
	    }								\
	  }								\
	}								\
      } else {								\
	dof += DOF_FREE_SIZE;						\
      }									\
    }									\
  }

/* Stop if dof  >= size_used */
# define FOR_ALL_USED_FREE_DOFS(admin, todo)		\
  FOR_ALL_FREE_DOFS(admin,				\
		    if (dof >= admin->size_used) {	\
		      break;				\
		    }					\
		    todo)

/* Possible values for DOF_ADMIN->flags */
# define ADM_FLAGS_DFLT           0        /* nothing special */
# define ADM_PRESERVE_COARSE_DOFS (1 << 0) /* preserve non-leaf DOFs */
# define ADM_PERIODIC             (1 << 1) /* periodic ADMIN on a
					    * periodic mesh
					    */
#define ADM_FLAGS_MASK (ADM_PRESERVE_COARSE_DOFS | ADM_PERIODIC)

struct dof_admin
{
  MESH         *mesh;
  const char   *name;

  DOF_FREE_UNIT *dof_free;    /* flag bit vector */
  unsigned int  dof_free_size;/* flag bit vector size */
  unsigned int  first_hole;   /* index of first non-zero dof_free entry */

  FLAGS         flags;

  DOF  size;                 /* allocated size of dof_list vector */
  DOF  used_count;           /* number of used dof indices */
  DOF  hole_count;           /* number of FREED dof indices (NOT size-used)*/
  DOF  size_used;            /* > max. index of a used entry */

  int  n_dof[N_NODE_TYPES];  /* dofs from THIS dof_admin */
  int  n0_dof[N_NODE_TYPES]; /* start of THIS admin's DOFs in the mesh. */
  /****************************************************************************/
  DOF_INT_VEC     *dof_int_vec;           /* linked list of int vectors */
  DOF_DOF_VEC     *dof_dof_vec;           /* linked list of dof vectors */
  DOF_DOF_VEC     *int_dof_vec;           /* linked list of dof vectors */
  DOF_UCHAR_VEC   *dof_uchar_vec;         /* linked list of u_char vectors */
  DOF_SCHAR_VEC   *dof_schar_vec;         /* linked list of s_char vectors */
  DOF_REAL_VEC    *dof_real_vec;          /* linked list of real vectors   */
  DOF_REAL_D_VEC  *dof_real_d_vec;        /* linked list of real_d vectors */
  DOF_REAL_DD_VEC *dof_real_dd_vec;       /* linked list of real_d vectors */
  DOF_PTR_VEC     *dof_ptr_vec;           /* linked list of void * vectors */
  DOF_MATRIX      *dof_matrix;            /* linked list of matrices */

  DBL_LIST_NODE   compress_hooks;         /* linked list of custom compress
					   * handlers.
					   */

/*******************************************************************************
 * pointer for administration; don't touch!
 ******************************************************************************/

  void            *mem_info;
};

/* DOF_COMP_HOOK is a linked list rooted in
 * DOF_ADMIN->compress_hooks. The user may install arbitrary many
 * custom compress-handlers via add_dof_compress_hook(),
 * del_dof_compress_hook().
 */
struct dof_comp_hook
{
  DBL_LIST_NODE node; /* our link to the compress_hooks list */
  void (*handler)(DOF first, DOF last, const DOF *new_dof, void *app_data);
  void *application_data;
};

/*******************************************************************************
 *  dof vector structures
 *******************************************************************************
 *  next:        pointer to next structure containing vector of same type
 *  fe_space:    pointer to fe_space  structure
 *  refine_interpol: dof interpolation during refinement
 *  coarse_restrict: restriction of linear functionals evaluated on a finer
 *                   grid and stored in dof vector to the coarser grid
 *                   during coarsening
 *                or dof interpolation during coarsening
 *  size:        allocated size of vector
 *  vec[]:    vector entries (entry is used if dof index is used)
 ******************************************************************************/

#define UCHAR_name       uchar
#define uchar_VECNAME    SCHAR
#define SCHAR_name       schar
#define schar_VECNAME    SCHAR
#define INT_name         int
#define int_VECNAME      INT
#define DOF_name         dof
#define dof_VECNAME      INT
#define PTR_name         ptr
#define ptr_VECNAME      PTR
#define REAL_name        real
#define real_VECNAME     REAL
#define REAL_D_name      real_d
#define real_d_VECNAME   REAL_D
#define REAL_DD_name     real_dd
#define real_dd_VECNAME  REAL_DD
#define BNDRY_name       bndry
#define bndry_VECNAME    BNDRY

# define DECL_DOF_VEC(VECNAME, vectype)					\
  struct CPP_CONCAT3(dof_, VECNAME##_name, _vec)			\
  {									\
    DOF_##VECNAME##_VEC  *next;						\
    const FE_SPACE *fe_space;						\
									\
    const char     *name;						\
									\
    DOF            size;						\
    int            reserved;						\
									\
    vectype        *vec;						\
									\
    void  (*refine_interpol)(DOF_##VECNAME##_VEC *, RC_LIST_EL *, int n); \
    void  (*coarse_restrict)(DOF_##VECNAME##_VEC *, RC_LIST_EL *, int n); \
    void           *user_data;						\
									\
    DBL_LIST_NODE  chain;						\
    const DOF_##VECNAME##_VEC *unchained;				\
									\
    EL_##VECNAME##_VEC *vec_loc;					\
									\
    void           *mem_info; /*pointer for administration; don't touch! */ \
  };									\
  typedef vectype VECNAME##_VEC_TYPE

DECL_DOF_VEC(INT,    int);
DECL_DOF_VEC(DOF,    DOF);
DECL_DOF_VEC(UCHAR,  U_CHAR);
DECL_DOF_VEC(SCHAR,  S_CHAR);
DECL_DOF_VEC(PTR,    void *);
DECL_DOF_VEC(REAL,   REAL);
DECL_DOF_VEC(REAL_D, REAL_D);
DECL_DOF_VEC(REAL_DD, REAL_DD);

/* A finite element function/coefficient vector for DIM_OF_WORLD
 * problems. If the basis-functions are vector-valued themselves, then
 * the vector is actually REAL-valued (stride == 1), otherwise REAL_D
 * valued (stride == DIM_OF_WORLD).
 *
 * So: if stride == 1, then this is actually a DOF_REAL_VEC, if stride ==
 * DIM_OF_WORLD, then this is actually a DOF_REAL_D_VEC.
 */
struct dof_real_vec_d
{
  DOF_REAL_VEC_D   *next;
  const FE_SPACE   *fe_space;

  const char       *name;

  DOF              size;
  int              stride;    /* either 1 or DIM_OF_WORLD */

  REAL             *vec;

  void  (*refine_interpol)(DOF_REAL_VEC_D *, RC_LIST_EL *, int n);
  void  (*coarse_restrict)(DOF_REAL_VEC_D *, RC_LIST_EL *, int n);
  void             *user_data;

  DBL_LIST_NODE    chain;
  const DOF_REAL_VEC_D *unchained;

  EL_REAL_VEC_D    *vec_loc;

  void             *mem_info; /*pointer for administration; don't touch! */
};

typedef REAL REAL_VEC_D_TYPE; /* needed?? */

/*******************************************************************************
 *  sparse matrix with one row for each dof,
 *  entries are either REAL or REAL_DD
 *******************************************************************************
 *  next:        pointer to next matrix (linked list in MESH)
 *  matrix_row[]: pointers to row structures (or NULL if row index is unused)
 *  size:         currently allocated size of matrix_row[]
 ******************************************************************************/

/* "flag" values for "type" component */
typedef enum matent_type {
  MATENT_NONE    = -1,
  MATENT_REAL    =  0,
  MATENT_REAL_D  =  1,
  MATENT_REAL_DD =  2
} MATENT_TYPE;

static const size_t matent_size[4] = {
  0, sizeof(REAL), sizeof(REAL_D), sizeof(REAL_DD)
};
# define MATENT_SIZE(type) matent_size[(type)+1]

struct dof_matrix
{
  DOF_MATRIX     *next;
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;
  const char     *name;

  MATRIX_ROW     **matrix_row;  /* lists of matrix entries   */
  DOF            size;          /* size of vector matrix_row */
  MATENT_TYPE    type;          /* type of matrix entries. */
  size_t         n_entries;     /* total number of entries in the
				 * matrix, updated by
				 * add_element_matrix(), set to 0 by
				 * clear_dof_matrix().
				 */
  bool           is_diagonal;
  union {
    DOF_REAL_VEC    *real;
    DOF_REAL_D_VEC  *real_d;
    DOF_REAL_DD_VEC *real_dd;
  } diagonal;             /* The diagonal entries, if is_diagonal == true */
  DOF_INT_VEC *diag_cols; /* The column indices of the diagonal entries   */
  union {
    DOF_REAL_VEC    *real;
    DOF_REAL_D_VEC  *real_d;
    DOF_REAL_DD_VEC *real_dd;
  } inv_diag; /* a cache for the diagonal entries, may be NULL. */

  BNDRY_FLAGS    dirichlet_bndry; /* bndry-type bit-mask for
				   * Dirichlet-boundary conditions built
				   * into the matrix
				   */

  void           (*refine_interpol)(DOF_MATRIX *, RC_LIST_EL *, int n);
  void           (*coarse_restrict)(DOF_MATRIX *, RC_LIST_EL *, int n);

  /* The list pointers for the block-matrix structure to support
   * direct sums of fe-spaces.
   */
  DBL_LIST_NODE  row_chain;
  DBL_LIST_NODE  col_chain;
  const DOF_MATRIX *unchained;

  void           *mem_info;
};

/*******************************************************************************
 *  row structure for sparse matrix, with either REAL or REAL_DD entries.
 *******************************************************************************
 *  next:        pointer to next structure containing entries of same row
 *  col[]:       column indices of entries (if >= 0; else unused)
 *  entry[]:     matrix entries
 ******************************************************************************/

# define ROW_LENGTH 9

/* The actual size of this structure is determined by the type of the
 * matrix entries. The correct length is allocated in
 * get_matrix_row().
 */
# define SIZEOF_MATRIX_ROW(type)					\
  (sizeof(MATRIX_ROW) - sizeof(REAL_DD) + ROW_LENGTH*sizeof(type))

struct matrix_row
{
  MATRIX_ROW  *next;
  MATENT_TYPE type;
  DOF         col[ROW_LENGTH];    /* column indices */
  union {
    REAL    real[1];
    REAL_D  real_d[1];
    REAL_DD real_dd[1];
  } entry;
};

struct matrix_row_real
{
  MATRIX_ROW_REAL *next;
  MATENT_TYPE     type;
  DOF             col[ROW_LENGTH];    /* column indices */
  REAL            entry[ROW_LENGTH];  /* matrix entries */
};

struct matrix_row_real_d
{
  MATRIX_ROW_REAL_D *next;
  MATENT_TYPE       type;
  DOF               col[ROW_LENGTH];    /* column indices */
  REAL_D            entry[ROW_LENGTH];  /* matrix entries */
};

struct matrix_row_real_dd
{
  MATRIX_ROW_REAL_DD *next;
  MATENT_TYPE        type;
  DOF                col[ROW_LENGTH];    /* column indices */
  REAL_DD            entry[ROW_LENGTH];  /* matrix entries */
};

# define ENTRY_USED(col)         ((col) >= 0)
# define ENTRY_NOT_USED(col)     ((col) < 0)
# define UNUSED_ENTRY    -1
# define NO_MORE_ENTRIES -2

# ifndef __CBLAS_H__
typedef enum { NoTranspose,
	       Transpose,
	       ConjugateTranspose } MatrixTranspose;
# endif

/* In C++ we would call this construct an iterator ... */
# define FOR_ALL_MAT_COLS(type, matrow, what)			\
  {								\
    MATRIX_ROW_##type *row;					\
    int col_idx;						\
    DOF col_dof;						\
								\
    for (row = (MATRIX_ROW_##type *)(matrow); row; row = row->next) {	\
      for (col_idx = 0; col_idx < ROW_LENGTH; col_idx++) {	\
	col_dof = row->col[col_idx];				\
	if (ENTRY_USED(col_dof)) {				\
	  what;							\
	} else if (col_dof == NO_MORE_ENTRIES) {		\
	  break;						\
	}							\
      }								\
      if (col_dof == NO_MORE_ENTRIES) {				\
	break;							\
      }								\
    }								\
  }

#endif  /* DOF_ADMIN_DEF */

typedef struct el_vec_head
{
  int           n_components;
  int           n_components_max;
  DBL_LIST_NODE chain;
  int           reserved;
} EL_VEC_HEAD;

#define DECL_DOF_EL_VEC(VECNAME, vectype)			\
  struct CPP_CONCAT3(el_,VECNAME##_name, _vec)			\
  {								\
    int           n_components;					\
    int           n_components_max;				\
    DBL_LIST_NODE chain;					\
    int           reserved;					\
    vectype       vec[1];					\
  };								\
  typedef vectype EL_##VECNAME##_VEC_TYPE

DECL_DOF_EL_VEC(INT,    int);
DECL_DOF_EL_VEC(DOF,    DOF);
DECL_DOF_EL_VEC(UCHAR,  U_CHAR);
DECL_DOF_EL_VEC(SCHAR,  S_CHAR);
DECL_DOF_EL_VEC(BNDRY,  BNDRY_FLAGS);
DECL_DOF_EL_VEC(PTR,    void *);
DECL_DOF_EL_VEC(REAL,   REAL);
DECL_DOF_EL_VEC(REAL_D, REAL_D);
DECL_DOF_EL_VEC(REAL_DD, REAL_DD);

struct el_real_vec_d
{
  int           n_components;
  int           n_components_max;
  DBL_LIST_NODE chain;
  int           stride; /* either 1 or DIM_OF_WORLD */
  REAL          vec[1];
};
typedef REAL EL_REAL_VEC_D_TYPE;

#undef DECL_DOF_EL_VEC

/*******************************************************************************
 *  Here comes the MESH (giving access to the whole triangulation)
 ******************************************************************************/

struct mesh
{
  const char      *name;

  int             dim;

  int             n_vertices;
  int             n_elements;
  int             n_hier_elements;

  int             n_edges;                        /* Only used for dim > 1  */
  int             n_faces;                        /* Only used for dim == 3 */
  int             max_edge_neigh;                 /* Only used for dim == 3 */

  bool            is_periodic;    /* true if it is possible to define periodic*/
  int             per_n_vertices; /* DOF_ADMINS on this mesh. The per_n_...   */
  int             per_n_edges;    /* entries count the number of quantities on*/
  int             per_n_faces;    /* the periodic mesh (i.e. n_faces counts   */
                                  /* periodic faces twice, n_per_faces not).  */
  AFF_TRAFO       *const*wall_trafos;
  int             n_wall_trafos;

  int             n_macro_el;
  MACRO_EL        *macro_els;

  REAL_D          bbox[2]; /* bounding box for the mesh */
  REAL_D          diam;    /* bbox[1] - bbox[0] */

  PARAMETRIC      *parametric;

  DOF_ADMIN       **dof_admin;
  int             n_dof_admin;

  int             n_dof_el;            /* sum of all dofs from all admins */
  int             n_dof[N_NODE_TYPES]; /* sum of vertex/edge/... dofs from
					* all admins
					*/
  int             n_node_el;   /* number of used nodes on each element */
  int             node[N_NODE_TYPES]; /* index of first vertex/edge/... node*/

  unsigned int    cookie;    /* changed on each refine/coarsen. Use
			      * this to check consistency of meshes
			      * and DOF vectors when reading from
			      * files.
			      */
  int             trace_id;  /* if this is a trace-mesh (aka sub-mesh)
			      * then this is a unique id identifying
			      * it among all the other trace-meshes
			      * chained to the parent mesh.
			      */

  void            *mem_info; /* pointer for administration; don't touch! */
};

/*******************************************************************************
 * data structure for basis function representation
 ******************************************************************************/

typedef REAL
(*BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
typedef const REAL *
(*GRD_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
typedef const REAL_B *
(*D2_BAS_FCT)(const REAL_B lambda, const  BAS_FCTS *thisptr);
typedef const REAL_BB *
(*D3_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
typedef const REAL_BBB *
(*D4_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);

typedef const REAL *
(*BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);
typedef const REAL_B *
(*GRD_BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);
typedef const REAL_BB *
(*D2_BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);

typedef void (*REF_INTER_FCT)(DOF_REAL_VEC *, RC_LIST_EL *, int);
typedef void (*REF_INTER_D_FCT)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
typedef void (*REF_INTER_FCT_D)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);

#define PHI(bfcts, i, lambda)     (bfcts)->phi[i](lambda, bfcts)
#define GRD_PHI(bfcts, i, lambda) (bfcts)->grd_phi[i](lambda, bfcts)
#define D2_PHI(bfcts, i, lambda)  (bfcts)->D2_phi[i](lambda, bfcts)
#define D3_PHI(bfcts, i, lambda)  (bfcts)->D3_phi[i](lambda, bfcts)
#define D4_PHI(bfcts, i, lambda)  (bfcts)->D4_phi[i](lambda, bfcts)

#define PHI_D(bfcts, i, lambda)     (bfcts)->phi_d[i](lambda, bfcts)
#define GRD_PHI_D(bfcts, i, lambda) (bfcts)->grd_phi_d[i](lambda, bfcts)
#define D2_PHI_D(bfcts, i, lambda)  (bfcts)->D2_phi_d[i](lambda, bfcts)

#define GET_DOF_INDICES(bfcts, el, admin, dof)		\
  (bfcts)->get_dof_indices(dof, el, admin, bfcts)
#define INTERPOL(bfcts, coeff, el_info, wall,  n, indices, f, ud)	\
  (bfcts)->interpol(coeff, el_info, wall, n, indices, f, ud, bfcts)
#define INTERPOL_D(bfcts, coeff, el_info, wall, n, indices, f, ud)	\
  (bfcts)->interpol_d(coeff, el_info, wall, n, indices, f, ud, bfcts)
#define INTERPOL_DOW(bfcts, coeff, el_info, wall, n, indices, f, ud)	\
  (bfcts)->interpol_dow(coeff, el_info, wall, n, indices, f, ud, bfcts)
#define GET_BOUND(bfcts, el_info, bound)	\
  (bfcts)->get_bound(bound, el_info, bfcts)

struct bas_fcts
{
  const char   *name;       /*  textual description */
  int          dim;         /*  dimension of the corresponding mesh. */
  int          rdim;        /*  dimension of the range, 1 or DIM_OF_WORLD */
  int          n_bas_fcts;  /*  nu_mber of basisfunctions on one el */
  int          n_bas_fcts_max;/*  max. number in presence of init_element() */
  int          degree;      /*  maximal degree of the basis functions,
			     *	may vary on a per-element basis if
			     *	init_element() is != NULL.
			     */
  int          n_dof[N_NODE_TYPES];   /* dofs from these bas_fcts */
  int          trace_admin; /* If >= 0, then the basis function set
			     * needs a DOF_ADMIN living on a trace
			     * mesh with id TRACE_ADMIN.
			     */

  /************** link to next set of bfcts in a direct sum *******************/
  DBL_LIST_NODE  chain;

  /* A pointer to the unchained version. It simply points back to the
   * same structure if this is an unchained basis-function
   * structure.
   */
  const BAS_FCTS *unchained;

  /*************** per-element initializer (maybe NULL) ***********************/

  INIT_ELEMENT_DECL;

  /*************** the basis functions themselves       ***********************/
  const BAS_FCT     *phi;
  const GRD_BAS_FCT *grd_phi;
  const D2_BAS_FCT  *D2_phi;
  const D3_BAS_FCT  *D3_phi; /* Optional, implemented for Lagrange bfcts. */
  const D4_BAS_FCT  *D4_phi; /* Optional, implemented for Lagrange bfcts. */

  /* Vector valued basis functions are always factored as phi[i]() *
   * phi_d[i](). If phi_d[i]() is piece-wise constant, then
   * dir_pw_const should be true. The directions are never cached in
   * QUAD_FAST, only the scalar factor.
   */
  const BAS_FCT_D     *phi_d;
  const GRD_BAS_FCT_D *grd_phi_d;
  const D2_BAS_FCT_D  *D2_phi_d;

  bool dir_pw_const; /* Direction is p.w. constant on the reference element. */

  /*************** the trace space on the wall (e.g. Mini-element) ************/
  const BAS_FCTS *trace_bas_fcts; /* The trace space */

  /* The local DOF mapping for the trace spaces,
   * < 3d:
   * [0][0][wall][slave local dof] == master local dof,
   * 3d:
   * [type > 0][orient < 0][wall][slave local dof] == master local dof.
   */
  const int      *trace_dof_map[2][2][N_WALLS_MAX];

  /* This obscure component can vary from wall to wall in the presence
   * of an INIT_ELEMENT() method. It is _always_ equal to
   * trace_bas_fcts->n_bas_fcts ... BUT ONLY after the respective
   * element initializer has been called for trace_bas_fcts on the
   * trace mesh. If an INIT_ELEMENT() method is present then it _MUST_
   * initialize trace_dof_map _AND_ n_trace_bas_fcts. Of course, in 3D
   * only the components corresponding to type and orientation of the
   * current EL_INFO object have to be taken care of by the
   * INIT_ELEMENT() method.
   */
  int            n_trace_bas_fcts[N_WALLS_MAX];

  /*************** interconnection to DOF_ADMIN and mesh   ********************/
  const EL_DOF_VEC *(*get_dof_indices)(DOF *result,
				       const EL *, const DOF_ADMIN *,
				       const BAS_FCTS *thisptr);
  const EL_BNDRY_VEC *(*get_bound)(BNDRY_FLAGS *bndry_bits,
				   const EL_INFO *eli,
				   const BAS_FCTS *thisptr);

  /*************** entries must be set for interpolation   ********************/

  void (*interpol)(EL_REAL_VEC *coeff,
		   const EL_INFO *el_info, int wall,
		   int n, const int *indices,
		   LOC_FCT_AT_QP f, void *ud,
		   const BAS_FCTS *thisptr);
  void (*interpol_d)(EL_REAL_D_VEC *coeff,
		     const EL_INFO *el_info, int wall,
		     int n, const int *indices,
		     LOC_FCT_D_AT_QP f, void *ud,
		     const BAS_FCTS *thisptr);
  void (*interpol_dow)(EL_REAL_VEC_D *coeff,
		       const EL_INFO *el_info, int wall,
		       int n, const int *indices,
		       LOC_FCT_D_AT_QP f, void *ud,
		       const BAS_FCTS *thisptr);

  /********************   optional entries  ***********************************/

  const EL_INT_VEC    *(*get_int_vec)(int result[],
				      const EL *, const DOF_INT_VEC *);
  const EL_REAL_VEC   *(*get_real_vec)(REAL result[],
				       const EL *, const DOF_REAL_VEC *);
  const EL_REAL_D_VEC *(*get_real_d_vec)(REAL_D result[],
					 const EL *, const DOF_REAL_D_VEC *);
  const EL_REAL_VEC_D *(*get_real_vec_d)(REAL result[],
					 const EL *, const DOF_REAL_VEC_D *);
  const EL_UCHAR_VEC  *(*get_uchar_vec)(U_CHAR result[],
					const EL *, const DOF_UCHAR_VEC *);
  const EL_SCHAR_VEC  *(*get_schar_vec)(S_CHAR result[],
					const EL *, const DOF_SCHAR_VEC *);
  const EL_PTR_VEC    *(*get_ptr_vec)(void *result[],
				      const EL *, const DOF_PTR_VEC *);
  const EL_REAL_DD_VEC *(*get_real_dd_vec)(REAL_DD result[],
					   const EL *, const DOF_REAL_DD_VEC *);

  void  (*real_refine_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
  void  (*real_coarse_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
  void  (*real_coarse_restr)(DOF_REAL_VEC *, RC_LIST_EL *, int);

  void  (*real_d_refine_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
  void  (*real_d_coarse_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
  void  (*real_d_coarse_restr)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);

  void  (*real_refine_inter_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);
  void  (*real_coarse_inter_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);
  void  (*real_coarse_restr_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);

  void  *ext_data; /* Implementation dependent extra data */
};

/* Barycentric coordinates of Lagrange nodes. */
#define LAGRANGE_NODES(bfcts)				\
  ((const REAL_B *)(*(void **)(bfcts)->ext_data))

/******************************************************************************
 * FE spaces are a triple of DOFs and BAS_FCTs on a MESH
 *
 * Fe-Spaces may be vector-valued, if either the basis functions are
 * vector-valued, or on request. rdim codes the dimension of the
 * range-space, it may be either 1 or DIM_OF_WORLD, so it is rather a
 * flag-value. Scalar fe-space should in principle not be attached to
 * DOF_REAL_D_VECs (but can be).
 *
 * Fe-spaces may be chained to constitute the Cartesian product space
 * of a couple of distinct fe-spaces, e.g. to form the Cartesian
 * product of some "trivially" vector valued fe-space with another
 * space spanned by "really" vector-valued basis functions, e.g. to
 * add edge respectively face bubbles.
 *
 *****************************************************************************/

struct fe_space
{
  const char      *name;
  const DOF_ADMIN *admin;
  const BAS_FCTS  *bas_fcts;
  MESH            *mesh;
  int             rdim;
  int             ref_cnt;
  DBL_LIST_NODE   chain;
  const FE_SPACE  *unchained;
};

/* How to check whether two FE_SPACE objects are essentially the same */
#define FE_SPACE_EQ_P(fe1, fe2)			\
  ((fe1) == (fe2) ||				\
   ((fe1)->admin    == (fe2)->admin    &&	\
    (fe1)->bas_fcts == (fe2)->bas_fcts &&	\
    (fe1)->mesh     == (fe2)->mesh     &&	\
    (fe1)->rdim     == (fe2)->rdim))

static inline bool fe_space_is_eq(const FE_SPACE *fe1, const FE_SPACE *fe2)
{
  return FE_SPACE_EQ_P(fe1, fe2);
}

/*******************************************************************************
 * data structures for numerical integration
 ******************************************************************************/

struct quadrature
{
  const char   *name;
  int          degree;

  int          dim;          /* barycentric coords have (dim+1) components */
  int          codim;        /* the co-dimension */
  int          subsplx;      /* co-dim 1: face number, co-dim 2: edge number */

  int          n_points;
  int          n_points_max; /* max. number in presence of INIT_ELEMENT() */
  const REAL_B *lambda;
  const REAL   *w;

  void         *metadata; /* for internally kept per element caches etc. */

  INIT_ELEMENT_DECL;
};

/*******************************************************************************
 * per-element quadrature cache for co-ordinates, det, Lambda, DLambda
 * uch a cache structure is associated with each quadrature and can be
 * filled by fill_quad_el_cache(el_info, quad, fill_flag). The cache
 * is incremental, repeated calls will fill in data as needed.
 ******************************************************************************/

struct quad_el_cache
{
  EL      *current_el;
  FLAGS   fill_flag;
  REAL_D  *world;
  struct {
    REAL      *det;
    REAL_BD   *Lambda;
    REAL_BDD  *DLambda;
    REAL_BD   *grd_world;
    REAL_BDB  *D2_world;
    REAL_BDBB *D3_world;
    REAL      *wall_det;    /* for co-dim 1 */
    REAL_D    *wall_normal; /* for co-dim 1 */
    REAL_DB   *grd_normal;  /* for co-dim 1 */
    REAL_DBB  *D2_normal;   /* for co-dim 1 */
  } param;
};

#define FILL_EL_QUAD_WORLD       0x0001
#define FILL_EL_QUAD_DET         0x0002
#define FILL_EL_QUAD_LAMBDA      0x0004
#define FILL_EL_QUAD_DLAMBDA     0x0008
#define FILL_EL_QUAD_GRD_WORLD   0x0010
#define FILL_EL_QUAD_D2_WORLD    0x0020
#define FILL_EL_QUAD_D3_WORLD    0x0040
#define FILL_EL_QUAD_WALL_DET    0x0100
#define FILL_EL_QUAD_WALL_NORMAL 0x0200
#define FILL_EL_QUAD_GRD_NORMAL  0x0400
#define FILL_EL_QUAD_D2_NORMAL   0x0800

static inline const QUAD_EL_CACHE *fill_quad_el_cache(const EL_INFO *el_info,
						      const QUAD *quad,
						      FLAGS fill);

/*******************************************************************************
 * data structure with precomputed values of basis functions at
 * quadrature nodes on the standard element
 ******************************************************************************/

#define INIT_PHI        0x01
#define INIT_GRD_PHI    0x02
#define INIT_D2_PHI     0x04
#define INIT_D3_PHI     0x08
#define INIT_D4_PHI     0x10
#define INIT_TANGENTIAL 0x80 /* derivatives are tangential, for co-dim 1
			      * quadratures.
			      */

struct quad_fast
{
  const QUAD      *quad;
  const BAS_FCTS  *bas_fcts;

  FLAGS           init_flag;

  int             dim;
  int             n_points;
  int             n_bas_fcts;
  int             n_points_max;
  int             n_bas_fcts_max;
  const REAL      *w;               /* shallow copy of quad->w */
  const REAL      (*const*phi);     /* [qp][bf] */
  const REAL_B    (*const*grd_phi);
  const REAL_BB   (*const*D2_phi);
  const REAL_BBB  (*const*D3_phi);
  const REAL_BBBB (*const*D4_phi);

  /* For vector valued basis functions with a p.w. constant
   * directional derivative we cache that direction and make it
   * available for applications. The component is initialized by the
   * INIT_ELEMENT() method.
   *
   * So: phi_d[i] gives the value of the directional factor for the
   * i-th basis function. If (!bas_fcts->dir_pw_const), then phi_d is
   * NULL.
   */
  const REAL_D *phi_d;

  /* chain to next structure, if bas_fcts->chain is non-empty */
  DBL_LIST_NODE  chain;

  /* a clone of this structure, but as single item. */
  const QUAD_FAST *unchained;

  INIT_ELEMENT_DECL;

  void *internal;
};

/*******************************************************************************
 *  data structure for adaptive methods
 ******************************************************************************/

typedef enum adaptation_strategy {
  NoStrategy = 0,
  GlobalRefinement = 1,
  GR   = GlobalRefinement,
  MinimumStrategy = 2,
  MS   = MinimumStrategy,
  EqualDistributionStrategy = 3,
  ES   = EqualDistributionStrategy,
  GuaranteedErrorReductionStrategy = 4,
  GERS = GuaranteedErrorReductionStrategy
} ADAPTATION_STRATEGY;

struct adapt_stat
{
  const char  *name;
  REAL        tolerance;
  REAL        p;                         /* power in estimator norm */
  int         max_iteration;
  int         info;

  REAL   (*estimate)(MESH *mesh, ADAPT_STAT *adapt);
  REAL   (*get_el_est)(EL *el);          /* local error estimate */
  REAL   (*get_el_estc)(EL *el);         /* local coarsening error estimate*/
  U_CHAR (*marking)(MESH *mesh, ADAPT_STAT *adapt);

  void   *est_info;                      /* estimator parameters */
  REAL   err_sum, err_max;               /* sum and max of el_est */

  void   (*build_before_refine)(MESH *mesh, U_CHAR flag);
  void   (*build_before_coarsen)(MESH *mesh, U_CHAR flag);
  void   (*build_after_coarsen)(MESH *mesh, U_CHAR flag);
  void   (*solve)(MESH *mesh);

  int    refine_bisections;
  bool   coarsen_allowed;                /* 0 : 1 */
  int    coarse_bisections;
  FLAGS  adaptation_fill_flags;          /* Fill-flags used during adaptation */

  ADAPTATION_STRATEGY strategy;          /* 1=GR, 2=MS, 3=ES, 4=GERS */
  REAL   MS_gamma, MS_gamma_c;           /* maximum strategy */
  REAL   ES_theta, ES_theta_c;           /* equidistribution strategy */
  REAL   GERS_theta_star, GERS_nu, GERS_theta_c;  /* willy's strategy */
};


struct adapt_instat
{
  const char  *name;

  ADAPT_STAT adapt_initial[1];
  ADAPT_STAT adapt_space[1];

  REAL   time;
  REAL   start_time, end_time;
  REAL   timestep;

  void   (*init_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
  void   (*set_time)(MESH *mesh, ADAPT_INSTAT *adapt);
  void   (*one_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
  REAL   (*get_time_est)(MESH *mesh, ADAPT_INSTAT *adapt);
  void   (*close_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);

  int    strategy;
  int    max_iteration;

  REAL   tolerance;
  REAL   rel_initial_error;
  REAL   rel_space_error;
  REAL   rel_time_error;
  REAL   time_theta_1;
  REAL   time_theta_2;
  REAL   time_delta_1;
  REAL   time_delta_2;
  int    info;
};

#define MESH_REFINED   1
#define MESH_COARSENED 2

typedef enum norm
{
  NO_NORM = 0, /* uninitialized */
  H1_NORM = 1, /* H1-half-norm */
  L2_NORM = 2, /* L2-norm */
  L2H1_NORM = H1_NORM|L2_NORM /* full H1-norm */
} NORM;

/*******************************************************************************
 *  data structures for matrix and vector update
 ******************************************************************************/

struct el_matrix
{
  MATENT_TYPE type;
  int n_row, n_col;
  int n_row_max, n_col_max;
  union {
    REAL    *const*real;
    REAL_D  *const*real_d;
    REAL_DD *const*real_dd;
  } data;
  DBL_LIST_NODE row_chain;
  DBL_LIST_NODE col_chain;
};

typedef const EL_MATRIX *
(*EL_MATRIX_FCT)(const EL_INFO *el_info, void *fill_info);

typedef struct el_matrix_info  EL_MATRIX_INFO;
struct el_matrix_info
{
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;

  MATENT_TYPE    krn_blk_type;

  BNDRY_FLAGS    dirichlet_bndry;
  REAL           factor;

  EL_MATRIX_FCT  el_matrix_fct;
  void           *fill_info;

  const EL_MATRIX_FCT *neigh_el_mat_fcts;
  void           *neigh_fill_info;

  FLAGS          fill_flag;
};

typedef const EL_REAL_VEC *
(*EL_VEC_FCT)(const EL_INFO *el_info, void *fill_info);

typedef struct el_vec_info  EL_VEC_INFO;
struct el_vec_info
{
  const FE_SPACE *fe_space;

  BNDRY_FLAGS    dirichlet_bndry;
  REAL           factor;

  EL_VEC_FCT     el_vec_fct;
  void           *fill_info;

  FLAGS          fill_flag;
};

typedef const EL_REAL_D_VEC *
(*EL_VEC_D_FCT)(const EL_INFO *el_info, void *fill_info);

typedef struct el_vec_d_info  EL_VEC_D_INFO;
struct el_vec_d_info
{
  const FE_SPACE *fe_space;

  BNDRY_FLAGS    dirichlet_bndry;
  REAL           factor;

  EL_VEC_D_FCT   el_vec_fct;
  void           *fill_info;

  FLAGS          fill_flag;
};

typedef const EL_REAL_VEC_D *
(*EL_VEC_FCT_D)(const EL_INFO *el_info, void *fill_info);

typedef struct el_vec_info_d  EL_VEC_INFO_D;
struct el_vec_info_d
{
  const FE_SPACE *fe_space;

  BNDRY_FLAGS    dirichlet_bndry;
  REAL           factor;

  EL_VEC_FCT_D   el_vec_fct;
  void           *fill_info;

  FLAGS          fill_flag;
};

/*******************************************************************************
 *  a matrix of quadratures to use for each block of a block-operator
 *  acting on a direct sum of FE-space.
 ******************************************************************************/
typedef struct quad_tensor
{
  const QUAD *quad;         /* the quadrature rules to use for this block */
  DBL_LIST_NODE row_chain;  /* cyclic list link for one row */
  DBL_LIST_NODE col_chain;  /* cyclic list link for one column */
  DBL_LIST_NODE dep_chain;  /* cyclic list link for the third index */
} QUAD_TENSOR;

typedef struct wall_quad_tensor
{
  const WALL_QUAD *quad;    /* the quadrature rule to use for this block */
  DBL_LIST_NODE row_chain;  /* cyclic list link for one row */
  DBL_LIST_NODE col_chain;  /* cyclic list link for on e column */
  DBL_LIST_NODE dep_chain;  /* cyclic list link for the third index */
} WALL_QUAD_TENSOR;

/*******************************************************************************
 *  data structure about the differential operator for matrix assemblage
 ******************************************************************************/

typedef struct operator_info OPERATOR_INFO;
struct operator_info
{
  const FE_SPACE *row_fe_space; /* range fe-space */
  const FE_SPACE *col_fe_space; /* domain fe-space */

  const QUAD        *quad[3];
  const QUAD_TENSOR *quad_tensor[3];

  bool (*init_element)(const EL_INFO *el_info, const QUAD *quad[3], void *apd);

  union {
    const REAL_B *(*real)(const EL_INFO *el_info,
			  const QUAD *quad, int iq, void *apd);
    const REAL_BD *(*real_d)(const EL_INFO *el_info,
			     const QUAD *quad, int iq, void *apd);
    const REAL_BDD *(*real_dd)(const EL_INFO *el_info,
			       const QUAD *quad, int iq, void *apd);
  } LALt;
  MATENT_TYPE    LALt_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  bool           LALt_pw_const;
  bool           LALt_symmetric;
  int            LALt_degree; /* quadrature degree of the LALt() kernel */

  union {
    const REAL *(*real)(const EL_INFO *el_info,
			const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_d)(const EL_INFO *el_info,
			    const QUAD *quad, int iq, void *apd);
    const REAL_DD *(*real_dd)(const EL_INFO *el_info,
			      const QUAD *quad, int iq, void *apd);
    const REAL_DDD *(*real_ddd)(const EL_INFO *el_info,
				const QUAD *quad, int iq, void *apd);
  } Lb0;
  bool           Lb0_pw_const;
  union {
    const REAL *(*real)(const EL_INFO *el_info,
			const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_d)(const EL_INFO *el_info,
			    const QUAD *quad, int iq, void *apd);
    const REAL_DD *(*real_dd)(const EL_INFO *el_info,
			      const QUAD *quad, int iq, void *apd);
    const REAL_DDD *(*real_ddd)(const EL_INFO *el_info,
				const QUAD *quad, int iq, void *apd);
  } Lb1;
  bool           Lb1_pw_const;
  MATENT_TYPE    Lb_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  bool           Lb0_Lb1_anti_symmetric;
  int            Lb_degree; /* quadrature degree for the Lb0() & Lb1() kernel */
  const EL_REAL_VEC_D *(*advection_field)(const EL_INFO *el_info, void *apd);
  const FE_SPACE *adv_fe_space;

  union {
    REAL (*real)(const EL_INFO *el_info,
		 const QUAD *quad, int iq, void *apd);
    const REAL *(*real_d)(const EL_INFO *el_info,
			  const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_dd)(const EL_INFO *el_info,
			     const QUAD *quad, int iq, void *apd);
  } c;
  bool           c_pw_const;
  MATENT_TYPE    c_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  int            c_degree; /* quadrature degree for the c()-kernel */

  BNDRY_FLAGS    dirichlet_bndry; /* bndry-type bit-mask for
				   * Dirichlet-boundary conditions
				   * built into the matrix
				   */
  FLAGS          fill_flag;
  void           *user_data; /* application data, passed to init_element */
};

typedef struct bndry_operator_info BNDRY_OPERATOR_INFO;

struct bndry_operator_info
{
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;

  const WALL_QUAD        *quad[3];
  const WALL_QUAD_TENSOR *quad_tensor[3];

  bool         (*init_element)(const EL_INFO *el_info, int wall,
			       const WALL_QUAD *quad[3], void *ud);

  union {
    const REAL_B *(*real)(const EL_INFO *el_info,
			  const QUAD *quad, int iq, void *apd);
    const REAL_BD *(*real_d)(const EL_INFO *el_info,
			     const QUAD *quad, int iq, void *apd);
    const REAL_BDD *(*real_dd)(const EL_INFO *el_info,
			       const QUAD *quad, int iq, void *apd);
  } LALt;
  MATENT_TYPE    LALt_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  bool           LALt_pw_const;
  bool           LALt_symmetric;
  int            LALt_degree; /* quad-deg for the LALt() kernel */

  union {
    const REAL *(*real)(const EL_INFO *el_info,
			const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_d)(const EL_INFO *el_info,
			    const QUAD *quad, int iq, void *apd);
    const REAL_DD *(*real_dd)(const EL_INFO *el_info,
			      const QUAD *quad, int iq, void *apd);
    const REAL_DDD *(*real_ddd)(const EL_INFO *el_info,
				const QUAD *quad, int iq, void *apd);
  } Lb0;
  bool           Lb0_pw_const;
  union {
    const REAL *(*real)(const EL_INFO *el_info,
			const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_d)(const EL_INFO *el_info,
			    const QUAD *quad, int iq, void *apd);
    const REAL_DD *(*real_dd)(const EL_INFO *el_info,
			      const QUAD *quad, int iq, void *apd);
    const REAL_DDD *(*real_ddd)(const EL_INFO *el_info,
				const QUAD *quad, int iq, void *apd);
  } Lb1;
  bool           Lb1_pw_const;
  MATENT_TYPE    Lb_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  bool           Lb0_Lb1_anti_symmetric;
  int            Lb_degree; /* quad-deg for the Lb0() and Lb1() kernel */

  /* The following two entries are not used yet. */
  const EL_REAL_VEC_D *(*advection_field)(const EL_INFO *el_info, void *apd);
  const FE_SPACE *adv_fe_space;

  union {
    REAL (*real)(const EL_INFO *el_info,
		 const QUAD *quad, int iq, void *apd);
    const REAL *(*real_d)(const EL_INFO *el_info,
			  const QUAD *quad, int iq, void *apd);
    const REAL_D *(*real_dd)(const EL_INFO *el_info,
			     const QUAD *quad, int iq, void *apd);
  } c;
  bool           c_pw_const;
  MATENT_TYPE    c_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
  int            c_degree; /* quad-deg of the c() kernel */

  /* boundary segment(s) we belong to; if
   * BNDRY_FLAGS_IS_INTERIOR(bndry_type), then the operator is invoked
   * on all interior faces, e.g. to implement a DG-method.
   */
  BNDRY_FLAGS  bndry_type;

  bool         discontinuous; /* assemble jumps w.r.t. the neighbour */
  bool         tangential;    /* use tangential gradients */

  FLAGS        fill_flag;
  void         *user_data;
};

/*******************************************************************************
 *
 * A structure describing the "closure" of an differential operator by
 * Dirichlet, Neumann or Robin boundary conditions.
 *
 * Note that the quadrature passed to neumann() and robin() is a
 * co-dim 1 quadrature, so quad->subsplx is the number of the boundary
 * face, and el_info->wall_bound[quad->subsplx] contains the boundary
 * classification.
 *
 ******************************************************************************/

typedef struct bndry_cond_info BNDRY_COND_INFO;
struct bndry_cond_info
{
  const FE_SPACE *fe_space;

  REAL (*dirichlet)(const EL_INFO *el_info,
		    const REAL_B lambda,
		    BNDRY_FLAGS bndry,
		    void *apd);
  BNDRY_FLAGS dirichlet_bndry;

  REAL (*neumann)(const EL_INFO *el_info, const QUAD *quad, int iq, void *apd);
  const WALL_QUAD *neumann_quad;
  BNDRY_FLAGS neumann_bndry;

  REAL (*robin)(const EL_INFO *el_info, const QUAD *quad, int iq, void *apd);
  const WALL_QUAD *robin_quad;
  REAL robin_const; /* if robin == NULL, use this constant value */
  BNDRY_FLAGS robin_bndry;

  S_CHAR (*bndry_type)(const BNDRY_FLAGS bndry_bits);

  void *user_data;
};

typedef struct bndry_cond_info_d BNDRY_COND_INFO_D;
struct bndry_cond_info_d
{
  const FE_SPACE *fe_space;

  const REAL *(*dirichlet)(REAL_D result,
			   const EL_INFO *el_info,
			   const REAL_B lambda,
			   void *apd);
  BNDRY_FLAGS dirichlet_bndry;

  const REAL *(*neumann)(REAL_D result,
			 const EL_INFO *el_info,
			 const QUAD *quad, int iq, void *apd);
  const WALL_QUAD *neumann_quad;
  BNDRY_FLAGS neumann_bound;

  const REAL *(*robin)(REAL_D result,
		       const EL_INFO *el_info,
		       const QUAD *quad, int iq, void *apd);
  const WALL_QUAD *robin_quad;
  REAL_D robin_const; /* if robin == NULL, use this constant value */
  BNDRY_FLAGS robin_bound;

  S_CHAR (*bndry_type)(const BNDRY_FLAGS bndry_bits);

  void *user_data;
};

/*******************************************************************************
 *  calculate element stiffness matrices by preevaluated integrals
 *  over the the reference element. In this notation, "PSI" means the
 *  row-space, i.e. the space of test-functions, "PHI" means the
 *  column-space, i.e. the space of ansatz functions.
 *
 *  The special tri-linear caches Q001, Q010 and Q100 are meant to
 *  support assembling tri-linear forms, e.g. for material
 *  derivatives. The caches are present, but currently there is not
 *  further support for tri-linear forms inside ALBERTA. The "1"
 *  denotes which of the three factors is differentiated.
 ******************************************************************************/

typedef struct q11_psi_phi      Q11_PSI_PHI;
typedef struct q01_psi_phi      Q01_PSI_PHI;
typedef struct q10_psi_phi      Q10_PSI_PHI;
typedef struct q00_psi_phi      Q00_PSI_PHI;
typedef struct q001_eta_psi_phi Q001_ETA_PSI_PHI;
typedef struct q010_eta_psi_phi Q010_ETA_PSI_PHI;
typedef struct q100_eta_psi_phi Q100_ETA_PSI_PHI;

/* for i = 0 ... n_psi-1
 *   for j = 0 ... n_phi-1
 *     for m = 0 ... n_entries[i][j]
 *
 *       Then we have: values[m][i][j] is the product of
 *       (\nabla\psi_i)_{k[i][j][m]} with (\nabla\phi_j)_{l[i][j][m]}
 *
 *     end for
 *   end for
 * end for
 *
 * Products yielding zero are left out.
 */
typedef struct q11_psi_phi_cache
{
  int  n_psi;
  int  n_phi;

  const int  *const*n_entries;
  const REAL *const*const*values;
  const int  *const*const*k;
  const int  *const*const*l;
} Q11_PSI_PHI_CACHE;

struct q11_psi_phi
{
  const BAS_FCTS    *psi;
  const BAS_FCTS    *phi;
  const QUAD        *quad;

  const Q11_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

/* for i = 0 ... n_psi-1
 *   for j = 0 ... n_phi-1
 *     for m = 0 ... n_entries[i][j]
 *
 *       Then we have: values[m][i][j] is the product of
 *       \psi_i with (\nabla\phi_j)_{l[i][j][m]}
 *
 *     end for
 *   end for
 * end for
 *
 * Products yielding zero are left out.
 */
typedef struct q01_psi_phi_cache
{
  int  n_psi;
  int  n_phi;

  const int  *const*n_entries;
  const REAL *const*const*values;
  const int  *const*const*l;
} Q01_PSI_PHI_CACHE;

struct q01_psi_phi
{
  const BAS_FCTS    *psi;
  const BAS_FCTS    *phi;
  const QUAD        *quad;

  const Q01_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

/* for i = 0 ... n_psi-1
 *   for j = 0 ... n_phi-1
 *     for m = 0 ... n_entries[i][j]
 *
 *       Then we have: values[m][i][j] is the product of
 *       (\nabla\psi_i)_{k[i][j][m]} with \phi_j
 *
 *     end for
 *   end for
 * end for
 *
 * Products yielding zero are left out.
 */
typedef struct q10_psi_phi_cache
{
  int        n_psi;
  int        n_phi;

  const int  *const*n_entries;
  const REAL *const*const*values;
  const int  *const*const*k;
} Q10_PSI_PHI_CACHE;

struct q10_psi_phi
{
  const BAS_FCTS    *psi;
  const BAS_FCTS    *phi;
  const QUAD        *quad;

  const Q10_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

typedef struct q00_psi_phi_cache
{
  int        n_psi;
  int        n_phi;

  const REAL *const*values;
} Q00_PSI_PHI_CACHE;

struct q00_psi_phi
{
  const BAS_FCTS    *psi;
  const BAS_FCTS    *phi;
  const QUAD        *quad;

  const Q00_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

/* for i = 0 ... n_psi-1
 *   for j = 0 ... n_phi-1
 *     for k = 0 ... n_eta-1
 *       for m = 0 ... n_entries[i][j][k]
 *
 *         Then we have: values[m][i][j][k] is the product of
 *         \psi_i, \phi_j with (\nabla\eta_k)_{l[i][j][k][m]}
 *       end for
 *     end for
 *   end for
 * end for
 *
 * Products yielding zero are left out. The analogue holds for the 010
 * and 100 structures, where the position of the "1" marks which
 * factor is differentitated.
 */
typedef struct q001_eta_psi_phi_cache
{
  int  n_eta;
  int  n_psi;
  int  n_phi;

  const int  *const*const*n_entries;
  const REAL *const*const*const*values;
  const int  *const*const*const*l;
} Q001_ETA_PSI_PHI_CACHE;

struct q001_eta_psi_phi
{
  const BAS_FCTS    *eta;
  const BAS_FCTS    *psi;
  const BAS_FCTS    *phi;
  const QUAD        *quad;

  const Q001_ETA_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

typedef struct q010_eta_psi_phi_cache
{
  int  n_eta;
  int  n_psi;
  int  n_phi;

  const int  *const*const*n_entries;
  const REAL *const*const*const*values;
  const int  *const*const*const*l;
} Q010_ETA_PSI_PHI_CACHE;

struct q010_eta_psi_phi
{
  const BAS_FCTS *eta;
  const BAS_FCTS *psi;
  const BAS_FCTS *phi;
  const QUAD     *quad;

  const Q010_ETA_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

typedef struct q100_eta_psi_phi_cache
{
  int  n_eta;
  int  n_psi;
  int  n_phi;

  const int  *const*const*n_entries;
  const REAL *const*const*const*values;
  const int  *const*const*const*l;
} Q100_ETA_PSI_PHI_CACHE;

struct q100_eta_psi_phi
{
  const BAS_FCTS *eta;
  const BAS_FCTS *psi;
  const BAS_FCTS *phi;
  const QUAD     *quad;

  const Q100_ETA_PSI_PHI_CACHE *cache;

  INIT_ELEMENT_DECL;
};

/******************************************************************************/

/* Data for assembling a theta splitting scheme. */
typedef struct el_sys_info_instat EL_SYS_INFO_INSTAT;
struct el_sys_info_instat
{
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;

  INIT_EL_TAG (*el_update_fct)(const EL_INFO *el_info,
			       REAL tau, REAL theta,
			       EL_SYS_INFO_INSTAT *thisptr);
  EL_MATRIX       *el_matrix;
  EL_REAL_VEC     *el_load;

  const EL_MATRIX   *el_stiff;
  const EL_MATRIX   *el_mass;
  const EL_REAL_VEC *u_h_loc;

  FLAGS           fill_flag;
  BNDRY_FLAGS     dirichlet_bndry; /* bndry-type bit-mask for
				    * Dirichlet-boundary conditions
				    * built into the matrix
				    */
  MATENT_TYPE     krn_blk_type;     /* MATENT_REAL for scalar problems */
};

typedef struct el_sys_info_dow_instat EL_SYS_INFO_DOW_INSTAT;
struct el_sys_info_dow_instat
{
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;

  INIT_EL_TAG (*el_update_fct)(const EL_INFO *el_info,
			       REAL tau, REAL theta,
			       EL_SYS_INFO_DOW_INSTAT *thisptr);
  EL_MATRIX           *el_matrix;
  EL_REAL_VEC_D       *el_load;

  const EL_MATRIX     *el_stiff;
  const EL_MATRIX     *el_mass;
  const EL_REAL_VEC_D *u_h_loc;

  FLAGS           fill_flag;
  BNDRY_FLAGS     dirichlet_bndry; /* bndry-type bit-mask for
				    * Dirichlet-boundary conditions
				    * built into the matrix
				    */
  MATENT_TYPE     krn_blk_type;
};

typedef struct el_sys_info_d_instat EL_SYS_INFO_D_INSTAT;
struct el_sys_info_d_instat
{
  const FE_SPACE *row_fe_space;
  const FE_SPACE *col_fe_space;

  INIT_EL_TAG (*el_update_fct)(const EL_INFO *el_info,
			       REAL tau, REAL theta,
			       EL_SYS_INFO_D_INSTAT *thisptr);
  EL_MATRIX           *el_matrix;
  EL_REAL_D_VEC       *el_load;

  const EL_MATRIX     *el_stiff;
  const EL_MATRIX     *el_mass;
  const EL_REAL_D_VEC *u_h_loc;

  FLAGS           fill_flag;
  BNDRY_FLAGS     dirichlet_bndry; /* bndry-type bit-mask for
				    * Dirichlet-boundary conditions
				    * built into the matrix
				    */
  MATENT_TYPE     krn_blk_type;
};



/*******************************************************************************
 *  preconditioner types.
 ******************************************************************************/
typedef enum {
  PreconEnd  = -1,  /* Terminator for variable argument precon functions */
  PreconRepeat = PreconEnd,
  NoPrecon   = 0,
  DiagPrecon = 1,
  HBPrecon   = 2,
  BPXPrecon  = 3,
  SSORPrecon = 4,   /* omega == 1, n_iter = 1 */
  __SSORPrecon = 5, /* SSOR, but with variable omega and n_iter */
  ILUkPrecon = 6,   /* combinatorical ILU(k) */
  BlkDiagPrecon = 512,
  BlkSSORPrecon = 513,
} OEM_PRECON;

#define N_BLOCK_PRECON_MAX 10

/*******************************************************************************
 * A data structure which can be use to define more complex
 * preconditioners. The purpose of this structure is to avoid defining
 * functions with an endless number of arguments. This
 * "parameter-transport-structure" can be passed to
 * init_precon_from_type(), instead of calling init_oem_precon().
 *
 * The general idea is:
 *
 * type  -- one of the preconditoner types defined above.
 *
 * param -- if the preconditioner defined by "type" needs additional
 *          parameters, then the corresponding section in the "param"
 *          component has to be filled.
 *
 * Examples (using a C99-compliant C-compiler):
 *
 * type == __SSORPrecon:
 *
 * PRECON_TYPE prec = {
 *   __SSORPrecon,
 *   { .__SSOR = { 1.5, 2 } }
 * };
 *
 * type == BlkDiagPrecon, the FE-space is a direct sum of 3
 * components, e.g. the Crouzeix-Raviart-Mansfield Stokes
 * discretisation in 3d (Lagrange-2 + face-bubble + wall-bubbles):
 *
 * PRECON_TYPE = {
 *   BlkDiagPrecon,
 *   { .BlkDiag = {
 *     { __SSORPrecon, { 1.0, 1 } },
 *     { DiagPrecon },
 *     { DIagPrecon }, }
 *   }
 * }
 *
 *
 ******************************************************************************/

/* Helper struct for BlkPrecon parameters */
struct __precon_type {
  OEM_PRECON type;
  union {
    struct {
      REAL omega;
      int n_iter;
    } __SSOR;
    struct {
      int level;
    } ILUk;
  } param;
};

typedef struct precon_type
{
  OEM_PRECON type;
  union {
    struct {
      REAL omega;
      int n_iter;
    } __SSOR;
    struct {
      int level;
    } ILUk;
    struct {
      struct __precon_type precon[N_BLOCK_PRECON_MAX];
    } BlkDiag;
    struct {
      struct __precon_type precon[N_BLOCK_PRECON_MAX];
      REAL omega;
      int  n_iter;
    } BlkSSOR;
  } param;
} PRECON_TYPE;

/*******************************************************************************
 * The precon "class".
 *
 * precon_data:   Opaque data pointer.
 *
 * init_precon(): Has to be called after the operator has changed,
 *                e.g. to update the inverse of the diagonal after the
 *                matrix has changed.
 *
 * exit_precon(): Destroys the preconditioner, include the precon
 *                structure itself.
 *
 * precon():      The preconditioner itself.
 *
 ******************************************************************************/

typedef struct precon PRECON;
struct precon
{
  void    *precon_data;

  bool    (*init_precon)(void *precon_data);
  void    (*precon)(void *precon_data, int n, REAL *vec);
  void    (*exit_precon)(void *precon_data);
};

extern const PRECON *get_diag_precon(const DOF_MATRIX *A,
				     const DOF_SCHAR_VEC *bound);
extern const PRECON *get_HB_precon(const DOF_MATRIX *matrix,
				   const DOF_SCHAR_VEC *bound,
				   int info);
extern const PRECON *get_BPX_precon(const DOF_MATRIX *matrix,
				    const DOF_SCHAR_VEC *bound,
				    int info);
extern const PRECON *get_SSOR_precon(const DOF_MATRIX *A,
				     const DOF_SCHAR_VEC *bound,
				     REAL omega,
				     int n_iter);
extern const PRECON *get_ILUk_precon(const DOF_MATRIX *A,
				     const DOF_SCHAR_VEC *mask,
				     int ilu_level, int info);

/*******************************************************************************
 * abstract multigrid
 ******************************************************************************/

typedef struct multi_grid_info MULTI_GRID_INFO;

struct multi_grid_info
{
  REAL             tolerance;                     /* tol. for resid */
  REAL             exact_tolerance;               /* tol. for exact_solver  */

  int              cycle;                         /* 1=V-cycle, 2=W-cycle   */
  int              n_pre_smooth, n_in_smooth;     /* no of smoothing loops  */
  int              n_post_smooth;                 /* no of smoothing loops  */
  int              mg_levels;                     /* current no. of levels  */
  int              exact_level;                   /* level for exact_solver */
  int              max_iter;                      /* max. no of MG iter's   */
  int              info;

  int              (*init_multi_grid)(MULTI_GRID_INFO *mg_info);
  void             (*pre_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*in_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*post_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*mg_restrict)(MULTI_GRID_INFO *mg_info, int level);
  void             (*mg_prolongate)(MULTI_GRID_INFO *mg_info, int level);
  void             (*exact_solver)(MULTI_GRID_INFO *mg_info, int level);
  REAL             (*mg_resid)(MULTI_GRID_INFO *mg_info, int level);
  void             (*exit_multi_grid)(MULTI_GRID_INFO *mg_info);

  void             *data;                         /* application dep. data */

};
int MG(MULTI_GRID_INFO *mg_info);

/*******************************************************************************
 * concrete multigrid
 ******************************************************************************/

typedef struct mg_s_info MG_S_INFO;
struct mg_s_info
{
  MULTI_GRID_INFO  *mg_info;                      /* abstract MG info */

  const FE_SPACE      *fe_space;
  const DOF_ADMIN     *vertex_admin;
  DOF_MATRIX          *mat;
  const DOF_REAL_VEC  *f;
  DOF_REAL_VEC        *u;
  const DOF_SCHAR_VEC *bound;

  int              smoother,     exact_solver;
  REAL             smooth_omega, exact_omega;

  int              size;                          /* current size of vectors*/
  DOF_MATRIX       **matrix;                      /* one for each level */
  REAL             **f_h;                         /* one for each level */
  REAL             **u_h;                         /* one for each level */
  REAL             **r_h;                         /* one for each level */
  int              *dofs_per_level;               /* count dofs per level */

  int              sort_size;                     /* size of sort vectors   */
  DOF              *sort_dof;                     /* dofs in order of levels*/
  DOF              *(dof_parent[2]);              /* (for linear elements)  */
  U_CHAR           *dof_level;
  S_CHAR           *sort_bound;                   /* sorted bound */

  int              sort_invers_size;              /* size of inv. sort list */
  int              *sort_dof_invers;              /* inverse sort list */
};
/*******************************************************************************
 *  sort_dof[ sorted dof ]          = unsorted dof
 *  sort_dof_invers[ unsorted dof ] = sorted dof
 ******************************************************************************/

/* file MG_s1.c DOF_sort routines *********************************************/
void MG_s_setup_levels(MG_S_INFO *mg_s_info);
void MG_s_setup_mat_b(MG_S_INFO *mg_s_info,
		      DOF_MATRIX *mat, const DOF_SCHAR_VEC *bound);
void MG_s_dof_copy_to_sparse(MG_S_INFO *mg_s_info,
			     const DOF_REAL_VEC *x, REAL *y);
void MG_s_dof_copy_from_sparse(MG_S_INFO *mg_s_info,
			       const REAL *x, DOF_REAL_VEC *y);
void MG_s_reset_mat(MG_S_INFO *mg_s_info);
void MG_s_sort_mat(MG_S_INFO *mg_s_info);
void MG_s_free_mem(MG_S_INFO *mg_s_info);

/* file MG_s2.c: DOF_sort independent routines ********************************/
void MG_s_restrict_mg_matrices(MG_S_INFO *mg_s_info);
void MG_s_restrict(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_prolongate(MULTI_GRID_INFO *mg_info, int mg_level);
REAL MG_s_resid(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_smoother(MULTI_GRID_INFO *mg_info, int mg_level, int n);
void MG_s_exact_solver(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_gemv(MG_S_INFO *mg_s_info, int mg_level, MatrixTranspose transpose,
	       REAL alpha, DOF_MATRIX *a, REAL *x, REAL beta, REAL *y);


/* file MG_s.c: ***************************************************************/
int mg_s(DOF_MATRIX *matrix, DOF_REAL_VEC *u, const DOF_REAL_VEC *f,
	 const DOF_SCHAR_VEC *bound,
	 REAL tol, int max_iter, int info, char *prefix);
MG_S_INFO *mg_s_init(DOF_MATRIX *matrix, const DOF_SCHAR_VEC *bound,
		     int info, char *prefix);
int mg_s_solve(MG_S_INFO *mg_s_info,
	       DOF_REAL_VEC *u, const DOF_REAL_VEC *f, REAL tol, int max_iter);
void mg_s_exit(MG_S_INFO *mg_s_info);

/*******************************************************************************
 * Graphic output Definitions
 ******************************************************************************/

typedef void * GRAPH_WINDOW;
typedef float  GRAPH_RGBCOLOR[3];

/** flags used by graph_mesh(): ****/
#define GRAPH_MESH_BOUNDARY        1
#define GRAPH_MESH_ELEMENT_MARK    2
#define GRAPH_MESH_VERTEX_DOF      4
#define GRAPH_MESH_ELEMENT_INDEX   8

/*******************************************************************************
 *  very useful macro definitons
 ******************************************************************************/

#define GET_MESH(dim, name, macro_data, init_node_proj, init_wall_trafo) \
  check_and_get_mesh((dim), DIM_OF_WORLD, ALBERTA_DEBUG,		\
		     ALBERTA_VERSION, (name), (macro_data),		\
		     (init_node_proj), (init_wall_trafo))

#define GET_DOF_VEC(ptr, dof_vec)					\
{									\
  DEBUG_TEST_EXIT((dof_vec) && (dof_vec)->vec,				\
		  "%s == NULL\n", (dof_vec) ? NAME(dof_vec) : #dof_vec); \
  (ptr) = (dof_vec)->vec;						\
}

/*******************************************************************************
 *  defined in graphXO.c
 ******************************************************************************/
extern const GRAPH_RGBCOLOR rgb_black;
extern const GRAPH_RGBCOLOR rgb_white;
extern const GRAPH_RGBCOLOR rgb_red;
extern const GRAPH_RGBCOLOR rgb_green;
extern const GRAPH_RGBCOLOR rgb_blue;
extern const GRAPH_RGBCOLOR rgb_yellow;
extern const GRAPH_RGBCOLOR rgb_magenta;
extern const GRAPH_RGBCOLOR rgb_cyan;
extern const GRAPH_RGBCOLOR rgb_grey50;

extern const GRAPH_RGBCOLOR rgb_albert;
extern const GRAPH_RGBCOLOR rgb_alberta;


/*******************************************************************************
 *  used in wall_quad
 ******************************************************************************/

/* A collection of quadrature rules for the integration over walls
 * (3d: faces, 2d: edges) of a simplex.
 *
 * Each of the quadrature rules WALL_QUAD::quad[wall] may have its
 * own INIT_ELEMENT method.
 *
 * INIT_ELEMENT(el_info, WALL_QUAD) may or may not be called: it is
 * legal to only call INIT_ELEMENT(el_info, WALL_QUAD::quad[wall)
 * individually.
 *
 * If INIT_ELEMENT(el_info, WALL_QUAD) is called, then it has to
 * initialize all quadrature rules for all walls, so the sub-ordinate
 * initializers need not be called in this case.
 */
struct wall_quadrature
{
  const char *name;
  int  degree;
  int  dim;
  int  n_points_max;
  QUAD quad[N_WALLS_MAX];

  INIT_ELEMENT_DECL;

  void *metadata;
};

/* Convenience structure for WALL_QUAD: its is legal to call
 *
 * get_quad_fast(bas_fcts, WALL_QUAD::quad[wall], ...)
 *
 * individually, however
 *
 * get_wall_quad_fast()
 *
 * does this in a single run.
 *
 * If INIT_ELEMENT(el_info, WALL_QUAD_FAST) is called, then the
 * sub-ordinate initializers
 * INIT_ELEMENT(el_info,WALL_QUAD_FAST::quad_fast[wall]) need not be
 * called.
 */
struct wall_quad_fast
{
  const WALL_QUAD *wall_quad;
  const BAS_FCTS  *bas_fcts;

  FLAGS           init_flag;
  const QUAD_FAST *quad_fast[N_WALLS_MAX];

  INIT_ELEMENT_DECL;
};

/* initialize the meta-data for the given WALL_QUAD, no need to call
 * this if the WALL_QUAD has been aquired by get_wall_quad(), only
 * needed for externally defined extension quadrature rules.
 */
extern void register_wall_quadrature(WALL_QUAD *wall_quad);

/* Return a suitable quadrature for integrating over the given wall
 * (neigh number), but the barycentric co-ordinates of QUAD->lambda
 * are relative to the neighbour element.
 */
extern const QUAD *get_neigh_quad(const EL_INFO *el_info,
				  const WALL_QUAD *wall_quad,
				  int neigh);

/* Return a suitable QUAD_FAST structure for integrating over the
 * given wall, but relative to the neighbour element. If the returned
 * QUAD_FAST object has a per-element initializer, then it must be
 * called with an EL_INFO structure for the neighbour element.
 *
 * It is also legal to just call
 *
 * get_quad_fast(bas_fcts, get_neigh_quad(el_info, wall_quad, neigh), ...)
 *
 * but get_neigh_quad_fast() is slightly more efficient.
 */
const QUAD_FAST *get_neigh_quad_fast(const EL_INFO *el_info,
				     const WALL_QUAD_FAST *wqfast,
				     int neigh);

/*******************************************************************************
 *  functions supplied by ALBERTA
 ******************************************************************************/

/***   file coarsen.c   *******************************************************/
extern U_CHAR coarsen(MESH *mesh, FLAGS fill_flags);
extern U_CHAR global_coarsen(MESH *mesh, int no, FLAGS fill_flags);
extern int  get_max_level(MESH *mesh);

/***   file dof_admin.c   *****************************************************/
extern void free_dof_index(DOF_ADMIN *admin, int dof);
extern DOF  get_dof_index(DOF_ADMIN *admin);
extern void enlarge_dof_lists(DOF_ADMIN *admin, int minsize);

extern const DOF_ADMIN *get_vertex_admin(MESH *mesh, FLAGS flags);

extern void test_dof_matrix(DOF_MATRIX *matrix);
extern void dof_matrix_set_diagonal(DOF_MATRIX *matrix, bool diag);
extern void dof_matrix_try_diagonal(DOF_MATRIX *matrix);
extern void add_element_matrix(DOF_MATRIX *matrix,
			       REAL factor,
			       const EL_MATRIX *el_matrix,
			       MatrixTranspose transpose,
			       const EL_DOF_VEC *row_dof,
			       const EL_DOF_VEC *col_dof,
			       const EL_SCHAR_VEC *bound);
extern void add_element_vec(DOF_REAL_VEC *drv, REAL factor,
			    const EL_REAL_VEC *el_vec,
			    const EL_DOF_VEC *dof,
			    const EL_SCHAR_VEC *bound);
extern void add_element_d_vec(DOF_REAL_D_VEC *drdv, REAL factor,
			      const EL_REAL_D_VEC *el_vec,
			      const EL_DOF_VEC *dof,
			      const EL_SCHAR_VEC *bound);
extern void add_element_vec_dow(DOF_REAL_VEC_D *drdv, REAL factor,
				const EL_REAL_VEC_D *el_vec,
				const EL_DOF_VEC *dof,
				const EL_SCHAR_VEC *bound);

extern void update_matrix(DOF_MATRIX *dof_matrix,
			  const EL_MATRIX_INFO *minfo,
			  MatrixTranspose transpose);
void update_real_vec(DOF_REAL_VEC *drv, const EL_VEC_INFO *vec_info);
void update_real_d_vec(DOF_REAL_D_VEC *drdv, const EL_VEC_D_INFO *vecd_info);
void update_real_vec_dow(DOF_REAL_VEC_D *drdv, const EL_VEC_INFO_D *vecd_info);

extern void dof_compress(MESH *mesh);
extern void add_dof_compress_hook(const DOF_ADMIN *admin, DOF_COMP_HOOK *hook);
extern void del_dof_compress_hook(DOF_COMP_HOOK *hook);
extern void clear_dof_matrix(DOF_MATRIX *matrix);

extern void print_dof_matrix(const DOF_MATRIX *matrix);
extern void print_dof_real_vec(const DOF_REAL_VEC *drv);
extern void print_dof_real_d_vec(const DOF_REAL_D_VEC *drdv);
extern void print_dof_real_dd_vec(const DOF_REAL_DD_VEC *drdv);
extern void print_dof_real_vec_dow(const DOF_REAL_VEC_D *drvd);
extern void print_real_vec_maple(REAL *vector, int size, const char *vec_name);
extern void print_dof_real_vec_maple(const DOF_REAL_VEC *drv,
				     const char *vec_name);
extern void print_dof_real_d_vec_maple(const DOF_REAL_D_VEC *drdv,
				       const char *vec_name);
extern void print_dof_real_vec_dow_maple(const DOF_REAL_VEC_D *drvd,
					 const char *vec_name);
extern void print_dof_matrix_maple(const DOF_MATRIX *matrix,
				   const char *matrix_name);
extern void fprint_real_vec_maple(FILE *fp,
				  REAL *vector, int size, const char *vec_name);
extern void fprint_dof_real_vec_maple(FILE *fp,
				      const DOF_REAL_VEC *drv,
				      const char *vec_name);
extern void fprint_dof_real_d_vec_maple(FILE *fp,
					const DOF_REAL_D_VEC *drdv,
					const char *vec_name);
extern void fprint_dof_real_vec_dow_maple(FILE *fp,
					  const DOF_REAL_VEC_D *drvd,
					  const char *vec_name);
extern void fprint_dof_matrix_maple(FILE *fp,
				    const DOF_MATRIX *matrix,
				    const char *matrix_name);
extern void file_print_real_vec_maple(const char *file_name, const char *mode,
				      REAL *vector, int size,
				      const char *vec_name);
extern void file_print_dof_real_vec_maple(const char *file_name,
					  const char *mode,
					  const DOF_REAL_VEC *drv,
					  const char *vec_name);
extern void file_print_dof_real_d_vec_maple(const char *file_name,
					    const char *mode,
					    const DOF_REAL_D_VEC *drdv,
					    const char *vec_name);
extern void file_print_dof_real_vec_dow_maple(const char *file_name,
					      const char *mode,
					      const DOF_REAL_VEC_D *drvd,
					      const char *vec_name);
extern void file_print_dof_matrix_maple(const char *file_name,
					const char *mode,
					const DOF_MATRIX *matrix,
					const char *matrix_name);
extern void print_dof_ptr_vec(const DOF_PTR_VEC *dpv);
extern void print_dof_int_vec(const DOF_INT_VEC *div);
extern void print_dof_uchar_vec(const DOF_UCHAR_VEC *div);
extern void print_dof_schar_vec(const DOF_SCHAR_VEC *div);
/* BLAS 1 */
extern REAL dof_nrm2(const DOF_REAL_VEC *x);
extern REAL dof_asum(const DOF_REAL_VEC *x);
extern void dof_set(REAL alpha, DOF_REAL_VEC *x);
extern void dof_scal(REAL alpha, DOF_REAL_VEC *x);
extern REAL dof_dot(const DOF_REAL_VEC *x, const DOF_REAL_VEC *y);
extern void dof_copy(const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
extern void dof_axpy(REAL alpha, const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
/*  some non BLAS  */
extern void dof_xpay(REAL alpha, const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
extern REAL dof_min(const DOF_REAL_VEC *x);
extern REAL dof_max(const DOF_REAL_VEC *x);
/* BLAS 2 */
extern void dof_gemv(MatrixTranspose transpose, REAL alpha,
		     const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		     const DOF_REAL_VEC *x,
		     REAL beta, DOF_REAL_VEC *y);
extern void dof_mv(MatrixTranspose transpose,
		   const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		   const DOF_REAL_VEC *x, DOF_REAL_VEC *y);

/* now the same for REAL_D */
extern void dof_axpy_d(REAL alpha, const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern void dof_copy_d(const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern REAL dof_dot_d(const DOF_REAL_D_VEC *x, const DOF_REAL_D_VEC *y);
extern REAL dof_nrm2_d(const DOF_REAL_D_VEC *x);
extern REAL dof_asum_d(const DOF_REAL_D_VEC *x);
extern void dof_scal_d(REAL alpha, DOF_REAL_D_VEC *x);
extern void dof_set_d(REAL alpha, DOF_REAL_D_VEC *x);
extern void dof_xpay_d(REAL alpha, const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern REAL dof_min_d(const DOF_REAL_D_VEC *x);
extern REAL dof_max_d(const DOF_REAL_D_VEC *x);

extern void
dof_axpy_dow(REAL alpha, const DOF_REAL_VEC_D *x, DOF_REAL_VEC_D *y);
extern void dof_copy_dow(const DOF_REAL_VEC_D *x, DOF_REAL_VEC_D *y);
extern REAL dof_dot_dow(const DOF_REAL_VEC_D *x, const DOF_REAL_VEC_D *y);
extern REAL dof_nrm2_dow(const DOF_REAL_VEC_D *x);
extern REAL dof_asum_dow(const DOF_REAL_VEC_D *x);
extern void dof_scal_dow(REAL alpha, DOF_REAL_VEC_D *x);
extern void dof_set_dow(REAL alpha, DOF_REAL_VEC_D *x);
extern void
dof_xpay_dow(REAL alpha, const DOF_REAL_VEC_D *x, DOF_REAL_VEC_D *y);
extern REAL dof_min_dow(const DOF_REAL_VEC_D *x);
extern REAL dof_max_dow(const DOF_REAL_VEC_D *x);
/* BLAS 2 for REAL_D */
extern void dof_gemv_d(MatrixTranspose transpose, REAL alpha,
		       const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		       const DOF_REAL_D_VEC *x,
		       REAL beta, DOF_REAL_D_VEC *y);
extern void dof_gemv_rdr(MatrixTranspose transpose, REAL alpha,
			 const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			 const DOF_REAL_VEC *x,
			 REAL beta, DOF_REAL_D_VEC *y);
extern void dof_gemv_rrd(MatrixTranspose transpose, REAL alpha,
			 const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			 const DOF_REAL_D_VEC *x,
			 REAL beta, DOF_REAL_VEC *y);
extern void dof_mv_d(MatrixTranspose transpose,
		     const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		     const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern void dof_mv_rdr(MatrixTranspose transpose,
		       const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		       const DOF_REAL_VEC *x,
		       DOF_REAL_D_VEC *y);
extern void dof_mv_rrd(MatrixTranspose transpose,
		       const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		       const DOF_REAL_D_VEC *x,
		       DOF_REAL_VEC *y);

extern void dof_gemv_dow(MatrixTranspose transpose, REAL alpha,
			 const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			 const DOF_REAL_VEC_D *x,
			 REAL beta, DOF_REAL_VEC_D *y);
extern void dof_gemv_dow_scl(MatrixTranspose transpose, REAL alpha,
			     const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			     const DOF_REAL_VEC *x,
			     REAL beta, DOF_REAL_VEC_D *y);
extern void dof_gemv_scl_dow(MatrixTranspose transpose, REAL alpha,
			     const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			     const DOF_REAL_VEC_D *x,
			     REAL beta, DOF_REAL_VEC *y);
extern void dof_mv_dow(MatrixTranspose transpose,
		       const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		       const DOF_REAL_VEC_D *x, DOF_REAL_VEC_D *y);
extern void dof_mv_dow_scl(MatrixTranspose transpose,
			   const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			   const DOF_REAL_VEC *x,
			   DOF_REAL_VEC_D *y);
extern void dof_mv_scl_dow(MatrixTranspose transpose,
			   const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
			   const DOF_REAL_VEC_D *x,
			   DOF_REAL_VEC *y);

/* copy operation for DOF_MATRIXes */
extern void dof_matrix_copy(DOF_MATRIX *dst, const DOF_MATRIX *src);

/* low-level administration routines, use with caution */
extern void  add_dof_matrix_to_admin(DOF_MATRIX *, DOF_ADMIN *);
extern void  add_dof_int_vec_to_admin(DOF_INT_VEC *, DOF_ADMIN *);
extern void  add_int_dof_vec_to_admin(DOF_DOF_VEC *, DOF_ADMIN *);
extern void  add_dof_dof_vec_to_admin(DOF_DOF_VEC *, DOF_ADMIN *);
extern void  add_dof_uchar_vec_to_admin(DOF_UCHAR_VEC *, DOF_ADMIN *);
extern void  add_dof_schar_vec_to_admin(DOF_SCHAR_VEC *, DOF_ADMIN *);
extern void  add_dof_real_vec_to_admin(DOF_REAL_VEC *, DOF_ADMIN *);
extern void  add_dof_real_d_vec_to_admin(DOF_REAL_D_VEC *, DOF_ADMIN *);
extern void  add_dof_real_dd_vec_to_admin(DOF_REAL_DD_VEC *, DOF_ADMIN *);
extern void  add_dof_ptr_vec_to_admin(DOF_PTR_VEC *, DOF_ADMIN *);
extern void  remove_dof_matrix_from_admin(DOF_MATRIX *);
extern void  remove_dof_int_vec_from_admin(DOF_INT_VEC *);
extern void  remove_dof_dof_vec_from_admin(DOF_DOF_VEC *);
extern void  remove_int_dof_vec_from_admin(DOF_DOF_VEC *);
extern void  remove_dof_uchar_vec_from_admin(DOF_UCHAR_VEC *);
extern void  remove_dof_schar_vec_from_admin(DOF_SCHAR_VEC *);
extern void  remove_dof_real_vec_from_admin(DOF_REAL_VEC *);
extern void  remove_dof_real_vec_from_admin(DOF_REAL_VEC *);
extern void  remove_dof_real_d_vec_from_admin(DOF_REAL_D_VEC *);
extern void  remove_dof_real_dd_vec_from_admin(DOF_REAL_DD_VEC *);
extern void  remove_dof_ptr_vec_from_admin(DOF_PTR_VEC *);

/***   file wall_quad.c   *****************************************************/

extern const WALL_QUAD *wall_quad_from_quad(const QUAD *quad);
extern const WALL_QUAD *get_wall_quad(int dim, int degree);
extern const WALL_QUAD_FAST *
get_wall_quad_fast(const BAS_FCTS *, const WALL_QUAD *, FLAGS init_flag);
extern const QUAD *get_neigh_quad(const EL_INFO *el_info,
				  const WALL_QUAD *wall_quad,
				  int wall);
extern const QUAD_FAST *get_neigh_quad_fast(const EL_INFO *el_info,
					    const WALL_QUAD_FAST *bndry_qfast,
					    int wall);

/***   file macro.c   *********************************************************/
extern void macro_test(MACRO_DATA *data, const char *new_filename);

extern MACRO_DATA *read_macro(const char *name);
extern MACRO_DATA *read_macro_bin(const char *name);
extern MACRO_DATA *read_macro_xdr(const char *name);

extern bool write_macro(MESH *mesh, const char *name);
extern bool write_macro_bin(MESH *mesh, const char *name);
extern bool write_macro_xdr(MESH *mesh, const char *name);

extern bool write_macro_data(MACRO_DATA *data, const char *name);
extern bool write_macro_data_bin(MACRO_DATA *data, const char *name);
extern bool write_macro_data_xdr(MACRO_DATA *data, const char *name);

extern MACRO_DATA *alloc_macro_data(int dim, int nv, int ne);
extern void free_macro_data(MACRO_DATA *data);
extern void compute_neigh_fast(MACRO_DATA *data);
extern void default_boundary(MACRO_DATA *data, U_CHAR type, bool overwrite);

extern MACRO_DATA *mesh2macro_data(MESH *mesh);
extern void
macro_data2mesh(MESH *mesh, const MACRO_DATA *data,
		NODE_PROJECTION *(*n_proj)(MESH *,MACRO_EL *,int),
		AFF_TRAFO *(*init_wall_trafos)(MESH *, MACRO_EL *, int wall));

/***   file memory.c   ********************************************************/
extern MESH *
check_and_get_mesh(int dim, int dow, int neigh,
		   const char *version, const char *name,
		   const MACRO_DATA *macro_data,
		   NODE_PROJ *(*init_node_proj)(MESH *, MACRO_EL *, int),
		   AFF_TRAFO *(*init_wall_trafo)(MESH *, MACRO_EL *, int wall));
extern void free_dof_admin(DOF_ADMIN *admin, MESH *mesh);
extern void free_int_dof_vec(DOF_DOF_VEC *vec);
extern void free_dof_int_vec(DOF_INT_VEC *vec);
extern void free_dof_dof_vec(DOF_DOF_VEC *vec);
extern void free_dof_matrix(DOF_MATRIX *mat);
extern void free_dof_real_vec(DOF_REAL_VEC *vec);
extern void free_dof_real_d_vec(DOF_REAL_D_VEC *vec);
extern void free_dof_real_dd_vec(DOF_REAL_DD_VEC *vec);
extern void free_dof_real_vec_d(DOF_REAL_VEC_D *vec);
extern void free_dof_schar_vec(DOF_SCHAR_VEC *vec);
extern void free_dof_uchar_vec(DOF_UCHAR_VEC *vec);
extern void free_dof_ptr_vec(DOF_PTR_VEC *vec);
extern void free_fe_space(const FE_SPACE *fe_space);
extern void free_real_d(MESH *mesh, REAL *ptr);
extern void free_matrix_row(const FE_SPACE *, MATRIX_ROW *);
extern void free_real_matrix_row(const FE_SPACE *, MATRIX_ROW_REAL *);
extern void free_real_d_matrix_row(const FE_SPACE *, MATRIX_ROW_REAL_D *);
extern void free_real_dd_matrix_row(const FE_SPACE *, MATRIX_ROW_REAL_DD *);
extern void free_element(EL *el, MESH *mesh);
extern void free_rc_list(MESH *mesh, RC_LIST_EL *list); /* only for 3D */
extern void free_mesh(MESH *);
extern void free_dof(DOF *dof, MESH *mesh, int position, FLAGS flags);

extern DOF             *get_dof(MESH *mesh, int position);
extern DOF             *get_periodic_dof(MESH *mesh, int position,
					 const DOF *twin);
extern const FE_SPACE *copy_fe_space(const FE_SPACE *fe_space);
extern const FE_SPACE *clone_fe_space(const FE_SPACE *fe_space, int rdim);
extern const FE_SPACE  *get_fe_space(MESH *mesh,
				     const char *name,
				     const BAS_FCTS *bas_fcts,
				     int rdim,
				     FLAGS adm_flags);
extern const FE_SPACE  *get_dof_space(MESH *mesh, const char *name,
				      const int ndof[N_NODE_TYPES],
				      FLAGS adm_flags);
extern DOF_INT_VEC     *get_dof_int_vec(const char *name, const FE_SPACE *);
extern DOF_DOF_VEC     *get_int_dof_vec(const char *name, const FE_SPACE *);
extern DOF_DOF_VEC     *get_dof_dof_vec(const char *name, const FE_SPACE *);
extern DOF_MATRIX      *get_dof_matrix(const char *name,
				       const FE_SPACE *row_fe_space,
				       const FE_SPACE *col_fe_space);
extern DOF_REAL_VEC    *get_dof_real_vec(const char *name, const FE_SPACE *);
extern DOF_REAL_D_VEC  *get_dof_real_d_vec(const char *name, const FE_SPACE *);
extern DOF_REAL_DD_VEC *get_dof_real_dd_vec(const char *name, const FE_SPACE *);
extern DOF_REAL_VEC_D  *get_dof_real_vec_d(const char *name, const FE_SPACE *);
extern DOF_SCHAR_VEC   *get_dof_schar_vec(const char *name, const FE_SPACE *);
extern DOF_UCHAR_VEC   *get_dof_uchar_vec(const char *name, const FE_SPACE *);
extern DOF_PTR_VEC     *get_dof_ptr_vec(const char *name, const FE_SPACE *);
extern REAL            *get_real_d(MESH *mesh);
extern MATRIX_ROW      *get_matrix_row(const FE_SPACE *, MATENT_TYPE type);
extern EL              *get_element(MESH *mesh);
extern RC_LIST_EL      *get_rc_list(MESH *mesh);           /* only for 3D */
extern size_t init_leaf_data(MESH *mesh, size_t size,
			     void (*refine_leaf_data)(EL *parent,
						      EL *child[2]),
			     void (*coarsen_leaf_data)(EL *parent,
						       EL *child[2]));
extern EL_MATRIX *get_el_matrix(const FE_SPACE *row_fe_space,
				const FE_SPACE *col_fe_space,
 				MATENT_TYPE op_type);
extern void free_el_matrix(EL_MATRIX *el_mat);
extern void print_el_matrix(const EL_MATRIX *el_mat);

extern EL_INT_VEC *get_el_int_vec(const BAS_FCTS *bas_fcts);
extern void free_el_int_vec(EL_INT_VEC *el_vec);
extern EL_DOF_VEC *get_el_dof_vec(const BAS_FCTS *bas_fcts);
extern void free_el_dof_vec(EL_DOF_VEC *el_vec);
extern EL_UCHAR_VEC *get_el_uchar_vec(const BAS_FCTS *bas_fcts);
extern void free_el_uchar_vec(EL_UCHAR_VEC *el_vec);
extern EL_SCHAR_VEC *get_el_schar_vec(const BAS_FCTS *bas_fcts);
extern void free_el_schar_vec(EL_SCHAR_VEC *el_vec);
extern EL_BNDRY_VEC *get_el_bndry_vec(const BAS_FCTS *bas_fcts);
extern void free_el_bndry_vec(EL_BNDRY_VEC *el_vec);
extern EL_PTR_VEC *get_el_ptr_vec(const BAS_FCTS *bas_fcts);
extern void free_el_ptr_vec(EL_PTR_VEC *el_vec);
extern EL_REAL_VEC *get_el_real_vec(const BAS_FCTS *bas_fcts);
extern void free_el_real_vec(EL_REAL_VEC *el_vec);
extern EL_REAL_D_VEC *get_el_real_d_vec(const BAS_FCTS *bas_fcts);
extern void free_el_real_d_vec(EL_REAL_D_VEC *el_vec);
extern EL_REAL_DD_VEC *get_el_real_dd_vec(const BAS_FCTS *bas_fcts);
extern void free_el_real_dd_vec(EL_REAL_DD_VEC *el_vec);
extern EL_REAL_VEC_D *get_el_real_vec_d(const BAS_FCTS *bas_fcts);
extern void free_el_real_vec_d(EL_REAL_VEC_D *el_vec);

/***   file submesh.c  ********************************************************/
extern MESH *get_submesh(MESH *master, const char *name,
			 bool (*binding_method)(MESH *master, MACRO_EL *el,
						int wall, void *data),
			 void *data);
extern MESH *get_bndry_submesh(MESH *master, const char *name);
extern MESH *read_bndry_submesh_xdr(MESH *master, const char *slave_filename);
extern MESH *get_bndry_submesh_by_type(MESH *master, const char *name,
				       BNDRY_TYPE type);
extern MESH *read_bndry_submesh_by_type_xdr(MESH *master,
					    const char *slave_filename,
					    BNDRY_TYPE type);

extern MESH *get_bndry_submesh_by_segment(MESH *master,
					  const char *name,
					  const BNDRY_FLAGS segment);
extern MESH *read_bndry_submesh_by_segment(MESH *master,
					   const char *slave_filename,
					   const BNDRY_FLAGS segment);
extern MESH *read_bndry_submesh_by_segment_xdr(MESH *master,
					       const char *slave_filename,
					       const BNDRY_FLAGS segment);

extern
MESH *lookup_submesh_by_binding(MESH *master, 
				bool (*binding_method)(MESH *master,
						       MACRO_EL *el, int wall,
						       void *data),
				void *data);
extern
MESH *lookup_bndry_submesh_by_type(MESH *master, BNDRY_TYPE type);
extern
MESH *lookup_bndry_submesh_by_segment(MESH *master, const BNDRY_FLAGS segment);
extern
MESH *lookup_bndry_submesh(MESH *master);

extern void unchain_submesh(MESH *slave);

extern void bind_submesh(MESH *master,
			 MESH *slave,
			 bool (*binding_method)(MESH *master, MACRO_EL *el,
						int wall, void *data),
			 void *data);

extern MESH *read_submesh(MESH *master,
			  const char *slave_filename,
			  bool (*binding_method)(MESH *master, MACRO_EL *el,
						 int wall, void *data),
			  void *data);

extern MESH *read_submesh_xdr(MESH *master,
			      const char *slave_filename,
			      bool (*binding_method)(MESH *master, MACRO_EL *el,
						     int wall, void *data),
			      void *data);
extern MESH *lookup_submesh_by_id(MESH *mesh, int id);
extern MESH *lookup_submesh_by_name(MESH *mesh, const char *name);

extern void get_slave_dof_mapping(const FE_SPACE *m_fe_space,
				  DOF_INT_VEC *s_map);
extern MESH *get_master(MESH *slave);
extern const EL_DOF_VEC *get_master_dof_indices(EL_DOF_VEC *result,
						const EL_INFO *s_el_info,
						const FE_SPACE *m_fe_space);
extern const EL_BNDRY_VEC *get_master_bound(EL_BNDRY_VEC *result,
					    const EL_INFO *s_el_info,
					    const BAS_FCTS *m_bas_fcts);
extern void
fill_master_el_info(EL_INFO *mst_el_info,
		    const EL_INFO *slv_el_info, FLAGS fill_flags);
extern const EL *get_slave_el(const EL *el, int wall, MESH *trace_mesh);
extern void fill_slave_el_info(EL_INFO *slv_el_info,
			       const EL_INFO *el_info, int wall,
			       MESH *trace_mesh);

void trace_to_bulk_coords_2d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);
void trace_to_bulk_coords_1d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);
void trace_to_bulk_coords_0d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);

void bulk_to_trace_coords_2d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);
void bulk_to_trace_coords_1d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);
void bulk_to_trace_coords_0d(REAL_B result,
			     const REAL_B lambda,
			     const EL_INFO *el_info);

static inline
void trace_to_bulk_coords(REAL_B result,
			  const REAL_B lambda,
			  const EL_INFO *el_info)
{
  FUNCNAME("trace_to_bulk_coords");
  switch (el_info->mesh->dim) {
  case 2: trace_to_bulk_coords_2d(result, lambda, el_info); break;
  case 1: trace_to_bulk_coords_1d(result, lambda, el_info); break;
  case 0: trace_to_bulk_coords_0d(result, lambda, el_info); break;
  default:
    ERROR_EXIT("Illegal dimension: %d\n", el_info->mesh->dim);
    break;
  }
}

static inline
void trace_to_bulk_coords_dim(int dim,
			      REAL_B result,
			      const REAL_B lambda,
			      const EL_INFO *el_info)
{
  FUNCNAME("trace_to_bulk_coords_dim");
  switch (dim) {
  case 2: trace_to_bulk_coords_2d(result, lambda, el_info); break;
  case 1: trace_to_bulk_coords_1d(result, lambda, el_info); break;
  case 0: trace_to_bulk_coords_0d(result, lambda, el_info); break;
  default:
    ERROR_EXIT("Illegal dimension: %d\n", el_info->mesh->dim);
    break;
  }
}

static inline
void bulk_to_trace_coords(REAL_B result,
			  const REAL_B lambda,
			  const EL_INFO *el_info)
{
  FUNCNAME("bulk_to_trace_coords");
  switch (el_info->mesh->dim) {
  case 2: bulk_to_trace_coords_2d(result, lambda, el_info); break;
  case 1: bulk_to_trace_coords_1d(result, lambda, el_info); break;
  case 0: bulk_to_trace_coords_0d(result, lambda, el_info); break;
  default:
    ERROR_EXIT("Illegal dimension: %d\n", el_info->mesh->dim);
    break;
  }
}

static inline
void bulk_to_trace_coords_dim(int dim,
			      REAL_B result,
			      const REAL_B lambda,
			      const EL_INFO *el_info)
{
  FUNCNAME("bulk_to_trace_coords_dim");
  switch (dim) {
  case 2: bulk_to_trace_coords_2d(result, lambda, el_info); break;
  case 1: bulk_to_trace_coords_1d(result, lambda, el_info); break;
  case 0: bulk_to_trace_coords_0d(result, lambda, el_info); break;
  default:
    ERROR_EXIT("Illegal dimension: %d\n", el_info->mesh->dim);
    break;
  }
}

#define TRACE_DOF_VEC_PROTO(TYPE, typename)				\
  extern void trace_##typename##_vec(DOF_##TYPE##_VEC *svec,		\
				     const DOF_##TYPE##_VEC *mvec)
TRACE_DOF_VEC_PROTO(REAL, dof_real);
TRACE_DOF_VEC_PROTO(REAL_D, dof_real_d);
TRACE_DOF_VEC_PROTO(INT, dof_int);
TRACE_DOF_VEC_PROTO(DOF, dof_dof);
TRACE_DOF_VEC_PROTO(DOF, int_dof);
TRACE_DOF_VEC_PROTO(UCHAR, dof_uchar);
TRACE_DOF_VEC_PROTO(SCHAR, dof_schar);
TRACE_DOF_VEC_PROTO(PTR, dof_ptr);
extern
void trace_dof_real_vec_d(DOF_REAL_VEC_D *svec, const DOF_REAL_VEC_D *mvec);

extern void update_master_matrix(DOF_MATRIX *m_dof_matrix,
				 const EL_MATRIX_INFO *s_minfo,
				 MatrixTranspose transpose);
extern void update_master_real_vec(DOF_REAL_VEC *m_drv,
				   const EL_VEC_INFO *s_vec_info);
extern void update_master_real_d_vec(DOF_REAL_D_VEC *m_drdv,
				     const EL_VEC_D_INFO *s_vecd_info);

/***   file level.c    ********************************************************/
extern REAL level_element_det_2d(const REAL_D coord[]);
extern void level_coord_to_world_2d(const REAL_D coord[],
				    const REAL_B lambda,
				    REAL_D world);
extern void level_coord_to_el_coord_2d(const REAL_B v_lambda[],
				       const REAL_B lambda,
				       REAL_B el_lambda);
extern REAL level_element_det_3d(const REAL_D coord[]);
extern void level_coord_to_world_3d(const REAL_D coord[],
				    const REAL_B lambda,
				    REAL_D world);
extern void level_coord_to_el_coord_3d(const REAL_B v_lambda[],
				       const REAL_B lambda,
				       REAL_B el_lambda);

extern int find_level(MESH *mesh, FLAGS fill_flag, const DOF_REAL_VEC *Level,
		      REAL value,
		      int (*init)(const EL_INFO *el_info,
				  REAL v[],
				  int N, int wall, const REAL_B lambda[]),
		      void (*cal)(const EL_INFO *el_info,
				  REAL v[],
				  int i,
				  int wall, const REAL_B lambda[],
				  const REAL_D coord[]));
extern void set_element_mark(MESH *mesh, FLAGS fill_flag, S_CHAR mark);

/***   file numint.c   ********************************************************/
const QUAD *get_quadrature(int dim, int degree);
void register_quadrature(QUAD *quad);
bool new_quadrature(const QUAD *quad);
const QUAD *get_product_quad(const QUAD *quad);
const QUAD *get_lumping_quadrature(int dim);
static inline const QUAD_EL_CACHE *fill_quad_el_cache(const EL_INFO *el_info,
						      const QUAD *quad,
						      FLAGS need);
void print_quadrature(const QUAD *quad);
void check_quadrature(const QUAD *quad);

REAL  integrate_std_simp(const QUAD *quad, REAL (*f)(const REAL_B lambda));

static inline
const REAL   *f_at_qp(REAL quad_vec[],
		      const QUAD *quad, REAL (*f)(const REAL_B lambda));
static inline
const REAL_D *f_d_at_qp(REAL_D quad_vec[],
			const QUAD *quad,
			const REAL *(*f)(const REAL_B lambda));
static inline
const REAL_D *grd_f_at_qp(REAL_D quad_vec[],
			  const QUAD *quad,
			  const REAL *(*grd_f)(const REAL_B lambda));
static inline
const REAL_DD *grd_f_d_at_qp(REAL_DD quad_vec[],
			     const QUAD *quad,
			     const REAL_D *(*grd_f)(const REAL_B lambda));

static inline
const REAL *fx_at_qp(REAL quad_vec[],
		     const EL_INFO *el_info,
		     const QUAD *quad, FCT_AT_X f);
static inline
const REAL_D *fx_d_at_qp(REAL_D quad_vec[],
			 const EL_INFO *el_info,
			 const QUAD *quad,
			 FCT_D_AT_X f);
static inline
const REAL_D *grd_fx_at_qp(REAL_D quad_vec[],
			   const EL_INFO *el_info,
			   const QUAD *quad,
			   GRD_FCT_AT_X grd_f);
static inline
const REAL_DD *grd_fx_d_at_qp(REAL_DD quad_vec[],
			      const EL_INFO *el_info,
			      const QUAD *quad,
			      GRD_FCT_D_AT_X grd_f);

static inline
const REAL *f_loc_at_qp(REAL quad_vec[],
			const EL_INFO *el_info, const QUAD *quad,
			LOC_FCT_AT_QP f_at_qp, void *ud);
static inline
const REAL_D *f_loc_d_at_qp(REAL_D quad_vec[],
			    const EL_INFO *el_info, const QUAD *quad,
			    LOC_FCT_D_AT_QP f_at_qp, void *ud);
static inline
const REAL_D *grd_f_loc_at_qp(REAL_D quad_vec[],
			      const EL_INFO *el_info, const QUAD *quad,
			      const REAL_BD Lambda,
			      GRD_LOC_FCT_AT_QP grd_f_at_qp, void *ud);
static inline
const REAL_DD *grd_f_loc_d_at_qp(REAL_DD quad_vec[],
				 const EL_INFO *el_info, const QUAD *quad,
				 const REAL_BD Lambda,
				 GRD_LOC_FCT_D_AT_QP grd_f_at_qp, void *ud);
static inline
const REAL_D *
param_grd_f_loc_at_qp(REAL_D quad_vec[],
		      const EL_INFO *el_info,
		      const QUAD *quad, const REAL_BD Lambda[],
		      GRD_LOC_FCT_AT_QP grd_f_at_qp, void *ud);
static inline
const REAL_DD *
param_grd_f_loc_d_at_qp(REAL_DD quad_vec[],
			const EL_INFO *el_info,
			const QUAD *quad, const REAL_BD Lambda[],
			GRD_LOC_FCT_D_AT_QP grd_f_at_qp, void *ud);

const QUAD_FAST *get_quad_fast(const BAS_FCTS *, const QUAD *, FLAGS init_flag);

const REAL_D *const*get_quad_fast_phi_dow(const QUAD_FAST *cache);
const REAL_DB *const*get_quad_fast_grd_phi_dow(const QUAD_FAST *cache);
const REAL_DBB *const*get_quad_fast_D2_phi_dow(const QUAD_FAST *cache);

/***   file refine.c   ********************************************************/
extern U_CHAR refine(MESH *mesh, FLAGS fill_flags);
extern U_CHAR global_refine(MESH *mesh, int mark, FLAGS fill_flags);

/******************************************************************************/

/***   file adapt.c   *********************************************************/
extern void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt);
extern void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt);
extern int marking(MESH *mesh, ADAPT_STAT *adapt);
extern ADAPT_INSTAT *get_adapt_instat(int dim, const char *name,
				      const char *prefix,
				      int info, ADAPT_INSTAT *adapt_instat);
extern ADAPT_STAT *get_adapt_stat(int dim, const char *name,
				  const char *prefix,
				  int info, ADAPT_STAT *adapt_stat);

/***   file quad_cache.c ******************************************************/
extern const Q00_PSI_PHI *get_q00_psi_phi(const BAS_FCTS *psi,
					  const BAS_FCTS *phi,
					  const QUAD *quad);
extern const Q01_PSI_PHI *get_q01_psi_phi(const BAS_FCTS *psi,
					  const BAS_FCTS *phi,
					  const QUAD *quad);
extern const Q10_PSI_PHI *get_q10_psi_phi(const BAS_FCTS *psi,
					  const BAS_FCTS *phi,
					  const QUAD *quad);
extern const Q11_PSI_PHI *get_q11_psi_phi(const BAS_FCTS *psi,
					  const BAS_FCTS *phi,
					  const QUAD *quad);

extern const Q001_ETA_PSI_PHI *get_q001_eta_psi_phi(const BAS_FCTS *eta,
						    const BAS_FCTS *psi,
						    const BAS_FCTS *phi,
						    const QUAD *quad);
extern const Q010_ETA_PSI_PHI *get_q010_eta_psi_phi(const BAS_FCTS *eta,
						    const BAS_FCTS *psi,
						    const BAS_FCTS *phi,
						    const QUAD *quad);
extern const Q100_ETA_PSI_PHI *get_q100_eta_psi_phi(const BAS_FCTS *eta,
						    const BAS_FCTS *psi,
						    const BAS_FCTS *phi,
						    const QUAD *quad);

/***   file assemble.c   ******************************************************/
extern const EL_MATRIX_INFO *fill_matrix_info(const OPERATOR_INFO *,
					      EL_MATRIX_INFO *res);
extern const EL_MATRIX_INFO *fill_matrix_info_ext(EL_MATRIX_INFO *res,
						  const OPERATOR_INFO *,
						  const BNDRY_OPERATOR_INFO *,
						  ...);
extern const QUAD_TENSOR *get_quad_matrix(const FE_SPACE *row_fe_space,
					  const FE_SPACE *col_fe_space,
					  int krn_degree,
					  int n_derivatives);
extern const QUAD_TENSOR *get_quad_tensor(const FE_SPACE *row_fe_space,
					  const FE_SPACE *col_fe_space,
					  const FE_SPACE *depth_fe_space,
					  int krn_degree,
					  int n_derivatives);
extern void free_quad_tensor(const QUAD_TENSOR *qtensor);

/***   file assemble-instat.c   ***********************************************/

extern EL_SYS_INFO_INSTAT *
fill_sys_info_instat(const OPERATOR_INFO *stiff_info,
		     const OPERATOR_INFO *mass_info,
		     const DOF_REAL_VEC *u_h);
extern EL_SYS_INFO_DOW_INSTAT *
fill_sys_info_instat_dow(const OPERATOR_INFO *stiff_info,
			 const OPERATOR_INFO *mass_info,
			 const DOF_REAL_VEC_D *u_h);
static inline EL_SYS_INFO_D_INSTAT *
fill_sys_info_instat_d(const OPERATOR_INFO *stiff_info,
		       const OPERATOR_INFO *mass_info,
		       const DOF_REAL_D_VEC *u_h)
{
  return (EL_SYS_INFO_D_INSTAT *)
    fill_sys_info_instat_dow(
      stiff_info, mass_info, (const DOF_REAL_VEC_D *)u_h);
}
extern void free_sys_info_instat(EL_SYS_INFO_INSTAT *elsii);
extern void free_sys_info_d_instat(EL_SYS_INFO_D_INSTAT *elsii);
extern void update_system_instat(DOF_MATRIX *dof_matrix,
				 DOF_REAL_VEC *f_h,
				 REAL tau,
				 REAL theta,
				 EL_SYS_INFO_INSTAT *elsii);
extern void update_system_instat_dow(DOF_MATRIX *dof_matrix,
				     DOF_REAL_VEC_D *f_h,
				     REAL tau,
				     REAL theta,
				     EL_SYS_INFO_DOW_INSTAT *elsii);
static inline
void update_system_instat_d(DOF_MATRIX *dof_matrix,
			    DOF_REAL_D_VEC *f_h,
			    REAL tau,
			    REAL theta,
			    EL_SYS_INFO_D_INSTAT *elsii)
{
  update_system_instat_dow(dof_matrix, (DOF_REAL_VEC_D *)f_h, tau, theta,
			   (EL_SYS_INFO_DOW_INSTAT *)elsii);
}

/***   file bas_fct.c   *******************************************************/
extern const BAS_FCTS *get_bas_fcts(int dim, const char *name);
extern const BAS_FCTS *get_discontinuous_lagrange(int dim, int degree);
extern const BAS_FCTS *get_lagrange(int dim, int degree);
extern const BAS_FCTS *get_disc_ortho_poly(int dim, int degree);
extern const BAS_FCTS *new_bas_fcts(const BAS_FCTS * bas_fcts);
extern BAS_FCTS *chain_bas_fcts(const BAS_FCTS *head, BAS_FCTS *tail);

typedef const BAS_FCTS *
(*BAS_FCTS_INIT_FCT)(int dim, int dow, const char *name);

extern void add_bas_fcts_plugin(BAS_FCTS_INIT_FCT init_fct);

extern const EL_INT_VEC *
default_get_int_vec(int rvec[], const EL *el, const DOF_INT_VEC *vec);
extern const EL_REAL_VEC *
default_get_real_vec(REAL rvec[], const EL *el, const DOF_REAL_VEC *vec);
extern const EL_REAL_D_VEC *
default_get_real_d_vec(REAL_D rvec[],
		       const EL *el, const DOF_REAL_D_VEC *vec);
extern const EL_REAL_DD_VEC *
default_get_real_dd_vec(REAL_DD rvec[],
			const EL *el, const DOF_REAL_DD_VEC *vec);
extern const EL_REAL_VEC_D *
default_get_real_vec_d(REAL rvec[],
		       const EL *el, const DOF_REAL_VEC_D *vec);
extern const EL_UCHAR_VEC *
default_get_uchar_vec(U_CHAR rvec[],
		      const EL *el, const DOF_UCHAR_VEC *vec);
extern const EL_SCHAR_VEC *
default_get_schar_vec(S_CHAR rvec[],
		      const EL *el, const DOF_SCHAR_VEC *vec);
extern const EL_PTR_VEC *
default_get_ptr_vec(void *rvec[],
		    const EL *el, const DOF_PTR_VEC *vec);

/***   file check.c   *********************************************************/
extern void check_mesh(MESH *mesh);

/***   file element.c   *******************************************************/

/* These routines are partially available as _?d-versions to avoid looking
 * up the dimension. This should be a small efficiency bonus.
 */
extern void
fill_neigh_el_info(EL_INFO *neigh_info,
		   const EL_INFO *el_info, int wall, int rel_perm);
static inline const EL_GEOM_CACHE *
fill_el_geom_cache(const EL_INFO *el_info, FLAGS fill_flag);

#if 0
/* implemented as inline-functions further below */
extern int wall_orientation(int dim, const EL *el, int wall);
extern int world_to_coord(const EL_INFO *el_info, const REAL *,
			  REAL_B);
extern const REAL *coord_to_world(const EL_INFO *, const REAL_B, REAL_D);
extern REAL el_det(const EL_INFO *el_info);
extern REAL el_volume(const EL_INFO *el_info);
extern REAL el_grd_lambda(const EL_INFO *el_info,
			  REAL_BD grd_lam);
#endif /* inlines further below */

/* Dimension dependent routines, 0d, just dummies in most cases. */
extern int wall_orientation_0d(const EL *el, int wall);
extern int wall_rel_orientation_0d(const EL *el, const EL *neigh,
				   int wall, int ov);
extern int world_to_coord_0d(const EL_INFO *el_info, const REAL *, REAL_B);
extern const REAL *coord_to_world_0d(const EL_INFO *, const REAL_B, REAL_D);
extern REAL el_det_0d(const EL_INFO *);
extern REAL el_volume_0d(const EL_INFO *el_info);
extern REAL el_grd_lambda_0d(const EL_INFO *el_info,
			     REAL_BD grd_lam);
extern REAL get_wall_normal_0d(const EL_INFO *el_info, int wall, REAL *normal);

/* Dimension dependent routines, 1d */
extern int wall_orientation_1d(const EL *el, int wall);
extern int wall_rel_orientation_1d(const EL *el, const EL *neigh,
				   int wall, int ov);
extern int world_to_coord_1d(const EL_INFO *el_info, const REAL *,
			     REAL_B);
extern const REAL *coord_to_world_1d(const EL_INFO *, const REAL_B, REAL_D);
extern REAL el_det_1d(const EL_INFO *);
extern REAL el_volume_1d(const EL_INFO *el_info);
extern REAL el_grd_lambda_1d(const EL_INFO *,
			     REAL_BD grd_lam);
extern REAL get_wall_normal_1d(const EL_INFO *el_info, int wall, REAL *normal);

#if DIM_MAX > 1
/* Dimension dependent routines, 2d */
extern int wall_orientation_2d(const EL *el, int wall);
extern int wall_rel_orientation_2d(const EL *el, const EL *neigh,
				   int wall, int ov);
extern int world_to_coord_2d(const EL_INFO *el_info, const REAL *,
			     REAL_B);
extern const REAL *coord_to_world_2d(const EL_INFO *, const REAL_B, REAL_D);
extern REAL el_det_2d(const EL_INFO *);
extern REAL el_volume_2d(const EL_INFO *el_info);
extern REAL el_grd_lambda_2d(const EL_INFO *,
			     REAL_BD grd_lam);
extern REAL get_wall_normal_2d(const EL_INFO *el_info, int wall, REAL *normal);

#if DIM_MAX > 2
/* Dimension dependent routines, 3d */
extern int wall_orientation_3d(const EL *el, int wall);
extern int wall_rel_orientation_3d(const EL *el, const EL *neigh,
				   int wall, int oppv);
extern int world_to_coord_3d(const EL_INFO *el_info, const REAL *, REAL_B);
extern const REAL *coord_to_world_3d(const EL_INFO *, const REAL_B, REAL_D);
extern REAL el_det_3d(const EL_INFO *);
extern REAL el_volume_3d(const EL_INFO *el_info);
extern REAL el_grd_lambda_3d(const EL_INFO *,
			     REAL_BD grd_lam);
extern REAL get_wall_normal_3d(const EL_INFO *el_info, int wall, REAL *normal);
#endif
#endif

/* Below we provide wrapper functions which distinguish the dimension
 * dependent routines by the co-dimension rather than by the dimension
 * of the underlying mesh. We start by defining a preprocessor macro
 * which spares us some typing and especially typos.
 *
 * In addition, we provide wrapper functions which decide by looking
 * at el_info->mesh->dim what to do.
 *
 */
#if DIM_OF_WORLD == 1

# define ALBERTA_CODIM_WRAPPER(dim, ret, name, suf, argtypes, argnames)	\
  static inline ret name##suf argtypes					\
  {									\
    FUNCNAME(#name);							\
									\
    switch (dim) {							\
    case 0: return name##_0d argnames;					\
    case 1: return name##_1d argnames;					\
    default:								\
      ERROR_EXIT("Illegal dim!\n");					\
      return (ret)0; /* shut-off a compiler warning */			\
    }									\
  }									\
  struct _AI_semicolon_dummy

# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames)		\
  static inline ret name##_0cd argtypes { return name##_1d argnames; }	\
  static inline ret name##_1cd argtypes { return name##_0d argnames; }	\
  struct _AI_semicolon_dummy

/* Variants which start at DOW == 2 and thus are empty here */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames)	\
  struct _AI_semicolon_dummy
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames)	\
  struct _AI_semicolon_dummy

#elif DIM_OF_WORLD == 2

# define ALBERTA_CODIM_WRAPPER(dim, ret, name, suf, argtypes, argnames)	\
  static inline ret name##suf argtypes					\
  {									\
    FUNCNAME(#name);							\
									\
    switch (dim) {							\
    case 0: return name##_0d argnames;					\
    case 1: return name##_1d argnames;					\
    case 2: return name##_2d argnames;					\
    default:								\
      ERROR_EXIT("Illegal dim!\n");					\
      return (ret)0L; /* shut-off a compiler warning */			\
    }									\
  }									\
  struct _AI_semicolon_dummy

# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames)		\
  static inline ret name##_0cd argtypes { return name##_2d argnames; }	\
  static inline ret name##_1cd argtypes { return name##_1d argnames; }	\
  static inline ret name##_2cd argtypes { return name##_0d argnames; }	\
  struct _AI_semicolon_dummy

/* Variants which start at DOW == 2 */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames)		\
  static inline ret name##_0cd argtypes { return name##_2d argnames; }	\
  struct _AI_semicolon_dummy
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames)		\
  static inline void name##_0cd argtypes { name##_2d argnames; }	\
  struct _AI_semicolon_dummy

#elif DIM_OF_WORLD == 3

# define ALBERTA_CODIM_WRAPPER(dim, ret, name, suf, argtypes, argnames)	\
  static inline ret name##suf argtypes					\
  {									\
    FUNCNAME(#name);							\
									\
    switch (dim) {							\
    case 0: return name##_0d argnames;					\
    case 1: return name##_1d argnames;					\
    case 2: return name##_2d argnames;					\
    case 3: return name##_3d argnames;					\
    default:								\
      ERROR_EXIT("Illegal dim!\n");					\
      return (ret)0L; /* shut-off a compiler warning */			\
    }									\
  }									\
  struct _AI_semicolon_dummy

# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames)		\
  static inline ret name##_0cd argtypes { return name##_3d argnames; }	\
  static inline ret name##_1cd argtypes { return name##_2d argnames; }	\
  static inline ret name##_2cd argtypes { return name##_1d argnames; }	\
  static inline ret name##_3cd argtypes { return name##_0d argnames; }	\
  struct _AI_semicolon_dummy

/* Variants which start at DOW == 2 */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames)		\
  static inline ret name##_0cd argtypes { return name##_3d argnames; }	\
  static inline ret name##_1cd argtypes { return name##_2d argnames; }	\
  struct _AI_semicolon_dummy
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames)		\
  static inline void name##_0cd argtypes { name##_3d argnames; }	\
  static inline void name##_1cd argtypes { name##_2d argnames; }	\
  struct _AI_semicolon_dummy

#elif DIM_OF_WORLD > 3

# define ALBERTA_CODIM_WRAPPER(dim, ret, name, suf, argtypes, argnames)	\
  static inline ret name##suf argtypes					\
  {									\
    FUNCNAME(#name);							\
									\
    switch (dim) {							\
    case 0: return name##_0d argnames;					\
    case 1: return name##_1d argnames;					\
    case 2: return name##_2d argnames;					\
    case 3: return name##_3d argnames;					\
    default:								\
      ERROR_EXIT("Illegal dim!\n");					\
      return (ret)0L; /* shut-off a compiler warning */			\
    }									\
  }									\
  struct _AI_semicolon_dummy

# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames)	\
  struct _AI_semicolon_dummy
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames)	\
  struct _AI_semicolon_dummy
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames)	\
  struct _AI_semicolon_dummy

#endif

/* ..._Xcd() alias definitions */
ALBERTA_CODIM_ALIAS(int, world_to_coord,
		    (const EL_INFO *el_info,
		     const REAL *xy,
		     REAL_B lambda),
		    (el_info, xy, lambda));
ALBERTA_CODIM_ALIAS(const REAL *, coord_to_world,
		    (const EL_INFO *el_info, const REAL_B l, REAL_D w),
		    (el_info, l, w));
ALBERTA_CODIM_ALIAS(REAL, el_volume, (const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_ALIAS(REAL, el_det, (const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_ALIAS(REAL, el_grd_lambda,
		    (const EL_INFO *el_info,
		     REAL_BD grd_lam),
		    (el_info, grd_lam));
ALBERTA_CODIM_ALIAS(REAL, get_wall_normal,
		    (const EL_INFO *el_info, int i0, REAL *normal),
		    (el_info, i0, normal));
ALBERTA_CODIM_ALIAS(int, wall_orientation,
		    (const EL *el, int wall),
		    (el, wall));
ALBERTA_CODIM_ALIAS(int, wall_rel_orientation,
		    (const EL *el, const EL *neigh, int wall, int oppv),
		    (el, neigh, wall, oppv));
static const int sorted_wall_vertices_0d[1][1][1] = {{{ 0 }}}; /* dummy */
ALBERTA_CODIM_ALIAS(const int *, sorted_wall_vertices,
		    (int wall, int permno),
		    [wall][permno]);
static const int vertex_of_wall_0d[1][1] = {{ 0 }}; /* dummy */
ALBERTA_CODIM_ALIAS(const int *, vertex_of_wall,
		    (int wall),
		    [wall]);
static const int vertex_of_edge_0d[1][1] = {{ 0 }}; /* dummy */
ALBERTA_CODIM_ALIAS(const int *, vertex_of_edge,
		    (int edge),
		    [edge]);

/* Wrappers which look at el_info->mesh->dim */
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      int, world_to_coord, /**/,
		      (const EL_INFO *el_info, const REAL *x, REAL_B lambda),
		      (el_info, x, lambda));
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      const REAL *, coord_to_world, /**/,
		      (const EL_INFO *el_info, const REAL_B lambda, REAL_D x),
		      (el_info, lambda, x));
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      REAL, el_volume, /**/,
		      (const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      REAL, el_det, /**/,
		      (const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      REAL, el_grd_lambda, /**/,
		      (const EL_INFO *el_info,
		       REAL_BD grd_lam),
		      (el_info, grd_lam));
ALBERTA_CODIM_WRAPPER(el_info->mesh->dim,
		      REAL, get_wall_normal, /**/,
		      (const EL_INFO *el_info, int wall, REAL *normal),
		      (el_info, wall, normal));

/* Wrappers with addtional "dim" as argument */
ALBERTA_CODIM_WRAPPER(dim, int, wall_orientation, /**/,
		      (int dim, const EL *el, int wall),
		      (el, wall));
ALBERTA_CODIM_WRAPPER(dim, int, wall_rel_orientation, /**/,
		      (int dim,
		       const EL *el, const EL *neigh, int wall, int oppv),
		      (el, neigh, wall, oppv));
ALBERTA_CODIM_WRAPPER(dim, const int *, sorted_wall_vertices, /**/,
		      (int dim, int wall, int permno), [wall][permno]);
ALBERTA_CODIM_WRAPPER(dim, const int *, vertex_of_wall, /**/,
		      (int dim, int wall), [wall]);
ALBERTA_CODIM_WRAPPER(dim, const int *, vertex_of_edge, /**/,
		      (int dim, int edge), [edge]);
ALBERTA_CODIM_WRAPPER(dim, int, world_to_coord, _dim,
		      (int dim,
		       const EL_INFO *el_info, const REAL *x, REAL_B lambda),
		      (el_info, x, lambda));
ALBERTA_CODIM_WRAPPER(dim, const REAL *, coord_to_world, _dim,
		      (int dim,
		       const EL_INFO *el_info, const REAL_B lambda, REAL_D x),
		      (el_info, lambda, x));
ALBERTA_CODIM_WRAPPER(dim, REAL, el_volume, _dim,
		      (int dim, const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_WRAPPER(dim, REAL, el_det, _dim,
		      (int dim, const EL_INFO *el_info), (el_info));
ALBERTA_CODIM_WRAPPER(dim, REAL, el_grd_lambda, _dim,
		      (int dim, const EL_INFO *el_info, REAL_BD grd_lam),
		      (el_info, grd_lam));
ALBERTA_CODIM_WRAPPER(dim, REAL, get_wall_normal, _dim,
		      (int dim, const EL_INFO *el_info, int wall, REAL *normal),
		      (el_info, wall, normal));

/* Some special wrapper functions, used for some stuff defined in
 * level.c
 */
ALBERTA_CODIM_ALIAS_2(REAL, level_element_det, (const REAL_D coord[]), (coord));
ALBERTA_VOID_CODIM_ALIAS_2(level_coord_to_world,
			   (const REAL_D coord[],
			    const REAL_B lambda,
			    REAL_D world),
			   (coord, lambda, world));
ALBERTA_VOID_CODIM_ALIAS_2(level_coord_to_el_coord,
			   (const REAL_B v_lambda[],
			    const REAL_B lambda,
			    REAL_B el_lambda),
			   (v_lambda, lambda, el_lambda));

/***   file estimator{_dowb}.c   **********************************************/

/* The values accepted by the f_flags arguments of ellipt_est() &
 * friends.
 */
#define INIT_UH     1
#define INIT_GRD_UH 2

/*
 {
 const void *est_handle;
 REAL est_el;
 const EL_GEOM_CACHE *elgc;

 est_handle = estimator_init(...);
 TRAVERSE_FIRST(mesh, -1, fill_flag) {
 est_el = element_est(el_info, est_handle);
 #if needed
 uh = element_est_uh(est_handle);
 grd_uh = element_est_grd_uh(est_handle);
 el_gc = fill_el_geom_cache(el_info, FILL_EL_DET);
 est_el += el_gc->det * additional_stuff(el_cache,...);
 #endif
 element_est_finish(est_el, est_handle);
 } TRAVERSE_NEXT();

 estimate = estimator_finish(..., est_handle)
 }
*/

extern const void *ellipt_est_init(const DOF_REAL_VEC *uh,
				   ADAPT_STAT *adapt,
				   REAL *(*rw_est)(EL *),
				   REAL *(*rw_estc)(EL *),
				   const QUAD *quad,
				   const WALL_QUAD *wall_quad,
				   NORM norm,
				   REAL C[3],
				   const REAL_DD A,
				   const BNDRY_FLAGS dirichlet_bndry,
				   REAL (*f)(const EL_INFO *el_info,
					     const QUAD *quad,
					     int qp,
					     REAL uh_qp,
					     const REAL_D grd_uh_gp),
				   FLAGS f_flags,
				   REAL (*gn)(const EL_INFO *el_info,
					      const QUAD *quad,
					      int qp,
					      REAL uh_qp,
					      const REAL_D normal),
				   FLAGS gn_flags);
extern const void *heat_est_init(const DOF_REAL_VEC *uh,
				 const DOF_REAL_VEC *uh_old,
				 ADAPT_INSTAT *adapt,
				 REAL *(*rw_est)(EL *),
				 REAL *(*rw_estc)(EL *),
				 const QUAD *quad,
				 const WALL_QUAD *wall_quad,
				 REAL C[4],
				 const REAL_DD A,
				 const BNDRY_FLAGS dirichlet_bndry,
				 REAL (*f)(const EL_INFO *el_info,
					   const QUAD *quad,
					   int qp,
					   REAL uh_qp,
					   const REAL_D grd_uh_gp,
					   REAL time),
				 FLAGS f_flags,
				 REAL (*gn)(const EL_INFO *el_info,
					    const QUAD *quad,
					    int qp,
					    REAL uh_qp,
					    const REAL_D normal,
					    REAL time),
				 FLAGS gn_flags);

extern REAL element_est(const EL_INFO *el_info, const void *est_handle);
extern void element_est_finish(const EL_INFO *el_info,
			       REAL est_el, const void *est_handle);
extern REAL ellipt_est_finish(ADAPT_STAT *adapt, const void *est_handle);
extern REAL heat_est_finish(ADAPT_INSTAT *adapt, const void *est_handle);
extern const REAL *element_est_uh(const void *est_handle);
extern const REAL_D *element_est_grd_uh(const void *est_handle);
extern const EL_REAL_VEC *element_est_uh_loc(const void *est_handle);
extern const EL_REAL_VEC *element_est_uh_old_loc(const void *est_handle);

extern REAL ellipt_est(const DOF_REAL_VEC *uh,
		       ADAPT_STAT *adapt,
		       REAL *(*rw_est)(EL *),
		       REAL *(*rw_estc)(EL *),
		       int quad_degree,
		       NORM norm,
		       REAL C[3],
		       const REAL_DD A,
		       const BNDRY_FLAGS dirichlet_bndry,
		       REAL (*f)(const EL_INFO *el_info,
				 const QUAD *quad,
				 int qp,
				 REAL uh_qp,
				 const REAL_D grd_uh_gp),
		       FLAGS f_flags,
		       REAL (*gn)(const EL_INFO *el_info,
				  const QUAD *quad,
				  int qp,
				  REAL uh_qp,
				  const REAL_D normal),
		       FLAGS gn_flags);
extern REAL heat_est(const DOF_REAL_VEC *uh,
		     const DOF_REAL_VEC *uh_old,
		     ADAPT_INSTAT *adapt,
		     REAL *(*rw_est)(EL *),
		     REAL *(*rw_estc)(EL *),
		     int quad_degree,
		     REAL C[4],
		     const REAL_DD A,
		     const BNDRY_FLAGS dirichlet_bndry,
		     REAL (*f)(const EL_INFO *el_info,
			       const QUAD *quad,
			       int qp,
			       REAL uh_qp,
			       const REAL_D grd_uh_gp,
			       REAL time),
		     FLAGS f_flags,
		     REAL (*gn)(const EL_INFO *el_info,
				const QUAD *quad,
				int qp,
				REAL uh_qp,
				const REAL_D normal,
				REAL time),
		     FLAGS gn_flags);

/***   file estimator_dowb.c **************************************************/
extern const void *ellipt_est_dow_init(const DOF_REAL_VEC_D *uh,
				       ADAPT_STAT *adapt,
				       REAL *(*rw_est)(EL *),
				       REAL *(*rw_estc)(EL *),
				       const QUAD *quad,
				       const WALL_QUAD *wall_quad,
				       NORM norm,
				       REAL C[3],
				       const void *A,
				       MATENT_TYPE A_type,
				       MATENT_TYPE A_blocktype,
				       bool sym_grad,
				       const BNDRY_FLAGS dirichlet_bndry,
				       const REAL *(*f)(REAL_D result,
							const EL_INFO *el_info,
							const QUAD *quad,
							int qp,
							const REAL_D uh_qp,
							const REAL_DD grd_uh_gp),
				       FLAGS f_flags,
				       const REAL *(*gn)(REAL_D result,
							 const EL_INFO *el_info,
							 const QUAD *quad,
							 int qp,
							 const REAL_D uh_qp,
							 const REAL_D normal),
				       FLAGS gn_flags);
extern const void *heat_est_dow_init(const DOF_REAL_VEC_D *uh,
				     const DOF_REAL_VEC_D *uh_old,
				     ADAPT_INSTAT *adapt,
				     REAL *(*rw_est)(EL *),
				     REAL *(*rw_estc)(EL *),
				     const QUAD *quad,
				     const WALL_QUAD *wall_quad,
				     REAL C[4],
				     const void *A,
				     MATENT_TYPE A_type,
				     MATENT_TYPE A_blocktype,
				     bool sym_grad,
				     const BNDRY_FLAGS dirichlet_bndry,
				     const REAL *(*f)(REAL_D result,
						      const EL_INFO *el_info,
						      const QUAD *quad,
						      int qp,
						      const REAL_D uh_qp,
						      const REAL_DD grd_uh_gp,
						      REAL time),
				     FLAGS f_flags,
				     const REAL *(*gn)(REAL_D result,
						       const EL_INFO *el_info,
						       const QUAD *quad,
						       int qp,
						       const REAL_D uh_qp,
						       const REAL_D normal,
						       REAL time),
				     FLAGS gn_flags);

extern REAL element_est_dow(const EL_INFO *el_info, const void *est_handle);
extern void element_est_dow_finish(const EL_INFO *el_info,
				   REAL est_el, const void *est_handle);
extern REAL ellipt_est_dow_finish(ADAPT_STAT *adapt, const void *est_handle);
extern REAL heat_est_dow_finish(ADAPT_INSTAT *adapt, const void *est_handle);
extern const REAL_D *element_est_uh_dow(const void *est_handle);
extern const REAL_DD *element_est_grd_uh_dow(const void *est_handle);
extern const EL_REAL_VEC_D *element_est_uh_loc_dow(const void *est_handle);
extern const EL_REAL_VEC_D *element_est_uh_old_loc_dow(const void *est_handle);

extern REAL ellipt_est_dow(const DOF_REAL_VEC_D *uh,
			   ADAPT_STAT *adapt,
			   REAL *(*rw_est)(EL *),
			   REAL *(*rw_estc)(EL *),
			   int quad_degree,
			   NORM norm,
			   REAL C[3],
			   const void *A,
			   MATENT_TYPE A_type,
			   MATENT_TYPE A_blocktype,
			   bool sym_grad,
			   const BNDRY_FLAGS dirichlet_bndry,
			   const REAL *(*f)(REAL_D result,
					    const EL_INFO *el_info,
					    const QUAD *quad,
					    int qp,
					    const REAL_D uh_qp,
					    const REAL_DD grd_uh_gp),
			   FLAGS f_flags,
			   const REAL *(*gn)(REAL_D result,
					     const EL_INFO *el_info,
					     const QUAD *quad,
					     int qp,
					     const REAL_D uh_qp,
					     const REAL_D normal),
			   FLAGS gn_flags);
extern REAL heat_est_dow(const DOF_REAL_VEC_D *uh,
			 const DOF_REAL_VEC_D *uh_old,
			 ADAPT_INSTAT *adapt,
			 REAL *(*rw_est)(EL *),
			 REAL *(*rw_estc)(EL *),
			 int quad_degree,
			 REAL C[4],
			 const void *A,
			 MATENT_TYPE A_type,
			 MATENT_TYPE A_blocktype,
			 bool sym_grad,
			 const BNDRY_FLAGS dirichlet_bndry,
			 const REAL *(*f)(REAL_D result,
					  const EL_INFO *el_info,
					  const QUAD *quad,
					  int qp,
					  const REAL_D uh_qp,
					  const REAL_DD grd_uh_gp,
					  REAL time),
			 FLAGS f_flags,
			 const REAL *(*gn)(REAL_D result,
					   const EL_INFO *el_info,
					   const QUAD *quad,
					   int qp,
					   const REAL_D uh_qp,
					   const REAL_D normal,
					   REAL time),
			 FLAGS gn_flags);

/* DOF_REAL_D_VEC versions */
static inline
const void *ellipt_est_d_init(const DOF_REAL_D_VEC *uh,
			      ADAPT_STAT *adapt,
			      REAL *(*rw_est)(EL *),
			      REAL *(*rw_estc)(EL *),
			      const QUAD *quad,
			      const WALL_QUAD *wall_quad,
			      NORM norm,
			      REAL C[3],
			      const void *A,
			      MATENT_TYPE A_type,
			      MATENT_TYPE A_blocktype,
			      bool sym_grad,
			      const BNDRY_FLAGS dirichlet_bndry,
			      const REAL *(*f)(REAL_D result,
					       const EL_INFO *el_info,
					       const QUAD *quad,
					       int qp,
					       const REAL_D uh_qp,
					       const REAL_DD grd_uh_gp),
			      FLAGS f_flags,
			      const REAL *(*gn)(REAL_D result,
						const EL_INFO *el_info,
						const QUAD *quad,
						int qp,
						const REAL_D uh_qp,
						const REAL_D normal),
			      FLAGS gn_flags)
{
  return ellipt_est_dow_init(
    (const DOF_REAL_VEC_D *)uh,
    adapt, rw_est, rw_estc, quad, wall_quad, norm, C, A, A_type, A_blocktype,
    sym_grad, dirichlet_bndry, f, f_flags, gn, gn_flags);
}

static inline
REAL ellipt_est_d(const DOF_REAL_D_VEC *uh,
		  ADAPT_STAT *adapt,
		  REAL *(*rw_est)(EL *),
		  REAL *(*rw_estc)(EL *),
		  int quad_degree,
		  NORM norm,
		  REAL C[3],
		  const void *A,
		  MATENT_TYPE A_type,
		  MATENT_TYPE A_blocktype,
		  bool sym_grad,
		  const BNDRY_FLAGS dirichlet_bndry,
		  const REAL *(*f)(REAL_D result,
				   const EL_INFO *el_info,
				   const QUAD *quad,
				   int qp,
				   const REAL_D uh_qp,
				   const REAL_DD grd_uh_gp),
		  FLAGS f_flags,
		  const REAL *(*gn)(REAL_D result,
				    const EL_INFO *el_info,
				    const QUAD *quad,
				    int qp,
				    const REAL_D uh_qp,
				    const REAL_D normal),
		  FLAGS gn_flags)
{
  return ellipt_est_dow(
    (const DOF_REAL_VEC_D *)uh,
    adapt, rw_est, rw_estc, quad_degree, norm, C, A, A_type, A_blocktype,
    sym_grad, dirichlet_bndry, f, f_flags, gn, gn_flags);
}

static inline
const void *heat_est_d_init(const DOF_REAL_D_VEC *uh,
			    const DOF_REAL_D_VEC *uh_old,
			    ADAPT_INSTAT *adapt,
			    REAL *(*rw_est)(EL *),
			    REAL *(*rw_estc)(EL *),
			    const QUAD *quad,
			    const WALL_QUAD *wall_quad,
			    REAL C[4],
			    const void *A,
			    MATENT_TYPE A_type,
			    MATENT_TYPE A_blocktype,
			    bool sym_grad,
			    const BNDRY_FLAGS dirichlet_bndry,
			    const REAL *(*f)(REAL_D result,
					     const EL_INFO *el_info,
					     const QUAD *quad,
					     int qp,
					     const REAL_D uh_qp,
					     const REAL_DD grd_uh_gp,
					     REAL time),
			    FLAGS f_flags,
			    const REAL *(*gn)(REAL_D result,
					      const EL_INFO *el_info,
					      const QUAD *quad,
					      int qp,
					      const REAL_D uh_qp,
					      const REAL_D normal,
					      REAL time),
			    FLAGS gn_flags)
{
  return heat_est_dow_init(
    (const DOF_REAL_VEC_D *)uh, (const DOF_REAL_VEC_D *)uh_old,
    adapt, rw_est, rw_estc, quad, wall_quad, C, A, A_type, A_blocktype,
    sym_grad, dirichlet_bndry, f, f_flags, gn, gn_flags);
}

static inline
REAL heat_est_d(const DOF_REAL_D_VEC *uh,
		const DOF_REAL_D_VEC *uh_old,
		ADAPT_INSTAT *adapt,
		REAL *(*rw_est)(EL *),
		REAL *(*rw_estc)(EL *),
		int quad_degree,
		REAL C[4],
		const void *A,
		MATENT_TYPE A_type,
		MATENT_TYPE A_blocktype,
		bool sym_grad,
		const BNDRY_FLAGS dirichlet_bndry,
		const REAL *(*f)(REAL_D result,
				 const EL_INFO *el_info,
				 const QUAD *quad,
				 int qp,
				 const REAL_D uh_qp,
				 const REAL_DD grd_uh_gp,
				 REAL time),
		FLAGS f_flags,
		const REAL *(*gn)(REAL_D result,
				  const EL_INFO *el_info,
				  const QUAD *quad,
				  int qp,
				  const REAL_D uh_qp,
				  const REAL_D normal,
				  REAL time),
		FLAGS gn_flags)
{
  return heat_est_dow(
    (const DOF_REAL_VEC_D *)uh, (const DOF_REAL_VEC_D *)uh_old,
    adapt, rw_est, rw_estc, quad_degree, C, A, A_type, A_blocktype,
    sym_grad, dirichlet_bndry, f, f_flags, gn, gn_flags);
}

static inline
REAL element_est_d(const EL_INFO *el_info, const void *est_handle)
{
  return element_est_dow(el_info, est_handle);
}

static inline
void element_est_d_finish(const EL_INFO *el_info,
			  REAL est_el, const void *est_handle)
{
  element_est_dow_finish(el_info, est_el, est_handle);
}

static inline
REAL ellipt_est_d_finish(ADAPT_STAT *adapt, const void *est_handle)
{
  return  ellipt_est_dow_finish(adapt, est_handle);
}

static inline
REAL heat_est_d_finish(ADAPT_INSTAT *adapt, const void *est_handle)
{
  return heat_est_dow_finish(adapt, est_handle);
}

static inline
const REAL_D *element_est_uh_d(const void *est_handle)
{
  return element_est_uh_dow(est_handle);
}

static inline
const REAL_DD *element_est_grd_uh_d(const void *est_handle) {
  return element_est_grd_uh_dow(est_handle);
}

static inline
const EL_REAL_D_VEC *element_est_uh_loc_d(const void *est_handle)
{
  return (const EL_REAL_D_VEC *)element_est_uh_loc_dow(est_handle);
}

static inline
const EL_REAL_D_VEC *element_est_uh_old_loc_d(const void *est_handle)
{
  return (const EL_REAL_D_VEC *)element_est_uh_old_loc_dow(est_handle);
}

/***   file error.c   *********************************************************/
REAL max_err_at_qp(FCT_AT_X u, const DOF_REAL_VEC *, const QUAD *);
REAL max_err_dow_at_qp(FCT_D_AT_X u, const DOF_REAL_VEC_D *, const QUAD *);
REAL max_err_at_vert(FCT_AT_X f, const DOF_REAL_VEC *);
REAL max_err_dow_at_vert(FCT_D_AT_X u, const DOF_REAL_VEC_D *uh);

REAL L2_err(FCT_AT_X u, const DOF_REAL_VEC *uh,
	    const QUAD *quad,
	    bool rel_err, bool mean_value_adjust,
	    REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_dow(FCT_D_AT_X u, const DOF_REAL_VEC_D *uh,
		const QUAD *quad,
		bool rel_err, bool mean_value_adjust,
		REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_weighted(FCT_AT_X weight, FCT_AT_X u, const DOF_REAL_VEC *uh,
		     const QUAD *quad,
		     bool rel_err, bool mean_value_adjust,
		     REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_dow_weighted(FCT_AT_X wieght, FCT_D_AT_X u,
			 const DOF_REAL_VEC_D *uh,
			 const QUAD *quad,
			 bool rel_err, bool mean_value_adjust,
			 REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);

REAL H1_err(GRD_FCT_AT_X grd_u, const DOF_REAL_VEC *u_h,
	    const QUAD *quad, bool rel_err,
	    REAL *(*rw_err_el)(EL *el), REAL *max_h1_err2);
REAL H1_err_dow(GRD_FCT_D_AT_X grd_u, const DOF_REAL_VEC_D *uh,
		const QUAD *quad, bool rel_err,
		REAL *(*rw_err_esl)(EL *el), REAL *max_h1_err2);
REAL deform_err(GRD_FCT_D_AT_X grd_u, const DOF_REAL_VEC_D *uh,
		const QUAD *quad,
		bool rel_err, REAL *(*rw_err_el)(EL *), REAL *max_el_err2);
REAL H1_err_weighted(FCT_AT_X weight, GRD_FCT_AT_X grd_u,
		     const DOF_REAL_VEC *u_h,
		     const QUAD *quad, bool rel_err,
		     REAL *(*rw_err_el)(EL *el), REAL *max_h1_err2);
REAL H1_err_dow_weighted(FCT_AT_X weight, GRD_FCT_D_AT_X grd_u,
			 const DOF_REAL_VEC_D *uh,
			 const QUAD *quad, bool rel_err,
			 REAL *(*rw_err_esl)(EL *el), REAL *max_h1_err2);
REAL deform_err_weighted(FCT_AT_X weight, GRD_FCT_D_AT_X grd_u,
			 const DOF_REAL_VEC_D *uh,
			 const QUAD *quad,
			 bool rel_err, REAL *(*rw_err_el)(EL *),
			 REAL *max_el_err2);

REAL max_err_at_qp_loc(LOC_FCT_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
		       const DOF_REAL_VEC *uh, const QUAD *quad);
REAL max_err_dow_at_qp_loc(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
			   const DOF_REAL_VEC_D *uh, const QUAD *quad);
REAL max_err_at_vert_loc(LOC_FCT_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
			 const DOF_REAL_VEC *uh);
REAL max_err_dow_at_vert_loc(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
			     const DOF_REAL_VEC_D *uh);

REAL L2_err_loc(LOC_FCT_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
		const DOF_REAL_VEC *uh,
		const QUAD *quad,
		bool rel_err, bool mean_value_adjust,
		REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL H1_err_loc(GRD_LOC_FCT_AT_QP grd_u_at_qp, void *ud, FLAGS fill_flag,
		const DOF_REAL_VEC *uh,
		const QUAD *quad, bool rel_err, REAL *(*rw_err_el)(EL *),
		REAL *max_h1_err2);
REAL L2_err_loc_dow(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
		    const DOF_REAL_VEC_D *uh,
		    const QUAD *quad,
		    bool rel_err, bool mean_value_adjust,
		    REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL H1_err_loc_dow(GRD_LOC_FCT_D_AT_QP grd_u_at_qp, void *ud, FLAGS fill_flag,
		    const DOF_REAL_VEC_D *uh, const QUAD *quad,
		    bool rel_err,
		    REAL *(*rw_err_el)(EL *), REAL *max_h1_err2);
REAL deform_err_loc(GRD_LOC_FCT_D_AT_QP grd_u_loc, void *ud, FLAGS fill_flag,
		    const DOF_REAL_VEC_D *uh, const QUAD *quad,
		    bool rel_err, 
		    REAL *(*rw_err_el)(EL *), REAL *max_el_err2);

/* DOF_REAL_D_VEC versions */

static inline
REAL max_err_d_at_qp(FCT_D_AT_X u, const DOF_REAL_D_VEC *uh, const QUAD *quad)
{
  return max_err_dow_at_qp(u, (const DOF_REAL_VEC_D *)uh, quad);
}
static inline
REAL max_err_d_at_vert(FCT_D_AT_X u, const DOF_REAL_D_VEC *uh)
{
  return max_err_dow_at_vert(u, (const DOF_REAL_VEC_D *)uh);
}
static inline
REAL L2_err_d(FCT_D_AT_X u, const DOF_REAL_D_VEC *uh,
	      const QUAD *quad,
	      bool rel_err, bool mean_value_adjust,
	      REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2)
{
  return L2_err_dow(u, (const DOF_REAL_VEC_D *)uh,
		    quad, rel_err, mean_value_adjust, rw_err_el, max_l2_err2);
}
static inline
REAL H1_err_d(GRD_FCT_D_AT_X grd_u, const DOF_REAL_D_VEC *uh,
	      const QUAD *quad, bool rel_err,
	      REAL *(*rw_err_el)(EL *el), REAL *max_h1_err2)
{
  return H1_err_dow(grd_u, (const DOF_REAL_VEC_D *)uh,
		    quad, rel_err, rw_err_el, max_h1_err2);
}
static inline
REAL max_err_d_at_qp_loc(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
			 const DOF_REAL_D_VEC *uh, const QUAD *quad)
{
  return max_err_dow_at_qp_loc(u_at_qp, ud, fill_flag,
			       (const DOF_REAL_VEC_D *)uh, quad);
}
static inline
REAL max_err_d_at_vert_loc(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
			   const DOF_REAL_D_VEC *uh)
{
  return max_err_dow_at_vert_loc(u_at_qp, ud, fill_flag,
				 (const DOF_REAL_VEC_D *)uh);
}
static inline
REAL L2_err_loc_d(LOC_FCT_D_AT_QP u_at_qp, void *ud, FLAGS fill_flag,
		  const DOF_REAL_D_VEC *uh,
		  const QUAD *quad,
		  bool rel_err, bool mean_value_adjust,
		  REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2)
{
  return L2_err_loc_dow(u_at_qp, ud, fill_flag,
			(const DOF_REAL_VEC_D *)uh,
			quad,
			rel_err, mean_value_adjust, rw_err_el, max_l2_err2);
}
static inline
REAL H1_err_loc_d(GRD_LOC_FCT_D_AT_QP grd_u_at_qp, void *ud, FLAGS fill_flag,
		  const DOF_REAL_D_VEC *uh, const QUAD *quad,
		  bool rel_err,
		  REAL *(*rw_err_el)(EL *), REAL *max_h1_err2)
{
  return H1_err_loc_dow(grd_u_at_qp, ud, fill_flag,
			(const DOF_REAL_VEC_D *)uh,
			quad, rel_err, rw_err_el, max_h1_err2);
}

/***   file eval.c   **********************************************************/

/* evaluation routines are defined as inline functions in the file evaluate.h */

REAL H1_norm_uh(const QUAD *quad, const DOF_REAL_VEC *u_h);
REAL L2_norm_uh(const QUAD *quad, const DOF_REAL_VEC *u_h);
REAL L8_uh_at_qp(REAL *minp, REAL *maxp,
		 const QUAD *quad, const DOF_REAL_VEC *u_h);
REAL H1_norm_uh_dow(const QUAD *quad, const DOF_REAL_VEC_D *u_h);
REAL L2_norm_uh_dow(const QUAD *quad, const DOF_REAL_VEC_D *u_h);
REAL L8_uh_at_qp_dow(REAL *minp, REAL *maxp,
		     const QUAD *quad, const DOF_REAL_VEC_D *u_h);
static inline REAL L2_norm_uh_d(const QUAD *quad, const DOF_REAL_D_VEC *u_h)
{
  return L2_norm_uh_dow(quad, (const DOF_REAL_VEC_D *)u_h);
}
static inline REAL L8_uh_at_qp_d(REAL *minp, REAL *maxp,
				 const QUAD *quad, const DOF_REAL_D_VEC *u_h)
{
  return L8_uh_at_qp_dow(minp, maxp, quad, (const DOF_REAL_VEC_D *)u_h);
}
static inline REAL H1_norm_uh_d(const QUAD *quad, const DOF_REAL_D_VEC *u_h)
{
  return H1_norm_uh_dow(quad, (const DOF_REAL_VEC_D *)u_h);
}

void interpol(FCT_AT_X fct, DOF_REAL_VEC *u_h);
void interpol_dow(FCT_D_AT_X fct, DOF_REAL_VEC_D *uh);
void interpol_loc(DOF_REAL_VEC *vec,
		  LOC_FCT_AT_QP fct_at_qp, void *app_data,
		  FLAGS fill_flags);
void interpol_loc_dow(DOF_REAL_VEC_D *vec,
		      LOC_FCT_D_AT_QP fct_at_qp, void *app_data,
		      FLAGS fill_flags);

static inline
void interpol_d(FCT_D_AT_X f, DOF_REAL_D_VEC *u_h)
{
  interpol_dow(f, (DOF_REAL_VEC_D *)u_h);
}

static inline
void interpol_loc_d(DOF_REAL_D_VEC *vec,
		    LOC_FCT_D_AT_QP fct_at_qp, void *app_data,
		    FLAGS fill_flags)
{
  interpol_loc_dow((DOF_REAL_VEC_D *)vec, fct_at_qp, app_data, fill_flags);
}

/***   file graphXO.c   *******************************************************/
GRAPH_WINDOW graph_open_window(const char *title, const char *geometry,
			       REAL *world, MESH *mesh);
void graph_close_window(GRAPH_WINDOW win);
void graph_clear_window(GRAPH_WINDOW win, const GRAPH_RGBCOLOR c);

void graph_mesh(GRAPH_WINDOW win, MESH *mesh, const GRAPH_RGBCOLOR c,
		FLAGS flag);
void graph_drv(GRAPH_WINDOW win, const DOF_REAL_VEC *uh,
	       REAL min, REAL max, int refine);
void graph_drv_d(GRAPH_WINDOW win, const DOF_REAL_D_VEC *uh,
		 REAL min, REAL max, int refine);
void graph_el_est(GRAPH_WINDOW win, MESH *mesh, REAL (*get_el_est)(EL *el),
		  REAL min, REAL max);

void graph_point(GRAPH_WINDOW, const REAL [2], const GRAPH_RGBCOLOR, float);
void graph_points(GRAPH_WINDOW win, int np, REAL (*p)[2],
		  const GRAPH_RGBCOLOR c, float ps);
void graph_line(GRAPH_WINDOW, const REAL [2], const REAL [2],
		const GRAPH_RGBCOLOR, float);

void graph_fvalues_2d(GRAPH_WINDOW win, MESH *mesh,
		      REAL(*fct)(const EL_INFO *el_info, const REAL *lambda),
		      FLAGS flags, REAL min, REAL max, int refine);
void graph_level_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v, REAL level,
		    const GRAPH_RGBCOLOR c, int refine);
void graph_levels_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v,
		     int n, REAL const *levels, const GRAPH_RGBCOLOR *color,
		     int refine);
void graph_level_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *,
		      REAL, const GRAPH_RGBCOLOR, int);
void graph_levels_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *,
		       int, const REAL *, const GRAPH_RGBCOLOR *, int);

/* multigrid level display routines:  */
void graph_mesh_mg_2d(GRAPH_WINDOW win, MESH *mesh, const GRAPH_RGBCOLOR c,
		      FLAGS flags, int mg_level);
void graph_values_mg_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v,
			REAL min, REAL max, int refine,
			int mg_level, const FE_SPACE *fe_space,
			const int *sort_dof_invers);

/***   file l2scp.c   *********************************************************/
void L2scp_fct_bas(FCT_AT_X f, const QUAD *quad, DOF_REAL_VEC *fh);
void L2scp_fct_bas_dow(FCT_D_AT_X, const QUAD *quad, DOF_REAL_VEC_D *fhd);
void L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
		       LOC_FCT_AT_QP f_at_qp, void *fct_data, FLAGS fill_flag,
		       const QUAD *quad);
void L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
			   LOC_FCT_D_AT_QP f_at_qp, void *ud, FLAGS fill_flag,
			   const QUAD *quad);

void H1scp_fct_bas(GRD_FCT_AT_X f, const QUAD *quad, DOF_REAL_VEC *fh);
void H1scp_fct_bas_dow(GRD_FCT_D_AT_X f, const QUAD *quad, DOF_REAL_VEC_D *fh);
void H1scp_fct_bas_loc(DOF_REAL_VEC *fh,
		       GRD_LOC_FCT_AT_QP f, void *fd, FLAGS fill_flag,
		       const QUAD *quad);
void H1scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
			   GRD_LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
			   const QUAD *quad);

bool bndry_L2scp_fct_bas(DOF_REAL_VEC *fh,
			 REAL (*f)(const REAL_D x, const REAL_D normal),
			 const BNDRY_FLAGS bndry_seg,
			 const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
			     LOC_FCT_AT_QP f_at_qp, void *ud, FLAGS fill_flag,
			     const BNDRY_FLAGS bndry_seg,
			     const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas_dow(DOF_REAL_VEC_D *fh,
			     const REAL *(*f)(const REAL_D x,
					      const REAL_D normal,
					      REAL_D result),
			     const BNDRY_FLAGS bndry_seg,
			     const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
				 LOC_FCT_D_AT_QP f_at_qp, void *ud,
				 FLAGS fill_flag,
				 const BNDRY_FLAGS bndry_seg,
				 const WALL_QUAD *quad);

void trace_L2scp_fct_bas(DOF_REAL_VEC *fh, FCT_AT_X f,
			 MESH *trace_mesh, const QUAD *quad);
void trace_L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
			     LOC_FCT_AT_QP f, void *fd, FLAGS fill_flag,
			     MESH *trace_mesh,
			     const QUAD *quad);
void trace_L2scp_fct_bas_dow(DOF_REAL_VEC_D *fh,
			     FCT_D_AT_X f,
			     MESH *trace_mesh,
			     const QUAD *quad);
void trace_L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
				 LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
				 MESH *trace_mesh,
				 const QUAD *quad);

bool bndry_H1scp_fct_bas(DOF_REAL_VEC *fh,
			 const REAL *(*f)(REAL_D result,
					  const REAL_D x, const REAL_D normal),
			 const BNDRY_FLAGS scp_segment,
			 const WALL_QUAD *quad);
bool bndry_H1scp_fct_bas_loc(DOF_REAL_VEC *fh,
			     GRD_LOC_FCT_AT_QP f, void *fd, FLAGS fill_flag,
			     const BNDRY_FLAGS scp_segment,
			     const WALL_QUAD *quad);
bool bndry_H1scp_fct_bas_dow(DOF_REAL_VEC_D *fh,
			     const REAL_D *(*f)(REAL_DD result,
						const REAL_D x,
						const REAL_D normal),
			     const BNDRY_FLAGS bndry_seg,
			     const WALL_QUAD *quad);
bool bndry_H1scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
				 GRD_LOC_FCT_D_AT_QP f_loc,
				 void *fd, FLAGS fill_flag,
				 const BNDRY_FLAGS bndry_seg,
				 const WALL_QUAD *quad);

extern bool
dirichlet_bound(DOF_REAL_VEC *fh, DOF_REAL_VEC *uh,
		DOF_SCHAR_VEC *bound,
		const BNDRY_FLAGS dirichlet_segment,
		REAL (*g)(const REAL_D));
extern bool
dirichlet_bound_dow(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
		    DOF_SCHAR_VEC *bound,
		    const BNDRY_FLAGS dirichlet_segment,
		    const REAL *(*g)(const REAL_D, REAL_D));
extern bool
dirichlet_bound_loc(DOF_REAL_VEC *fh,
		    DOF_REAL_VEC *uh,
		    DOF_SCHAR_VEC *bound,
		    const BNDRY_FLAGS dirichlet_segment,
		    LOC_FCT_AT_QP g_at_qp, void *ud, FLAGS fill_flags);
extern bool
dirichlet_bound_loc_dow(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
			DOF_SCHAR_VEC *bound,
			const BNDRY_FLAGS dirichlet_segment,
			LOC_FCT_D_AT_QP g_at_qp, void *ud, FLAGS fill_flags);

REAL mean_value(MESH *mesh,
		REAL (*f)(const REAL_D),
		const DOF_REAL_VEC *fh, const QUAD *quad);
const REAL *mean_value_dow(MESH *mesh,
			   FCT_D_AT_X f,
			   const DOF_REAL_VEC_D *fh,
			   const QUAD *quad,
			   REAL_D mean);
REAL mean_value_loc(MESH *mesh,
		    LOC_FCT_AT_QP f_at_qp, void *ud, FLAGS fill_flags,
		    const DOF_REAL_VEC *fh, const QUAD *quad);
const REAL *mean_value_loc_dow(REAL_D mean,
			       MESH *mesh,
			       LOC_FCT_D_AT_QP f_at_qp,
			       void *ud, FLAGS fill_flag,
			       const DOF_REAL_VEC_D *fh,
			       const QUAD *quad);

void robin_bound_matrix_info(EL_MATRIX_INFO *robin_info,
			     const FE_SPACE *row_fe_space,
			     const FE_SPACE *col_fe_space,
			     const BNDRY_FLAGS robin_segment,
			     REAL alpha_r,
			     const WALL_QUAD *wall_quad,
			     REAL exponent);
void robin_bound(DOF_MATRIX *matrix,
		 const BNDRY_FLAGS robin_seg,
		 REAL alpha_r,
		 const WALL_QUAD *wall_quad,
		 REAL exponent);

bool boundary_conditions(DOF_MATRIX *matrix,
			 DOF_REAL_VEC *fh,
			 DOF_REAL_VEC *uh,
			 DOF_SCHAR_VEC *bound,
			 const BNDRY_FLAGS dirichlet_segment,
			 REAL (*g)(const REAL_D x),
			 REAL (*gn)(const REAL_D x, const REAL_D normal),
			 REAL alpha_r,
			 const WALL_QUAD *wall_quad);
bool boundary_conditions_loc(DOF_MATRIX *matrix,
			     DOF_REAL_VEC *fh,
			     DOF_REAL_VEC *uh,
			     DOF_SCHAR_VEC *bound,
			     const BNDRY_FLAGS dirichlet_segment,
			     LOC_FCT_AT_QP g_at_qp,
			     LOC_FCT_AT_QP gn_at_qp,
			     void *app_data, FLAGS fill_flags,
			     REAL alpha_r,
			     const WALL_QUAD *wall_quad);
bool boundary_conditions_dow(DOF_MATRIX *matrix,
			     DOF_REAL_VEC_D *fh,
			     DOF_REAL_VEC_D *uh,
			     DOF_SCHAR_VEC *bound,
			     const BNDRY_FLAGS dirichlet_segment,
			     const REAL *(*g)(const REAL_D x, REAL_D res),
			     const REAL *(*gn)(const REAL_D x,
					       const REAL_D normal,
					       REAL_D res),
			     REAL alpha_r,
			     const WALL_QUAD *wall_quad);
bool boundary_conditions_loc_dow(DOF_MATRIX *matrix,
				 DOF_REAL_VEC_D *fh,
				 DOF_REAL_VEC_D *uh,
				 DOF_SCHAR_VEC *bound,
				 const BNDRY_FLAGS dirichlet_segment,
				 LOC_FCT_D_AT_QP g_at_qp,
				 LOC_FCT_D_AT_QP gn_at_qp,
				 void *app_data, FLAGS fill_flags,
				 REAL alpha_r,
				 const WALL_QUAD *wall_quad);

/* ... _d versions */
static inline
void L2scp_fct_bas_d(FCT_D_AT_X fct, const QUAD *quad, DOF_REAL_D_VEC *fhd)
{
  L2scp_fct_bas_dow(fct, quad, (DOF_REAL_VEC_D *)fhd);
}
static inline
void L2scp_fct_bas_loc_d(DOF_REAL_D_VEC *fh,
			 LOC_FCT_D_AT_QP f_at_qp, void *fd, FLAGS fill_flag,
			 const QUAD *quad)
{
  L2scp_fct_bas_loc_dow((DOF_REAL_VEC_D *)fh, f_at_qp, fd, fill_flag, quad);
}
static inline
void H1scp_fct_bas_d(GRD_FCT_D_AT_X f, const QUAD *quad, DOF_REAL_D_VEC *fh)
{
  H1scp_fct_bas_dow(f, quad, (DOF_REAL_VEC_D *)fh);
}
static inline
void H1scp_fct_bas_loc_d(DOF_REAL_D_VEC *fh,
			 GRD_LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
			 const QUAD *quad)
{
  H1scp_fct_bas_loc_dow((DOF_REAL_VEC_D *)fh, f, fd, fill_flag, quad);
}
static inline
bool bndry_L2scp_fct_bas_d(DOF_REAL_D_VEC *fh,
			   const REAL *(*f)(const REAL_D x,
					    const REAL_D normal,
					    REAL_D result),
			   const BNDRY_FLAGS bndry_seg,
			   const WALL_QUAD *quad)
{
  return bndry_L2scp_fct_bas_dow((DOF_REAL_VEC_D *)fh, f, bndry_seg, quad);
}
static inline
bool bndry_L2scp_fct_bas_loc_d(DOF_REAL_D_VEC *fh,
			       LOC_FCT_D_AT_QP f_at_qp, void *fd,
			       FLAGS fill_flag,
			       const BNDRY_FLAGS bndry_seg,
			       const WALL_QUAD *quad)
{
  return bndry_L2scp_fct_bas_loc_dow((DOF_REAL_VEC_D *)fh,
				     f_at_qp, fd, fill_flag, bndry_seg, quad);
}
static inline
bool dirichlet_bound_d(DOF_REAL_D_VEC *fh, DOF_REAL_D_VEC *uh,
		       DOF_SCHAR_VEC *bound,
		       const BNDRY_FLAGS dirichlet_segment,
		       const REAL *(*g)(const REAL_D, REAL_D))
{
  return dirichlet_bound_dow((DOF_REAL_VEC_D *)fh, (DOF_REAL_VEC_D *)uh,
			     bound, dirichlet_segment, g);
}
static inline
bool dirichlet_bound_loc_d(DOF_REAL_D_VEC *fh, DOF_REAL_D_VEC *uh,
			   DOF_SCHAR_VEC *bound,
			   const BNDRY_FLAGS dirichlet_segment,
			   LOC_FCT_D_AT_QP g_at_qp, void *gd, FLAGS fill_flags)
{
  return dirichlet_bound_loc_dow((DOF_REAL_VEC_D *)fh, (DOF_REAL_VEC_D *)uh,
				 bound, dirichlet_segment,
				 g_at_qp, gd, fill_flags);
}
static inline
const REAL *mean_value_d(MESH *mesh,
			 FCT_D_AT_X f,
			 const DOF_REAL_D_VEC *fh,
			 const QUAD *quad,
			 REAL_D mean)
{
  return mean_value_dow(mesh, f, (const DOF_REAL_VEC_D *)fh, quad, mean);
}
static inline
const REAL *mean_value_loc_d(REAL_D mean,
			     MESH *mesh,
			     LOC_FCT_D_AT_QP f_at_qp, void *fd, FLAGS fill_flag,
			     const DOF_REAL_D_VEC *fh,
			     const QUAD *quad)
{
  return mean_value_loc_dow(
    mean, mesh, f_at_qp, fd, fill_flag, (const DOF_REAL_VEC_D *)fh, quad);
}
static inline
bool boundary_conditions_d(DOF_MATRIX *matrix,
			   DOF_REAL_D_VEC *fh,
			   DOF_REAL_D_VEC *uh,
			   DOF_SCHAR_VEC *bound,
			   const BNDRY_FLAGS dirichlet_segment,
			   const REAL *(*g)(const REAL_D x, REAL_D res),
			   const REAL *(*gn)(const REAL_D x,
					     const REAL_D normal,
					     REAL_D res),
			   REAL alpha_r,
			   const WALL_QUAD *wall_quad)
{
  return boundary_conditions_dow(matrix,
				 (DOF_REAL_VEC_D *)fh, (DOF_REAL_VEC_D *)uh,
				 bound, dirichlet_segment, g, gn, alpha_r,
				 wall_quad);
}
static inline
bool boundary_conditions_loc_d(DOF_MATRIX *matrix,
			       DOF_REAL_D_VEC *fh,
			       DOF_REAL_D_VEC *uh,
			       DOF_SCHAR_VEC *bound,
			       const BNDRY_FLAGS dirichlet_segment,
			       LOC_FCT_D_AT_QP g_at_qp,
			       LOC_FCT_D_AT_QP gn_at_qp,
			       void *gdata, FLAGS fill_flags,
			       REAL alpha_r,
			       const WALL_QUAD *wall_quad)
{
  return boundary_conditions_loc_dow(matrix,
				     (DOF_REAL_VEC_D *)fh, (DOF_REAL_VEC_D *)uh,
				     bound, dirichlet_segment,
				     g_at_qp, gn_at_qp, gdata, fill_flags,
				     alpha_r, wall_quad);
}

/*  file oem_solve.c  *******************************************************/
extern OEM_MV_FCT get_oem_solver(OEM_SOLVER solver);
extern OEM_DATA *init_oem_solve(const DOF_MATRIX *A,
				const DOF_SCHAR_VEC *bound,
				REAL tol, const PRECON *precon,
				int restart, int max_iter, int info);
extern const PRECON *init_oem_precon(const DOF_MATRIX *A,
				     const DOF_SCHAR_VEC *mask,
				     int info, OEM_PRECON precon,
				     ... /* ssor_omega, ssor_n_iter etc. */);
extern const PRECON *vinit_oem_precon(const DOF_MATRIX *A,
				      const DOF_SCHAR_VEC *mask,
				      int info, OEM_PRECON,
				      va_list ap);
const PRECON *init_precon_from_type(const DOF_MATRIX *A,
				    const DOF_SCHAR_VEC *mask,
				    int info,
				    const PRECON_TYPE *prec_type);

extern void release_oem_solve(const OEM_DATA *oem);
extern int oem_mat_vec(void *ud, int dim, const REAL *x, REAL *y);
extern OEM_MV_FCT
init_oem_mat_vec(void **datap,
		 MatrixTranspose transpose, const DOF_MATRIX *A,
		 const DOF_SCHAR_VEC *bound);
extern void exit_oem_mat_vec(void *);

extern int call_oem_solve_s(const OEM_DATA *oem, OEM_SOLVER solver,
			    const DOF_REAL_VEC *f, DOF_REAL_VEC *u);
extern int
oem_solve_s(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
	    const DOF_REAL_VEC *f, DOF_REAL_VEC *u, OEM_SOLVER solver,
	    REAL tol, const PRECON *precon,
	    int restart, int max_iter, int info);

extern int call_oem_solve_dow(const OEM_DATA *oem, OEM_SOLVER solver,
			      const DOF_REAL_VEC_D *f, DOF_REAL_VEC_D *u);
extern int
oem_solve_dow(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
	      const DOF_REAL_VEC_D *f, DOF_REAL_VEC_D *u, OEM_SOLVER solver,
	      REAL tol, const PRECON *precon,
	      int restart, int max_iter, int info);

static inline
int call_oem_solve_d(const OEM_DATA *oem, OEM_SOLVER solver,
		     const DOF_REAL_D_VEC *f, DOF_REAL_D_VEC *u)
{
  return call_oem_solve_dow(oem, solver,
			    (const DOF_REAL_VEC_D *)f, (DOF_REAL_VEC_D *)u);
}
static inline
int oem_solve_d(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
		const DOF_REAL_D_VEC *f, DOF_REAL_D_VEC *u, OEM_SOLVER solver,
		REAL tol, const PRECON *precon,
		int restart, int max_iter, int info)
{
  return oem_solve_dow(A, bound,
		       (const DOF_REAL_VEC_D *)f, (DOF_REAL_VEC_D *)u, solver,
		       tol, precon, restart, max_iter, info);
}

/*  file oem_sp_solve.c  ******************************************************/
typedef struct sp_constraint
{
  const DOF_MATRIX    *B, *Bt;
  const DOF_SCHAR_VEC *bound;
  OEM_MV_FCT          project;
  void                *project_data; /* possibly "OEM_DATA *" */
  OEM_MV_FCT          precon;
  void                *precon_data; /* possibly "OEM_DATA *" */
  REAL                proj_factor, prec_factor;
} SP_CONSTRAINT;

SP_CONSTRAINT *init_sp_constraint(const DOF_MATRIX *B,
				  const DOF_MATRIX *Bt,
				  const DOF_SCHAR_VEC *bound,
				  REAL tol, int info,
				  const DOF_MATRIX *Yproj,
				  OEM_SOLVER Yproj_solver,
				  int Yproj_max_iter, const PRECON *Yproj_prec,
				  const DOF_MATRIX *Yprec,
				  OEM_SOLVER Yprec_solver,
				  int Yprec_max_iter, const PRECON *Yprec_prec,
				  REAL Yproj_frac, REAL Yprec_frac);
void release_sp_constraint(SP_CONSTRAINT *constr);
int oem_sp_schur_solve(OEM_SOLVER sp_solver,
		       REAL sp_tol, int sp_max_iter, int sp_info,
		       OEM_MV_FCT principal_inverse,
		       OEM_DATA *principal_data,
		       const DOF_REAL_VEC_D *f,
		       DOF_REAL_VEC_D *u,
		       SP_CONSTRAINT *constraint,
		       const DOF_REAL_VEC *g,
		       DOF_REAL_VEC *p,
		       ...);
int oem_sp_solve_dow_scl(OEM_SOLVER sp_solver,
			 REAL sp_tol, REAL tol_incr,
			 int sp_max_iter, int sp_info,
			 const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
			 OEM_SOLVER A_solver,
			 int A_max_iter, const PRECON *A_precon,
			 DOF_MATRIX *B,
			 DOF_MATRIX *Bt,
			 DOF_MATRIX *Yproj,
			 OEM_SOLVER Yproj_solver,
			 int Yproj_max_iter, const PRECON *Yproj_precon,
			 DOF_MATRIX *Yprec,
			 OEM_SOLVER Yprec_solver,
			 int Yprec_max_iter, const PRECON *Yprec_precon,
			 REAL Yproj_frac, REAL Ypre_frac,
			 const DOF_REAL_VEC_D *f,
			 const DOF_REAL_VEC *g,
			 DOF_REAL_VEC_D *x,
			 DOF_REAL_VEC *y);
REAL sp_dirichlet_bound_dow_scl(MatrixTranspose transpose,
				const DOF_MATRIX *Bt,
				const DOF_SCHAR_VEC *bound,
				const DOF_REAL_VEC_D *u_h,
				DOF_REAL_VEC *g_h);
REAL sp_flux_adjust_dow_scl(MatrixTranspose transpose,
			    const DOF_MATRIX *Bt,
			    const DOF_SCHAR_VEC *bound,
			    const DOF_REAL_VEC_D *u_h,
			    DOF_REAL_VEC *g_h,
			    REAL initial_flux,
			    bool do_adjust);

static inline
int oem_sp_solve_ds(
  OEM_SOLVER sp_solver,
  REAL sp_tol, REAL tol_incr,
  int sp_max_iter, int sp_info,
  const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
  OEM_SOLVER A_solver, int A_max_iter, const PRECON *A_prec,
  DOF_MATRIX *B,
  DOF_MATRIX *Bt,
  DOF_MATRIX *Yproj,
  OEM_SOLVER Yproj_solver, int Yproj_max_iter, const PRECON *Yproj_prec,
  DOF_MATRIX *Yprec,
  OEM_SOLVER Yprec_solver, int Yprec_max_iter, const PRECON *Yprec_prec,
  REAL Yproj_frac, REAL Yprec_frac,
  const DOF_REAL_D_VEC *f,
  const DOF_REAL_VEC *g,
  DOF_REAL_D_VEC *x,
  DOF_REAL_VEC *y)
{
  return oem_sp_solve_dow_scl(sp_solver, sp_tol, tol_incr, sp_max_iter, sp_info,
			      A, bound, A_solver, A_max_iter, A_prec,
			      B, Bt,
			      Yproj, Yproj_solver, Yproj_max_iter, Yproj_prec,
			      Yprec, Yprec_solver, Yprec_max_iter, Yprec_prec,
			      Yproj_frac, Yprec_frac,
			      (const DOF_REAL_VEC_D *)f, g,
			      (DOF_REAL_VEC_D *)x, y);
}
static inline
REAL sp_dirichlet_bound_ds(MatrixTranspose transpose,
			   const DOF_MATRIX *Bt,
			   const DOF_SCHAR_VEC *bound,
			   const DOF_REAL_D_VEC *u_h,
			   DOF_REAL_VEC *g_h)
{
  return sp_dirichlet_bound_dow_scl(transpose, Bt, bound,
				    (const DOF_REAL_VEC_D *)u_h, g_h);
}


/*  file parametric.c  ********************************************************/
void use_lagrange_parametric(MESH *mesh, int degree,
			     NODE_PROJ *n_proj,
			     FLAGS flags);
DOF_REAL_D_VEC *get_lagrange_coords(MESH *mesh);
DOF_PTR_VEC *get_lagrange_edge_projections(MESH *mesh);

typedef enum param_copy_direction {
  COPY_FROM_MESH = false,
  COPY_TO_MESH   = true
} PARAM_COPY_DIRECTION;

void copy_lagrange_coords(MESH *mesh, DOF_REAL_D_VEC *coords, bool tomesh);

/*--  file sor.c  *************************************************************/
int sor_d(DOF_MATRIX *a, const DOF_REAL_D_VEC *f, const DOF_SCHAR_VEC *b,
	  DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int sor_s(DOF_MATRIX *a, const DOF_REAL_VEC *f, const DOF_SCHAR_VEC *b,
	  DOF_REAL_VEC *u, REAL omega, REAL tol, int max_iter, int info);

/***  file ssor.c  ************************************************************/
int ssor_d(DOF_MATRIX *a, const DOF_REAL_D_VEC *f, const DOF_SCHAR_VEC *b,
	   DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int ssor_s(DOF_MATRIX *a, const DOF_REAL_VEC *f, const DOF_SCHAR_VEC *b,
	   DOF_REAL_VEC *u, REAL omega, REAL tol, int max_iter, int info);

/***   file traverse_r.c  *****************************************************/
extern void mesh_traverse(MESH *mesh, int level, FLAGS fill_flag,
			  void (*el_fct)(const EL_INFO *, void *data),
			  void *data);
extern void fill_macro_info(MESH *mesh, const MACRO_EL *mel, EL_INFO *elinfo);
extern void fill_elinfo(int ichild, FLAGS mask,
			const EL_INFO *parent_info, EL_INFO *elinfo);

/***   file traverse_nr.c *****************************************************/
extern TRAVERSE_STACK *get_traverse_stack(void);
extern void free_traverse_stack(TRAVERSE_STACK *stack);
extern const EL_INFO *traverse_first(TRAVERSE_STACK *stack,
				     MESH *mesh, int level, FLAGS fill_flag);
extern const EL_INFO *traverse_next(TRAVERSE_STACK *stack, const EL_INFO *);
extern const EL_INFO *traverse_neighbour(TRAVERSE_STACK *stack, const EL_INFO *,
					 int neighbour);
extern const EL_INFO *traverse_parent(const TRAVERSE_STACK *stack,
				      const EL_INFO *child);
extern const EL_INFO *subtree_traverse_first(TRAVERSE_STACK *stack,
					     const EL_INFO *local_root,
					     int level, FLAGS fill_flag);
void clear_traverse_mark(TRAVERSE_STACK *stack);

#define TRAVERSE_FIRST(mesh, level, fill_flag)				\
  {									\
    TRAVERSE_STACK *stack = get_traverse_stack();			\
    const EL_INFO  *el_info;						\
    if ((el_info = traverse_first(stack, (mesh), (level), (fill_flag)))) do
#define TRAVERSE_NEXT(/**/)						\
  while ((el_info = traverse_next(stack, el_info)));			\
  free_traverse_stack(stack);						\
  }

/* Compatibility */
#define TRAVERSE_START(mesh, level, fill_flag)	\
  TRAVERSE_FIRST(mesh, level, fill_flag)
#define TRAVERSE_STOP(/**/) TRAVERSE_NEXT()

#define TRAVERSE_NEIGHBOUR(el_info, neighbour)	\
  traverse_neighbour(stack, el_info, neighbour)

/*  file trav_xy.c  ***********************************************************/
extern int find_el_at_pt(MESH *mesh, const REAL_D xy,
			 EL_INFO **el_info_p, FLAGS flag, REAL_B bary,
			 const MACRO_EL *start_mel,
			 const REAL_D xy0, REAL *sp);

/***   file read_mesh.c  ******************************************************/
extern MESH *
read_mesh(const char *fn, REAL *timeptr,
	  NODE_PROJ *(*n_proj)(MESH *, MACRO_EL *, int),
	  MESH *master);
DOF_REAL_VEC   *read_dof_real_vec(const char *, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec(const char *, MESH *, FE_SPACE *);
DOF_REAL_VEC_D *read_dof_real_vec_d(const char *, MESH *, FE_SPACE *);
DOF_INT_VEC    *read_dof_int_vec(const char *, MESH *, FE_SPACE *);
DOF_SCHAR_VEC  *read_dof_schar_vec(const char *, MESH *, FE_SPACE *);
DOF_UCHAR_VEC  *read_dof_uchar_vec(const char *, MESH *, FE_SPACE *);

extern MESH *
fread_mesh(FILE *fp, REAL *timeptr,
	   NODE_PROJ *(*n_proj)(MESH *, MACRO_EL *, int),
	   MESH *master);
DOF_REAL_VEC   *fread_dof_real_vec(FILE *fp, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *fread_dof_real_d_vec(FILE *fp, MESH *, FE_SPACE *);
DOF_REAL_VEC_D *fread_dof_real_vec_d(FILE *fp, MESH *, FE_SPACE *);
DOF_INT_VEC    *fread_dof_int_vec(FILE *fp, MESH *, FE_SPACE *);
DOF_SCHAR_VEC  *fread_dof_schar_vec(FILE *fp, MESH *, FE_SPACE *);
DOF_UCHAR_VEC  *fread_dof_uchar_vec(FILE *fp, MESH *, FE_SPACE *);

extern MESH *
read_mesh_xdr(const char *file, REAL *timeptr,
	      NODE_PROJ *(*)(MESH *, MACRO_EL *, int),
	      MESH *master);
DOF_REAL_VEC   *read_dof_real_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_REAL_VEC_D *read_dof_real_vec_d_xdr(const char *, MESH *, FE_SPACE *);
DOF_INT_VEC    *read_dof_int_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_SCHAR_VEC  *read_dof_schar_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_UCHAR_VEC  *read_dof_uchar_vec_xdr(const char *, MESH *, FE_SPACE *);

extern MESH *
fread_mesh_xdr(FILE *fp, REAL *timeptr,
	       NODE_PROJ *(*)(MESH *, MACRO_EL *, int),
	       MESH *master);
DOF_REAL_VEC   *fread_dof_real_vec_xdr(FILE *fp, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *fread_dof_real_d_vec_xdr(FILE *fp, MESH *, FE_SPACE *);
DOF_REAL_VEC_D *fread_dof_real_vec_d_xdr(FILE *fp, MESH *, FE_SPACE *);
DOF_INT_VEC    *fread_dof_int_vec_xdr(FILE *fp, MESH *, FE_SPACE *);
DOF_SCHAR_VEC  *fread_dof_schar_vec_xdr(FILE *fp, MESH *, FE_SPACE *);
DOF_UCHAR_VEC  *fread_dof_uchar_vec_xdr(FILE *fp, MESH *, FE_SPACE *);

#if 0
/* IFF format (multiple objects in one file) */

/* FORM
   length
   AFEM
   MESH
   length
   data
   AVEC
   length
   data
   AVEC
   length
   data

   where AVEC is one of DRV DRDV DUCV DSCV DINV
 */

#define IFF_TAG_ALBERTA    "AFEM"
#define IFF_TAG_MESH       "MESH"
#define IFF_TAG_REAL_VEC   "DRV "
#define IFF_TAG_REAL_D_VEC "DRDV"
#define IFF_TAG_INT_VEC    "DINV"
#define IFF_TAG_UCHAR_VEC  "DUCV"
#define IFF_TAG_SCHAR_VEC  "DSCV"

static inline bool is_iff_tag(const char tag1[4], const char tag2[4])
{
  return memcmp(tag1, tag2, 4) == 0;
}

/* fread_iff() just read in the tag and the size, afterwards the
 * normal read_xdr() routines can be used to suck in the following
 * data, depending on what TAG contains.
 */
bool fread_iff(FILE *fp, char tag[4], unsigned int *size);
FILE *read_iff(const char *filename, char tag[4], unsigned int *size);
#endif

/***   file write_mesh.c  *****************************************************/
bool write_mesh(MESH *, const char *, REAL);
bool write_dof_real_vec(const DOF_REAL_VEC *, const char *);
bool write_dof_real_vec_d(const DOF_REAL_VEC_D *, const char *);
bool write_dof_real_d_vec(const DOF_REAL_D_VEC *, const char *);
bool write_dof_int_vec(const DOF_INT_VEC *, const char *);
bool write_dof_schar_vec(const DOF_SCHAR_VEC *, const char *);
bool write_dof_uchar_vec(const DOF_UCHAR_VEC *, const char *);

bool fwrite_mesh(MESH *, FILE *fp, REAL);
bool fwrite_dof_real_vec(const DOF_REAL_VEC *, FILE *fp);
bool fwrite_dof_real_d_vec(const DOF_REAL_D_VEC *, FILE *fp);
bool fwrite_dof_int_vec(const DOF_INT_VEC *, FILE *fp);
bool fwrite_dof_schar_vec(const DOF_SCHAR_VEC *, FILE *fp);
bool fwrite_dof_uchar_vec(const DOF_UCHAR_VEC *, FILE *fp);

bool write_mesh_xdr(MESH *, const char *, REAL);
bool write_dof_real_vec_xdr(const DOF_REAL_VEC *, const char *);
bool write_dof_real_vec_d_xdr(const DOF_REAL_VEC_D *, const char *);
bool write_dof_real_d_vec_xdr(const DOF_REAL_D_VEC *, const char *);
bool write_dof_int_vec_xdr(const DOF_INT_VEC *, const char *);
bool write_dof_schar_vec_xdr(const DOF_SCHAR_VEC *, const char *);
bool write_dof_uchar_vec_xdr(const DOF_UCHAR_VEC *, const char *);

bool fwrite_mesh_xdr(MESH *, FILE *fp, REAL time);
bool fwrite_dof_real_vec_xdr(const DOF_REAL_VEC *, FILE *fp);
bool fwrite_dof_real_vec_d_xdr(const DOF_REAL_VEC_D *, FILE *fp);
bool fwrite_dof_real_d_vec_xdr(const DOF_REAL_D_VEC *, FILE *fp);
bool fwrite_dof_int_vec_xdr(const DOF_INT_VEC *, FILE *fp);
bool fwrite_dof_schar_vec_xdr(const DOF_SCHAR_VEC *, FILE *fp);
bool fwrite_dof_uchar_vec_xdr(const DOF_UCHAR_VEC *, FILE *fp);

bool write_dof_matrix_pbm(const DOF_MATRIX *matrix, const char *filename);
bool fwrite_dof_matrix_pbm(const DOF_MATRIX *matrix, FILE *file);

/* Writing of IFF-files, writing requires file-positioning support. */
#if 0
bool fwrite_iff(FILE *fp);
bool fterm_iff(FILE *fp);
FILE *fopen_iff(const char *filename, bool append);
bool fclose_iff(FILE *fp);
bool fwrite_mesh_iff(MESH *mesh, REAL time, FILE *fp);
bool fwrite_dof_real_vec_iff(const DOF_REAL_VEC *v, FILE *fp);
bool fwrite_dof_real_d_vec_iff(const DOF_REAL_D_VEC *v, FILE *fp);
bool fwrite_dof_int_vec_iff(const DOF_INT_VEC *v, FILE *fp);
bool fwrite_dof_schar_vec_iff(const DOF_SCHAR_VEC *v, FILE *fp);
bool fwrite_dof_uchar_vec_iff(const DOF_UCHAR_VEC *v, FILE *fp);
#endif

/***   file write_mesh_gmv.c  *************************************************/

bool write_mesh_gmv(MESH *mesh, const char *file_name, bool write_ascii,
		    bool use_refined_grid,
		    const int n_drv,
		    DOF_REAL_VEC **drv_ptr,
		    const int n_drdv,
		    DOF_REAL_VEC_D **drv_dow_ptr,
		    DOF_REAL_VEC_D *velocity,
		    REAL sim_time);

bool write_dof_vec_gmv(MESH *mesh,
		       const char *mesh_file,
		       const char *file_name, bool write_ascii,
		       bool use_refined_grid,
		       const int n_drv,
		       DOF_REAL_VEC **drv_ptr,
		       const int n_drdv,
		       DOF_REAL_VEC_D **drv_dow_ptr,
		       DOF_REAL_VEC_D *velocity,
		       REAL sim_time);

/*--  file write_mesh_ps.c  ***************************************************/
void write_mesh_ps(MESH *mesh, const char *filename, const char *title,
                   const REAL x[2], const REAL y[2], bool keepaspect,
                   bool draw_bound);

/*******************************************************************************
 *  interface for Lagrange elements for the gltools
 *  file  gltools.c
 ******************************************************************************/
typedef void*    GLTOOLS_WINDOW;

GLTOOLS_WINDOW open_gltools_window(const char *, const char *, const REAL *,
				   MESH *, int);
void close_gltools_window(GLTOOLS_WINDOW);

extern int gltools_get_next_dialog(void);
extern void gltools_set_next_dialog(int dialog);
extern void gltools_est(GLTOOLS_WINDOW, MESH *,
			REAL (*rw_est)(EL *el), REAL min, REAL max, REAL time);
extern void gltools_disp_mesh(GLTOOLS_WINDOW, MESH *,
			      bool mark, const DOF_REAL_VEC_D *, REAL time);
extern void gltools_mesh(GLTOOLS_WINDOW win, MESH *, bool mark, REAL time);
extern void gltools_disp_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *,
			     REAL min, REAL max, const DOF_REAL_VEC_D *,
			     REAL time);
extern void gltools_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *,
			REAL min, REAL max, REAL time);
extern void gltools_disp_drv_d(GLTOOLS_WINDOW, const DOF_REAL_VEC_D *,
			       REAL min, REAL max, const DOF_REAL_VEC_D *,
			       REAL time);
extern void gltools_drv_d(GLTOOLS_WINDOW, const DOF_REAL_VEC_D *,
			  REAL min, REAL max, REAL time);
extern void gltools_disp_vec(GLTOOLS_WINDOW, const DOF_REAL_VEC_D *,
			     REAL min, REAL max, const DOF_REAL_VEC_D *,
			     REAL time);
extern void gltools_vec(GLTOOLS_WINDOW, const DOF_REAL_VEC_D *,
			REAL min, REAL max, REAL time);

/*******************************************************************************
 *  interface for Lagrange elements for the dxtools
 *  file  dxtools.c
 ******************************************************************************/

typedef struct dxtools_window DXTOOLS_WINDOW;

extern DXTOOLS_WINDOW *open_dxtools_window(const char *title,
					   const char *geometry);

extern void close_dxtools_window(DXTOOLS_WINDOW *win);
extern void dxtools_mesh(DXTOOLS_WINDOW *win, MESH *mesh);
extern void dxtools_drv(DXTOOLS_WINDOW *win, const DOF_REAL_VEC *u);
extern void dxtools_drdv(DXTOOLS_WINDOW *win, const DOF_REAL_D_VEC *u);

#ifdef __cplusplus
} /* extern "C" */
#endif

/*******************************************************************************
 *
 * A couple of header files containing inline functions for various purposes
 *
 ******************************************************************************/

#include "alberta_inlines.h" /* DIM_OF_WORLD blas */

#include "dof_chains.h"      /* support for chains of objects */

#include "el_vec.h"          /* element vectors and matrices */

#include "evaluate.h"        /* evaluation of finite element functions */

#endif  /* !_ALBERTA_H_ */