/usr/include/ace/Reactor.h is in libace-dev 6.3.3+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 | // -*- C++ -*-
//=============================================================================
/**
* @file Reactor.h
*
* @author Irfan Pyarali <irfan@cs.wustl.edu>
* @author Douglas C. Schmidt <schmidt@cs.wustl.edu>
*/
//=============================================================================
#ifndef ACE_REACTOR_H
#define ACE_REACTOR_H
#include /**/ "ace/pre.h"
// Timer Queue is a complicated template class. A simple forward
// declaration will not work.
#include "ace/Timer_Queuefwd.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
// Contains the timer related interface for the Reactor.
#include "ace/Reactor_Timer_Interface.h"
// Event_Handler.h contains the definition of ACE_Reactor_Mask
#include "ace/Event_Handler.h"
// Get ACE_Time_Value in
#include "ace/Time_Value.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
class ACE_Reactor_Impl;
class ACE_Handle_Set;
class ACE_Sig_Action;
class ACE_Sig_Handler;
class ACE_Sig_Set;
/*
* Hook to specialize the Reactor implementation with the concrete
* Reactor type, for example, select, thread pool reactor known
* at compile time.
*/
//@@ REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK
/**
* @class ACE_Reactor
*
* @brief This class forwards all methods to its delegation/implementation class, e.g.,
* ACE_Select_Reactor or ACE_WFMO_Reactor.
*/
class ACE_Export ACE_Reactor : public ACE_Reactor_Timer_Interface
{
public:
/// Operations on the "ready" mask and the "dispatch" mask.
enum
{
/// Retrieve current value of the the "ready" mask or the
/// "dispatch" mask.
GET_MASK = 1,
/// Set value of bits to new mask (changes the entire mask).
SET_MASK = 2,
/// Bitwise "or" the value into the mask (only changes enabled
/// bits).
ADD_MASK = 3,
/// Bitwise "and" the negation of the value out of the mask (only
/// changes enabled bits).
CLR_MASK = 4
};
/**
* You can specify a hook function to event-handling methods that will
* be called after each iteration of event handling. If the hook function
* returns a non-zero value, the event loop will immediately resume
* waiting for the next event(s) to process without checking the error
* status of the just-completed iteration of event handling or the
* end-of-loop indication. If the hook function returns 0, the event
* handling error status and the end-of-loop indication will be checked
* as normal, just as if there is no hook function specified.
*/
typedef int (*REACTOR_EVENT_HOOK)(ACE_Reactor *);
/// Get pointer to a process-wide ACE_Reactor.
static ACE_Reactor *instance (void);
/**
* Set pointer to a process-wide ACE_Reactor and return existing
* pointer. If @a delete_reactor == true then we'll delete the Reactor
* at destruction time.
*/
static ACE_Reactor *instance (ACE_Reactor *, bool delete_reactor = false);
/// Delete the dynamically allocated Singleton
static void close_singleton (void);
/// Name of the dll in which the dll lives.
static const ACE_TCHAR *dll_name (void);
/// Name of the component--ACE_Reactor in this case.
static const ACE_TCHAR *name (void);
// = Singleton reactor event loop management methods.
// Note that these method ONLY work on the "Singleton Reactor,"
// i.e., the one returned from ACE_Reactor::instance().
/**
* Run the event loop until the
* ACE_Reactor::handle_events()/ACE_Reactor::alertable_handle_events()
* method returns -1 or the end_event_loop() method is invoked.
* Note that this method can only be used by the singleton
* ACE_Reactor::instance(). Thus, to run another reactor use
* ACE_Reactor::run_reactor_event_loop().
*
* @deprecated Use ACE_Reactor::instance()->run_reactor_event_loop() instead
*/
static int run_event_loop (void);
static int run_alertable_event_loop (void);
/**
* Run the event loop until the ACE_Reactor::handle_events() or
* <ACE_Reactor::alertable_handle_events> methods returns -1, the
* end_event_loop() method is invoked, or the ACE_Time_Value
* expires. Note that this method can only be used by the singleton
* ACE_Reactor::instance(). Thus, to run another reactor use
* <ACE_Reactor::run_reactor_event_loop>.
*
* @deprecated Use ACE_Reactor::instance()->run_reactor_event_loop() instead
*/
static int run_event_loop (ACE_Time_Value &tv);
static int run_alertable_event_loop (ACE_Time_Value &tv);
/**
* Instruct the ACE_Reactor::instance() to terminate its event loop
* and notifies the ACE_Reactor::instance() so that it can wake up
* and close down gracefully. Note that this method can only be
* used by the singleton ACE_Reactor::instance(). Thus, to
* terminate another reactor, use
* <ACE_Reactor::end_reactor_event_loop>.
*
* @deprecated Use ACE_Reactor::instance()->end_reactor_event_loop() instead
*/
static int end_event_loop (void);
/**
* Report if the ACE_Reactor::instance()'s event loop is finished.
* Note that this method can only be used by the singleton
* ACE_Reactor::instance(). Thus, to check another reactor use
* <ACE_Reactor::reactor_event_loop_done>.
*
* @deprecated Use ACE_Reactor::instance()->reactor_event_loop_done() instead
*/
static int event_loop_done (void);
/**
* Resets the ACE_Reactor::end_event_loop_ static so that the
* run_event_loop() method can be restarted. Note that this method
* can only be used by the singleton ACE_Reactor::instance(). Thus,
* to reset another reactor use ACE_Reactor::reset_reactor_event_loop().
*
* @deprecated Use ACE_Reactor::instance()->reset_reactor_event_loop()
* instead
*/
static void reset_event_loop (void);
/**
* The singleton reactor is used by the ACE_Service_Config.
* Therefore, we must check for the reconfiguration request and
* handle it after handling an event.
*/
static int check_reconfiguration (ACE_Reactor *);
// = Reactor event loop management methods.
// These methods work with an instance of a reactor.
/**
* Run the event loop until the ACE_Reactor::handle_events() or
* ACE_Reactor::alertable_handle_events() method returns -1 or
* the end_reactor_event_loop() method is invoked.
*/
int run_reactor_event_loop (REACTOR_EVENT_HOOK = 0);
int run_alertable_reactor_event_loop (REACTOR_EVENT_HOOK = 0);
/**
* Run the event loop until the ACE_Reactor::handle_events() or
* ACE_Reactor::alertable_handle_events() method returns -1, the
* end_reactor_event_loop() method is invoked, or the ACE_Time_Value
* expires while the underlying event demultiplexer is waiting for
* events.
* Note that it is possible for events to continuously be available,
* avoiding the need to wait for events. In this situation the timeout
* value will not have an opportunity to expire until the next time
* the underlying event demultiplexer waits for events.
*/
int run_reactor_event_loop (ACE_Time_Value &tv,
REACTOR_EVENT_HOOK = 0);
int run_alertable_reactor_event_loop (ACE_Time_Value &tv,
REACTOR_EVENT_HOOK = 0);
/**
* Instruct the Reactor to terminate its event loop and notifies the
* Reactor so that it can wake up and deactivate
* itself. Deactivating the Reactor would allow the Reactor to be
* shutdown gracefully. Internally the Reactor calls deactivate ()
* on the underlying implementation.
* Any queued notifications remain queued on return from this method.
* If the event loop is restarted in the future, the notifications
* will be dispatched then. If the reactor is closed or deleted without
* further dispatching, the notifications will be lost.
*/
int end_reactor_event_loop (void);
/// Indicate if the Reactor's event loop has been ended.
int reactor_event_loop_done (void);
/// Resets the ACE_Reactor::end_event_loop_ static so that the
/// run_event_loop() method can be restarted.
void reset_reactor_event_loop (void);
/**
* Create the Reactor using @a implementation. The flag
* @a delete_implementation tells the Reactor whether or not to
* delete the @a implementation on destruction.
*/
ACE_Reactor (ACE_Reactor_Impl *implementation = 0,
bool delete_implementation = false);
/// Close down and release all resources.
/**
* Any notifications that remain queued on this reactor instance are
* lost.
*/
virtual ~ACE_Reactor (void);
/**
* Initialize the ACE_Reactor to manage @a max_number_of_handles.
* If @a restart is false then the ACE_Reactor's handle_events()
* method will be restarted automatically when @c EINTR occurs. If
* @a signal_handler or @a timer_queue are non-0 they are used as the
* signal handler and timer queue, respectively.
*/
int open (size_t max_number_of_handles,
bool restart = false,
ACE_Sig_Handler *signal_handler = 0,
ACE_Timer_Queue *timer_queue = 0);
/// Use a user specified signal handler instead.
int set_sig_handler (ACE_Sig_Handler *signal_handler);
/// Set a user-specified timer queue.
int timer_queue (ACE_Timer_Queue *tq);
/// Return the current ACE_Timer_Queue.
ACE_Timer_Queue *timer_queue (void) const;
/// Close down and release all resources.
int close (void);
// = Event loop drivers.
/**
* Returns non-zero if there are I/O events "ready" for dispatching,
* but does not actually dispatch the event handlers. By default,
* don't block while checking this, i.e., "poll".
*/
int work_pending (const ACE_Time_Value &max_wait_time = ACE_Time_Value::zero);
/**
* This event loop driver blocks for up to @a max_wait_time before
* returning. It will return earlier if events occur. Note that
* @a max_wait_time can be 0, in which case this method blocks
* indefinitely until events occur.
*
* @a max_wait_time is decremented to reflect how much time this call
* took. For instance, if a time value of 3 seconds is passed to
* handle_events and an event occurs after 2 seconds,
* @a max_wait_time will equal 1 second. This can be used if an
* application wishes to handle events for some fixed amount of
* time.
*
* Returns the total number of timers and I/O ACE_Event_Handlers
* that were dispatched, 0 if the @a max_wait_time elapsed without
* dispatching any handlers, or -1 if an error occurs.
*
* The only difference between alertable_handle_events() and
* handle_events() is that in the alertable case, the eventloop will
* return when the system queues an I/O completion routine or an
* Asynchronous Procedure Call.
*/
int handle_events (ACE_Time_Value *max_wait_time = 0);
int alertable_handle_events (ACE_Time_Value *max_wait_time = 0);
/**
* This method is just like the one above, except the
* @a max_wait_time value is a reference and can therefore never be
* NULL.
*
* The only difference between alertable_handle_events() and
* handle_events() is that in the alertable case, the eventloop will
* return when the system queues an I/O completion routine or an
* Asynchronous Procedure Call.
*/
int handle_events (ACE_Time_Value &max_wait_time);
int alertable_handle_events (ACE_Time_Value &max_wait_time);
// = Register and remove handlers.
/**
* Register handler for I/O events.
*
* A handler can be associated with multiple handles. A handle
* cannot be associated with multiple handlers.
*
* The handle will come from ACE_Event_Handler::get_handle().
*
* Reactor will call ACE_Event_Handler::add_reference() for a new
* handler/handle pair.
*
* If this handler/handle pair has already been registered, any new
* masks specified will be added. In this case,
* ACE_Event_Handler::add_reference() will not be called.
*
* If the registered handler is currently suspended, it will remain
* suspended. When the handler is resumed, it will have the
* existing masks plus any masks added through this call. Handlers
* do not have partial suspensions.
*/
int register_handler (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
/**
* Register handler for I/O events.
*
* Same as register_handler(ACE_Event_Handler*,ACE_Reactor_Mask),
* except handle is explicitly specified.
*/
int register_handler (ACE_HANDLE io_handle,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
#if defined (ACE_WIN32)
/**
* Register handler for OS events.
*
* Register an @a event_handler that will be notified when
* <event_handle> is signaled. This will call back its
* <handle_signal> hook method.
*
* Reactor will call ACE_Event_Handler::add_reference() for a new
* handler/handle pair.
*
* This interface is only available Win32 platforms because
* ACE_HANDLE is an int on non-Win32 platforms and compilers are not
* able to tell the difference between
* register_handler(ACE_Event_Handler*,ACE_Reactor_Mask) and
* register_handler(ACE_Event_Handler*,ACE_HANDLE).
*/
int register_handler (ACE_Event_Handler *event_handler,
ACE_HANDLE event_handle = ACE_INVALID_HANDLE);
#endif /* ACE_WIN32 */
/**
* Register handler for I/O events.
*
* Similar to
* register_handler(ACE_HANDLE,ACE_Event_Handler*,ACE_Reactor_Mask),
* except that the user gets to specify the event handle that will
* be used for this registration. This only applies to Reactors
* that use event handles for I/O registrations.
*/
int register_handler (ACE_HANDLE event_handle,
ACE_HANDLE io_handle,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask);
/**
* Register handler for multiple I/O events.
*
* Shorthand for calling
* register_handler(ACE_HANDLE,ACE_Event_Handler*,ACE_Reactor_Mask),
* multiple times for the same @a event_handler and @a masks but
* different @a handles.
*/
int register_handler (const ACE_Handle_Set &handles,
ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks);
/**
* Register handler for signals.
*
* Register @a new_sh to handle the signal @a signum using the
* @a new_disp. Returns the @a old_sh that was previously registered
* (if any), along with the @a old_disp of the signal handler.
*
* Reactor will call ACE_Event_Handler::add_reference() on @a new_sh
* and ACE_Event_Handler::remove_reference() on @a old_sh.
*/
int register_handler (int signum,
ACE_Event_Handler *new_sh,
ACE_Sig_Action *new_disp = 0,
ACE_Event_Handler **old_sh = 0,
ACE_Sig_Action *old_disp = 0);
/**
* Register handler for multiple signals.
*
* Shorthand for calling
* register_handler(int,ACE_Event_Handler*,ACE_Sig_Action*,ACE_Event_Handler**,ACE_Sig_Action*)
* multiple times for the same @a event_handler and @a sig_action but
* different <signals>.
*/
int register_handler (const ACE_Sig_Set &sigset,
ACE_Event_Handler *event_handler,
ACE_Sig_Action *sig_action = 0);
/**
* Remove @a masks from @a handle registration.
*
* For I/O handles, @a masks are removed from the Reactor. Unless
* @a masks includes ACE_Event_Handler::DONT_CALL,
* ACE_Event_Handler::handle_close() will be called with the @a masks
* that have been removed. If all masks have been removed,
* ACE_Event_Handler::remove_reference() will be called.
*
* For OS handles, the @a handle is removed from the Reactor. Unless
* @a masks includes ACE_Event_Handler::DONT_CALL,
* ACE_Event_Handler::handle_close() will be called with
* ACE_Event_Handler::NULL_MASK.
* ACE_Event_Handler::remove_reference() will also be called.
*/
int remove_handler (ACE_HANDLE handle,
ACE_Reactor_Mask masks);
/**
* Remove @a masks from @a event_handler registration.
*
* Same as remove_handler(ACE_HANDLE,ACE_Reactor_Mask), except
* @a handle comes from ACE_Event_Handler::get_handle().
*/
int remove_handler (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks);
/**
* Remove @a masks from multiple <handle> registrations.
*
* Shorthand for calling remove_handler(ACE_HANDLE,ACE_Reactor_Mask)
* multiple times for the same @a masks but different @a handles.
*/
int remove_handler (const ACE_Handle_Set &handles,
ACE_Reactor_Mask masks);
/**
* Remove signal handler registration.
*
* Remove the ACE_Event_Handler currently associated with @a signum.
* Install the new disposition (if given) and return the previous
* disposition (if desired by the caller).
*
* Note that the registered handler's ACE_Event_Handler::handle_close ()
* callback will be called to indicate the signal handler has been removed.
* Unlike with I/O handles, there is no way to prevent this callback. The
* handle_close() callback can check the passed mask for the value
* ACE_Event_Handler::SIGNAL_MASK to tell when the callback is the result
* of a signal handler removal.
*/
int remove_handler (int signum,
ACE_Sig_Action *new_disp,
ACE_Sig_Action *old_disp = 0,
int sigkey = -1);
/**
* Remove multiple signal handler registrations.
*
* Shorthand for calling
* remove_handler(int,ACE_Sig_Action*,ACE_Sig_Action*,int) multiple
* times for every signal in @a sigset.
*/
int remove_handler (const ACE_Sig_Set &sigset);
// = Suspend and resume Handlers.
/**
* Suspend @a handle temporarily.
*/
int suspend_handler (ACE_HANDLE handle);
/**
* Suspend @a event_handler temporarily.
*
* Handle is obtained from ACE_Event_Handler::get_handle().
*/
int suspend_handler (ACE_Event_Handler *event_handler);
/**
* Suspend @a handles temporarily.
*
* Shorthand for calling suspend_handler(ACE_HANDLE) with multiple
* @a handles.
*/
int suspend_handler (const ACE_Handle_Set &handles);
/**
* Suspend all registered handles temporarily.
*/
int suspend_handlers (void);
/**
* Resume @a handle.
*/
int resume_handler (ACE_HANDLE handle);
/**
* Resume @a event_handler.
*
* Handle is obtained from ACE_Event_Handler::get_handle().
*/
int resume_handler (ACE_Event_Handler *event_handler);
/**
* Resume @a handles.
*
* Shorthand for calling resume_handler(ACE_HANDLE) with multiple
* @a handles.
*/
int resume_handler (const ACE_Handle_Set &handles);
/**
* Resume all registered handles.
*/
int resume_handlers (void);
/// Does the reactor allow the application to resume the handle on
/// its own ie. can it pass on the control of handle resumption to
/// the application. A positive value indicates that the handlers
/// are application resumable. A value of 0 indicates otherwise.
int resumable_handler (void);
// = Timer management.
/**
* Schedule a timer event.
*
* Schedule a timer event that will expire after an @a delay amount
* of time. The return value of this method, a timer_id value,
* uniquely identifies the @a event_handler in the ACE_Reactor's
* internal list of timers. This timer_id value can be used to
* cancel the timer with the cancel_timer() call.
*
* Reactor will call ACE_Event_Handler::add_reference() on the
* handler. After the timeout occurs and
* ACE_Event_Handler::handle_timeout() has completed, the handler
* will be implicitly removed from the Reactor and
* ACE_Event_Handler::remove_reference() will be called.
*
* @see cancel_timer()
* @see reset_timer_interval()
*
* @param event_handler Event handler to schedule on reactor. The handler's
* handle_timeout() method will be called when this
* scheduled timer expires.
* @param arg Argument passed to the handle_timeout() method of
* event_handler.
* @param delay Time interval after which the timer will expire.
* @param interval Time interval for which the timer will be
* automatically rescheduled if the handle_timeout()
* callback does not return a value less than 0.
*
* @retval timer id, on success. The id can be used to
* cancel or reschedule this timer.
* @retval -1 on failure, with errno set.
*/
virtual long schedule_timer (ACE_Event_Handler *event_handler,
const void *arg,
const ACE_Time_Value &delay,
const ACE_Time_Value &interval =
ACE_Time_Value::zero);
#if defined (ACE_HAS_CPP11)
template<class Rep1, class Period1, class Rep2 = int, class Period2 = std::ratio<1>>
long schedule_timer (ACE_Event_Handler *event_handler,
const void *arg,
const std::chrono::duration<Rep1, Period1>& delay,
const std::chrono::duration<Rep2, Period2>& interval =
std::chrono::duration<Rep2, Period2>::zero ())
{
ACE_Time_Value const tv_delay (delay);
ACE_Time_Value const tv_interval (interval);
return this->schedule_timer (event_handler, arg, tv_delay, tv_interval);
}
#endif
/**
* Reset recurring timer interval.
*
* Resets the interval of the timer represented by @a timer_id to
* @a interval, which is specified in relative time to the current
* gettimeofday(). If @a interval is equal to
* ACE_Time_Value::zero, the timer will become a non-rescheduling
* timer. Returns 0 if successful, -1 if not.
*
* This change will not take effect until the next timeout.
*/
virtual int reset_timer_interval (long timer_id,
const ACE_Time_Value &interval);
#if defined (ACE_HAS_CPP11)
template<class Rep, class Period>
int reset_timer_interval (long timer_id,
const std::chrono::duration<Rep, Period>& interval)
{
ACE_Time_Value const tv_interval (interval);
return this->reset_timer_interval (timer_id, tv_interval);
}
#endif
/**
* Cancel timer.
*
* Cancel timer associated with @a timer_id that was returned from
* the schedule_timer() method. If arg is non-NULL then it will be
* set to point to the ``magic cookie'' argument passed in when the
* handler was registered. This makes it possible to free up the
* memory and avoid memory leaks. Returns 1 if cancellation
* succeeded and 0 if the @a timer_id wasn't found.
*
* On successful cancellation, ACE_Event_Handler::handle_close()
* will be called with ACE_Event_Handler::TIMER_MASK.
* ACE_Event_Handler::remove_reference() will also be called.
*/
virtual int cancel_timer (long timer_id,
const void **arg = 0,
int dont_call_handle_close = 1);
/**
* Cancel all timers associated with event handler.
*
* Shorthand for calling cancel_timer(long,const void **,int)
* multiple times for all timer associated with @a event_handler.
*
* ACE_Event_Handler::handle_close() will be called with
* ACE_Event_Handler::TIMER_MASK only once irrespective of the
* number of timers associated with the event handler.
* ACE_Event_Handler::remove_reference() will also be called once
* for every timer associated with the event handler.
*
* In case this operation is called with a nil event_handler
* it returns with 0 as the number of handlers cancelled.
*
* Returns number of handlers cancelled.
*/
virtual int cancel_timer (ACE_Event_Handler *event_handler,
int dont_call_handle_close = 1);
// = High-level Event_Handler scheduling operations
/// Add @a masks_to_be_added to the @a event_handler's entry.
/// @a event_handler must already have been registered.
/// Note that this call does not cause the Reactor to re-examine
/// its set of handlers - the new masks will be noticed the next
/// time the Reactor waits for activity. If there is no other
/// activity expected, or you need immediate re-examination of the
/// wait masks, either call ACE_Reactor::notify after this call, or
/// use ACE_Reactor::register_handler instead.
int schedule_wakeup (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks_to_be_added);
/// Add @a masks_to_be_added to the @a handle's entry. <event_handler>
/// associated with @a handle must already have been registered.
/// Note that this call does not cause the Reactor to re-examine
/// its set of handlers - the new masks will be noticed the next
/// time the Reactor waits for activity. If there is no other
/// activity expected, or you need immediate re-examination of
/// the wait masks, either call ACE_Reactor::notify after this call,
/// or use ACE_Reactor::register_handler instead.
int schedule_wakeup (ACE_HANDLE handle,
ACE_Reactor_Mask masks_to_be_added);
/// Clear @a masks_to_be_cleared from the @a event_handler's entry.
/// Note that this call does not cause the Reactor to re-examine
/// its set of handlers - the new masks will be noticed the next
/// time the Reactor waits for activity. If there is no other
/// activity expected, or you need immediate re-examination of
/// the wait masks, either call ACE_Reactor::notify after this
/// call, or use ACE_Reactor::register_handler instead.
int cancel_wakeup (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask masks_to_be_cleared);
/// Clear @a masks_to_be_cleared from the @a handle's entry.
/// Note that this call does not cause the Reactor to re-examine
/// its set of handlers - the new masks will be noticed the next
/// time the Reactor waits for activity. If there is no other
/// activity expected, or you need immediate re-examination of
/// the wait masks, either call ACE_Reactor::notify after this
/// call, or use ACE_Reactor::register_handler instead.
int cancel_wakeup (ACE_HANDLE handle,
ACE_Reactor_Mask masks_to_be_cleared);
// = Notification methods.
/**
* Dispatch user specified events.
*
* Handler will be dispatched irrespective of whether it is
* registered, not registered, or suspended in the Reactor.
*
* If user specified event is successfully queued,
* ACE_Event_Handler::add_reference() will be called. After the
* notify occurs and the upcall to the handler completes, the
* handler will be implicitly removed from the Reactor and
* ACE_Event_Handler::remove_reference() will be called. No other
* upcall reference counting is done.
*
* For I/O or OS events, the upcall is invoked with an
* ACE_INVALID_HANDLE.
*
* For timer events, the upcall is invoked with a null ACT.
*
* @param event_handler: IN - Handler on which the event will be
* dispatched.
* @param masks: IN - Events to be dispatched - multiple events can
* be OR'd together.
* @param timeout: INOUT - Relative time up to which to wait for
* user specified event to be queued. If tv is 0, wait
* indefinitely. When the call returns, tv has the time remaining
* after the call completes.
*/
int notify (ACE_Event_Handler *event_handler = 0,
ACE_Reactor_Mask masks = ACE_Event_Handler::EXCEPT_MASK,
ACE_Time_Value *timeout = 0);
/**
* Set the maximum number of times that ACE_Reactor will
* iterate and dispatch the ACE_Event_Handlers that are passed in
* via the notify queue before breaking out of its
* ACE_Message_Queue::dequeue() loop. By default, this is set to
* -1, which means "iterate until the queue is empty." Setting this
* to a value like "1 or 2" will increase "fairness" (and thus
* prevent starvation) at the expense of slightly higher dispatching
* overhead.
*/
void max_notify_iterations (int iterations);
/**
* Get the maximum number of times that the ACE_Reactor will
* iterate and dispatch the ACE_Event_Handler's that are passed in
* via the notify queue before breaking out of its
* ACE_Message_Queue::dequeue() loop.
*/
int max_notify_iterations (void);
/**
* Purge any notifications pending in this reactor for the specified
* ACE_Event_Handler object. If @a eh == 0, all notifications for
* all handlers are removed (but not any notifications posted just
* to wake up the reactor itself). Returns the number of
* notifications purged. Returns -1 on error.
*
* After the purging occurs, the handler will be implicitly removed
* from the Reactor and ACE_Event_Handler::remove_reference() will
* be called.
*/
int purge_pending_notifications (ACE_Event_Handler *eh,
ACE_Reactor_Mask =
ACE_Event_Handler::ALL_EVENTS_MASK);
// = Assorted helper methods.
/**
* Return the Event_Handler associated with @a handle. Return 0 if
* @a handle is not registered.
*
* Reactor will call ACE_Event_Handler::add_reference() on the
* handler before returning it.
*/
ACE_Event_Handler *find_handler (ACE_HANDLE handle);
/**
* Check to see if @a handle is associated with a valid Event_Handler
* bound to @a mask. Return the @c event_handler associated with this
* @a handler if @a event_handler != 0.
*
* Reactor will call ACE_Event_Handler::add_reference() on the
* handler before returning it if @a event_handler != 0.
*/
int handler (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
ACE_Event_Handler **event_handler = 0);
/**
* Check to see if @a signum is associated with a valid Event_Handler
* bound to a signal. Return the @a event_handler associated with
* this @c handler if @a event_handler != 0.
*/
int handler (int signum,
ACE_Event_Handler **event_handler = 0);
/// Returns true if Reactor has been successfully initialized, else
/// false.
int initialized (void);
/// Returns the current size of the Reactor's internal descriptor
/// table.
size_t size (void) const;
/// Returns a reference to the Reactor's internal lock.
ACE_Lock &lock (void);
/// Wake up all threads in waiting in the event loop
void wakeup_all_threads (void);
/// Transfers ownership of Reactor to the @a new_owner.
int owner (ACE_thread_t new_owner,
ACE_thread_t *old_owner = 0);
/// Return the ID of the "owner" thread.
int owner (ACE_thread_t *owner);
/// Set position of the owner thread.
void requeue_position (int position);
/// Get position of the owner thread.
int requeue_position (void);
/// Get the existing restart value.
bool restart (void);
/// Set a new value for restart and return the original value.
bool restart (bool r);
// = Low-level wait_set mask manipulation methods.
/// GET/SET/ADD/CLR the dispatch mask "bit" bound with the
/// @a event_handler and @a mask.
int mask_ops (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask,
int ops);
/// GET/SET/ADD/CLR the dispatch MASK "bit" bound with the @a handle
/// and @a mask.
int mask_ops (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
int ops);
// = Low-level ready_set mask manipulation methods.
/// GET/SET/ADD/CLR the ready "bit" bound with the @a event_handler
/// and @a mask.
int ready_ops (ACE_Event_Handler *event_handler,
ACE_Reactor_Mask mask,
int ops);
/// GET/SET/ADD/CLR the ready "bit" bound with the @a handle and @a mask.
int ready_ops (ACE_HANDLE handle,
ACE_Reactor_Mask mask,
int ops);
/// Get the implementation class
ACE_Reactor_Impl *implementation (void) const;
/**
* Returns 0, if the size of the current message has been put in
* @a size returns -1, if not. ACE_HANDLE allows the reactor to
* check if the caller is valid. Used for CLASSIX Reactor
* implementation.
*/
int current_info (ACE_HANDLE handle, size_t &msg_size);
/// Return true if we any event associations were made by the reactor
/// for the handles that it waits on, false otherwise.
bool uses_event_associations (void);
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
/// Dump the state of the object.
void dump (void) const;
protected:
/// Set the implementation class.
void implementation (ACE_Reactor_Impl *implementation);
/// Delegation/implementation class that all methods will be
/// forwarded to.
ACE_Reactor_Impl *implementation_;
/// Flag used to indicate whether we are responsible for cleaning up
/// the implementation instance
bool delete_implementation_;
/// Pointer to a process-wide ACE_Reactor singleton.
static ACE_Reactor *reactor_;
/// Must delete the reactor_ singleton if true.
static bool delete_reactor_;
/// Deny access since member-wise won't work...
ACE_Reactor (const ACE_Reactor &);
ACE_Reactor &operator = (const ACE_Reactor &);
};
ACE_END_VERSIONED_NAMESPACE_DECL
#if defined (__ACE_INLINE__)
#include "ace/Reactor.inl"
#endif /* __ACE_INLINE__ */
#include /**/ "ace/post.h"
#endif /* ACE_REACTOR_H */
|