/usr/include/ace/Containers_T.h is in libace-dev 6.3.3+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 | // -*- C++ -*-
//=============================================================================
/**
* @file Containers_T.h
*
* @author Douglas C. Schmidt <schmidt@cs.wustl.edu>
*/
//=============================================================================
#ifndef ACE_CONTAINERS_T_H
#define ACE_CONTAINERS_T_H
#include /**/ "ace/pre.h"
#include /**/ "ace/config-all.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
// Need by ACE_DLList_Node.
#include "ace/Containers.h"
// Shared with "ace/Unbounded_Set.h"
#include "ace/Node.h"
// Backwards compatibility, please include "ace/Array_Base.h" directly.
#include "ace/Array_Base.h"
// Backwards compatibility, please include "ace/Unbounded_Set.h" directly.
#include "ace/Unbounded_Set.h"
// Backwards compatibility, please include "ace/Unbounded_Queue.h" directly.
#include "ace/Unbounded_Queue.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
class ACE_Allocator;
/**
* @class ACE_Bounded_Stack
*
* @brief Implement a generic LIFO abstract data type.
*
* This implementation of a Stack uses a bounded array
* that is allocated dynamically. The Stack interface
* provides the standard constant time push, pop, and top
* operations.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Dynamic array
* - Duplicates allowed?
* Yes
* - Random access allowed?
* No
* - Search speed
* N/A
* - Insert/replace speed
* N/A
* - Iterator still valid after change to container?
* N/A
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
*/
template <class T>
class ACE_Bounded_Stack
{
public:
// = Initialization, assignment, and termination methods.
/// Initialize a new empty stack with the provided size..
/**
* Initialize and allocate space for a new Bounded_Stack with the provided
* size.
*/
ACE_Bounded_Stack (size_t size);
/// Initialize the stack to be a copy of the stack provided.
/**
* Initialize the stack to be an exact copy of the Bounded_Stack provided
* as a parameter.
*/
ACE_Bounded_Stack (const ACE_Bounded_Stack<T> &s);
/// Assignment operator
/**
* Perform a deep copy operation using the Bounded_Stack parameter. If the
* capacity of the lhs isn't sufficient for the rhs, then the underlying data
* structure will be reallocated to accomadate the larger number of elements.
*/
void operator= (const ACE_Bounded_Stack<T> &s);
/// Perform actions needed when stack goes out of scope.
/**
* Deallocate the memory used by the Bounded_Stack.
*/
~ACE_Bounded_Stack (void);
// = Classic Stack operations.
///Add an element to the top of the stack.
/**
* Place a new item on top of the stack. Returns -1 if the stack
* is already full, 0 if the stack is not already full, and -1 if
* failure occurs.
*/
int push (const T &new_item);
///Remove an item from the top of stack.
/**
* Remove and return the top stack item. Returns -1 if the stack is
* already empty, 0 if the stack is not already empty, and -1 if
* failure occurs.
*/
int pop (T &item);
///Examine the contents of the top of stack.
/**
* Return top stack item without removing it. Returns -1 if the
* stack is already empty, 0 if the stack is not already empty, and
* -1 if failure occurs.
*/
int top (T &item) const;
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* Performs constant time check to determine if the stack is empty.
*/
int is_empty (void) const;
/// Returns 1 if the container is full, otherwise returns 0.
/**
* Performs constant time check to determine if the stack is at capacity.
*/
int is_full (void) const;
/// The number of items in the stack.
/**
* Return the number of items currently in the stack.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Size of the dynamically allocated data.
size_t size_;
/// Keeps track of the current top of stack.
size_t top_;
/// Holds the stack's contents.
T *stack_;
};
//----------------------------------------
/**
* @class ACE_Fixed_Stack
*
* @brief Implement a generic LIFO abstract data type.
*
* This implementation of a Stack uses a fixed array
* with the size fixed at instantiation time.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Fixed array
* - Duplicates allowed?
* Yes
* - Random access allowed?
* No
* - Search speed
* N/A
* - Insert/replace speed
* N/A
* - Iterator still valid after change to container?
* N/A
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
*/
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Stack
{
public:
// = Initialization, assignment, and termination methods.
/// Initialize a new stack so that it is empty.
/**
* Initialize an empty stack.
*/
ACE_Fixed_Stack (void);
/// The copy constructor (performs initialization).
/**
* Initialize the stack and copy the provided stack into the current stack.
*/
ACE_Fixed_Stack (const ACE_Fixed_Stack<T, ACE_SIZE> &s);
/// Assignment operator (performs assignment).
/**
* Perform a deep copy of the provided stack.
*/
void operator= (const ACE_Fixed_Stack<T, ACE_SIZE> &s);
/// Perform actions needed when stack goes out of scope.
/**
* Destroy the stack.
*/
~ACE_Fixed_Stack (void);
// = Classic Stack operations.
///Constant time placement of element on top of stack.
/**
* Place a new item on top of the stack. Returns -1 if the stack
* is already full, 0 if the stack is not already full, and -1 if
* failure occurs.
*/
int push (const T &new_item);
///Constant time removal of top of stack.
/**
* Remove and return the top stack item. Returns -1 if the stack is
* already empty, 0 if the stack is not already empty, and -1 if
* failure occurs.
*/
int pop (T &item);
///Constant time examination of top of stack.
/**
* Return top stack item without removing it. Returns -1 if the
* stack is already empty, 0 if the stack is not already empty, and
* -1 if failure occurs.
*/
int top (T &item) const;
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* Performs constant time check to see if stack is empty.
*/
int is_empty (void) const;
/// Returns 1 if the container is full, otherwise returns 0.
/**
* Performs constant time check to see if stack is full.
*/
int is_full (void) const;
/// The number of items in the stack.
/**
* Constant time access to the current size of the stack.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Size of the allocated data.
size_t size_;
/// Keeps track of the current top of stack.
size_t top_;
/// Holds the stack's contents.
T stack_[ACE_SIZE];
};
//----------------------------------------
template<class T> class ACE_Ordered_MultiSet;
template<class T> class ACE_Ordered_MultiSet_Iterator;
/**
* @class ACE_DNode
*
* @brief Implementation element in a bilinked list.
*/
template<class T>
class ACE_DNode
{
friend class ACE_Ordered_MultiSet<T>;
friend class ACE_Ordered_MultiSet_Iterator<T>;
public:
/// This isn't necessary, but it keeps some compilers happy.
~ACE_DNode (void);
private:
// = Initialization methods
ACE_DNode (const T &i, ACE_DNode<T> *n = 0, ACE_DNode<T> *p = 0);
/// Pointer to next element in the list of {ACE_DNode}s.
ACE_DNode<T> *next_;
/// Pointer to previous element in the list of {ACE_DNode}s.
ACE_DNode<T> *prev_;
/// Current value of the item in this node.
T item_;
};
/**
* @class ACE_Unbounded_Stack
*
* @brief Implement a generic LIFO abstract data type.
*
* This implementation of an unbounded Stack uses a linked list.
* If you use the {insert} or {remove} methods you should keep
* in mind that duplicate entries aren't allowed. In general,
* therefore, you should avoid the use of these methods since
* they aren't really part of the ADT stack. The stack is implemented
* as a doubly linked list.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Double linked list
* - Duplicates allowed?
* No
* - Random access allowed?
* No
* - Search speed
* Linear
* - Insert/replace speed
* Linear
* - Iterator still valid after change to container?
* Yes
* - Frees memory for removed elements?
* Yes
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
*/
template <class T>
class ACE_Unbounded_Stack
{
public:
friend class ACE_Unbounded_Stack_Iterator<T>;
// Trait definition.
typedef ACE_Unbounded_Stack_Iterator<T> ITERATOR;
// = Initialization, assignment, and termination methods.
/// Initialize a new stack so that it is empty. Use user defined
/// allocation strategy if specified.
/**
* Initialize an empty stack using the user specified allocation strategy
* if provided.
*/
ACE_Unbounded_Stack (ACE_Allocator *the_allocator = 0);
/// The copy constructor (performs initialization).
/**
* Initialize this stack to be an exact copy of {s}.
*/
ACE_Unbounded_Stack (const ACE_Unbounded_Stack<T> &s);
/// Assignment operator (performs assignment).
/**
* Perform a deep copy of the rhs into the lhs.
*/
void operator= (const ACE_Unbounded_Stack<T> &s);
/// Perform actions needed when stack goes out of scope.
/**
* Destroy the underlying list for the stack.
*/
~ACE_Unbounded_Stack (void);
// = Classic Stack operations.
///Push an element onto the top of stack.
/**
* Place a new item on top of the stack. Returns -1 if the stack
* is already full, 0 if the stack is not already full, and -1 if
* failure occurs.
*/
int push (const T &new_item);
///Pop the top element of the stack.
/**
* Remove and return the top stack item. Returns -1 if the stack is
* already empty, 0 if the stack is not already empty, and -1 if
* failure occurs.
*/
int pop (T &item);
///Examine the top of the stack.
/**
* Return top stack item without removing it. Returns -1 if the
* stack is already empty, 0 if the stack is not already empty, and
* -1 if failure occurs.
*/
int top (T &item) const;
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* Constant time check to see if the stack is empty.
*/
int is_empty (void) const;
/// Returns 1 if the container is full, otherwise returns 0.
/**
* Always resturns 0 since the stack is unbounded.
*/
int is_full (void) const;
// = Auxiliary methods (not strictly part of the Stack ADT).
///Linear Insert of an item.
/**
* Insert {new_item} into the Stack at the head (but doesn't allow
* duplicates). Returns -1 if failures occur, 1 if item is already
* present (i.e., no duplicates are allowed), else 0.
*/
int insert (const T &new_item);
/// Remove @a item from the Stack. Returns 0 if it removes the item,
/// -1 if it can't find the item, and -1 if a failure occurs.
/**
* Linear remove operation.
*/
int remove (const T &item);
/// Finds if @a item occurs the set. Returns 0 if finds, else -1.
/**
* Linear find operation.
*/
int find (const T &item) const;
/// The number of items in the stack.
/**
* Constant time access to the current stack size.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Delete all the nodes in the stack.
void delete_all_nodes (void);
/// Copy all nodes from {s} to {this}.
void copy_all_nodes (const ACE_Unbounded_Stack<T> &s);
/// Head of the linked list of Nodes.
ACE_Node<T> *head_;
/// Current size of the stack.
size_t cur_size_;
/// Allocation strategy of the stack.
ACE_Allocator *allocator_;
};
/**
* @class ACE_Unbounded_Stack_Iterator
*
* @brief Implement an iterator over an unbounded Stack.
*/
template <class T>
class ACE_Unbounded_Stack_Iterator
{
public:
// = Initialization method.
/// Move to the first element in the {stack}.
ACE_Unbounded_Stack_Iterator (ACE_Unbounded_Stack<T> &stack);
// = Iteration methods.
/// Pass back the @a next_item that hasn't been seen in the Stack.
/// Returns 0 when all items have been seen, else 1.
int next (T *&next_item);
/// Move forward by one element in the Stack. Returns 0 when all the
/// items in the Stack have been seen, else 1.
int advance (void);
/// Move to the first element in the Stack. Returns 0 if the
/// Stack is empty, else 1.
int first (void);
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Pointer to the current node in the iteration.
ACE_Node<T> *current_;
/// Pointer to the Stack we're iterating over.
ACE_Unbounded_Stack<T> &stack_;
};
template <class T>
class ACE_Double_Linked_List;
/**
* @class ACE_Double_Linked_List_Iterator_Base
*
* @brief Implements a common base class for iterators for a double
* linked list ADT
*/
template <class T>
class ACE_Double_Linked_List_Iterator_Base
{
public:
// = Iteration methods.
/// Passes back the {entry} under the iterator. Returns 0 if the
/// iteration has completed, otherwise 1
int next (T *&) const;
/**
* @deprecated Return the address of next (current) unvisited item in
* the list. 0 if there is no more element available.
*/
T *next (void) const;
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// STL-like iterator dereference operator: returns a reference
/// to the node underneath the iterator.
T & operator* (void) const ;
/**
* Retasks the iterator to iterate over a new
* Double_Linked_List. This allows clients to reuse an iterator
* without incurring the constructor overhead. If you do use this,
* be aware that if there are more than one reference to this
* iterator, the other "clients" may be very bothered when their
* iterator changes. @@ Here be dragons. Comments?
*/
void reset (ACE_Double_Linked_List<T> &);
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
protected:
// = Initialization methods.
/// Constructor
ACE_Double_Linked_List_Iterator_Base (const ACE_Double_Linked_List<T> &);
/// Copy constructor.
ACE_Double_Linked_List_Iterator_Base (const
ACE_Double_Linked_List_Iterator_Base<T>
&iter);
// = Iteration methods.
/**
* Move to the first element of the list. Returns 0 if the list is
* empty, else 1.
* @note the head of the ACE_DLList is actually a null entry, so the
* first element is actually the 2n'd entry
*/
int go_head (void);
/// Move to the last element of the list. Returns 0 if the list is
/// empty, else 1.
int go_tail (void);
/**
* Check if we reach the end of the list. Can also be used to get
* the *current* element in the list. Return the address of the
* current item if there are still elements left , 0 if we run out
* of element.
*/
T *not_done (void) const ;
/// Advance to the next element in the list. Return the address of the
/// next element if there are more, 0 otherwise.
T *do_advance (void);
/// Retreat to the previous element in the list. Return the address
/// of the previous element if there are more, 0 otherwise.
T *do_retreat (void);
/// Dump the state of an object.
void dump_i (void) const;
/// Remember where we are.
T *current_;
const ACE_Double_Linked_List<T> *dllist_;
};
/**
* @class ACE_Double_Linked_List_Iterator
*
* @brief Implements an iterator for a double linked list ADT
*
* Iterate thru the double-linked list. This class provides
* an interface that let users access the internal element
* addresses directly. Notice {class T} must declare
* ACE_Double_Linked_List<T>,
* ACE_Double_Linked_List_Iterator_Base <T> and
* ACE_Double_Linked_List_Iterator as friend classes and class T
* should also have data members T* next_ and T* prev_.
*/
template <class T>
class ACE_Double_Linked_List_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
public:
// = Initialization method.
ACE_Double_Linked_List_Iterator (const ACE_Double_Linked_List<T> &);
/**
* Retasks the iterator to iterate over a new
* Double_Linked_List. This allows clients to reuse an iterator
* without incurring the constructor overhead. If you do use this,
* be aware that if there are more than one reference to this
* iterator, the other "clients" may be very bothered when their
* iterator changes.
* @@ Here be dragons. Comments?
*/
void reset (ACE_Double_Linked_List<T> &);
/// Move to the first element in the list. Returns 0 if the
/// list is empty, else 1.
int first (void);
/// Move forward by one element in the list. Returns 0 when all the
/// items in the list have been seen, else 1.
int advance (void);
/**
* Advance the iterator while removing the original item from the
* list. Return a pointer points to the original (removed) item.
* If @a dont_remove equals false, this function behaves like {advance}
* but return 0 (NULL) instead.
*/
T* advance_and_remove (bool dont_remove);
// = STL-style iteration methods
/// Prefix advance.
ACE_Double_Linked_List_Iterator<T> & operator++ (void);
/// Postfix advance.
ACE_Double_Linked_List_Iterator<T> operator++ (int);
/// Prefix reverse.
ACE_Double_Linked_List_Iterator<T> & operator-- (void);
/// Postfix reverse.
ACE_Double_Linked_List_Iterator<T> operator-- (int);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
};
/**
* @class ACE_Double_Linked_List_Reverse_Iterator
*
* @brief Implements a reverse iterator for a double linked list ADT
*
* Iterate backwards over the double-linked list. This class
* provide an interface that let users access the internal
* element addresses directly, which seems to break the
* encapsulation. Notice {class T} must declare
* ACE_Double_Linked_List<T>,
* ACE_Double_Linked_List_Iterator_Base <T> and
* ACE_Double_Linked_List_Iterator as friend classes and class T
* should also have data members T* next_ and T* prev_.
*/
template <class T>
class ACE_Double_Linked_List_Reverse_Iterator : public ACE_Double_Linked_List_Iterator_Base <T>
{
public:
// = Initialization method.
ACE_Double_Linked_List_Reverse_Iterator (ACE_Double_Linked_List<T> &);
/**
* Retasks the iterator to iterate over a new
* Double_Linked_List. This allows clients to reuse an iterator
* without incurring the constructor overhead. If you do use this,
* be aware that if there are more than one reference to this
* iterator, the other "clients" may be very bothered when their
* iterator changes.
* @@ Here be dragons. Comments?
*/
void reset (ACE_Double_Linked_List<T> &);
/// Move to the first element in the list. Returns 0 if the
/// list is empty, else 1.
int first (void);
/// Move forward by one element in the list. Returns 0 when all the
/// items in the list have been seen, else 1.
int advance (void);
/**
* Advance the iterator while removing the original item from the
* list. Return a pointer points to the original (removed) item.
* If @a dont_remove equals false, this function behaves like {advance}
* but return 0 (NULL) instead.
*/
T* advance_and_remove (bool dont_remove);
// = STL-style iteration methods
/// Prefix advance.
ACE_Double_Linked_List_Reverse_Iterator<T> & operator++ (void);
/// Postfix advance.
ACE_Double_Linked_List_Reverse_Iterator<T> operator++ (int);
/// Prefix reverse.
ACE_Double_Linked_List_Reverse_Iterator<T> & operator-- (void);
/// Postfix reverse.
ACE_Double_Linked_List_Reverse_Iterator<T> operator-- (int);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
};
/**
* @class ACE_Double_Linked_List
*
* @brief A double-linked list implementation.
*
* This implementation of an unbounded double-linked list uses a
* circular linked list with a dummy node. It is pretty much
* like the {ACE_Unbounded_Queue} except that it allows removing
* of a specific element from a specific location.
* Notice that this class is an implementation of a very simple
* data structure. This is *NOT* a container class. You can use the
* class to implement other contains classes but it is *NOT* a
* general purpose container class.
* The parameter class *MUST* have members T* prev and T* next
* and users of this class are responsible to follow the general
* rules of using double-linked lists to maintaining the list
* integrity.
* If you need a double linked container class, use the DLList
* class which is a container but delegates to the Double_Linked_List
* class.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Double Linked List
* - Duplicates allowed?
* Yes
* - Random access allowed?
* No
* - Search speed
* N/A
* - Insert/replace speed
* Linear
* - Iterator still valid after change to container?
* Yes
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
*/
template <class T>
class ACE_Double_Linked_List
{
public:
friend class ACE_Double_Linked_List_Iterator_Base<T>;
friend class ACE_Double_Linked_List_Iterator<T>;
friend class ACE_Double_Linked_List_Reverse_Iterator<T>;
// Trait definition.
typedef ACE_Double_Linked_List_Iterator<T> ITERATOR;
typedef ACE_Double_Linked_List_Reverse_Iterator<T> REVERSE_ITERATOR;
// = Initialization and termination methods.
/// construction. Use user specified allocation strategy
/// if specified.
/**
* Initialize an empy list using the allocation strategy specified by the user.
* If none is specified, then use default allocation strategy.
*/
ACE_Double_Linked_List (ACE_Allocator *the_allocator = 0);
/// Copy constructor.
/**
* Create a double linked list that is a copy of the provided
* parameter.
*/
ACE_Double_Linked_List (const ACE_Double_Linked_List<T> &);
/// Assignment operator.
/**
* Perform a deep copy of the provided list by first deleting the nodes of the
* lhs and then copying the nodes of the rhs.
*/
void operator= (const ACE_Double_Linked_List<T> &);
/// Destructor.
/**
* Clean up the memory allocated for the nodes of the list.
*/
~ACE_Double_Linked_List (void);
// = Check boundary conditions.
/// Returns 1 if the container is empty, 0 otherwise.
/**
* Performs constant time check to determine if the list is empty.
*/
int is_empty (void) const;
/// The list is unbounded, so this always returns 0.
/**
* Since the list is unbounded, the method simply returns 0.
*/
int is_full (void) const;
// = Classic queue operations.
/// Adds @a new_item to the tail of the list. Returns the new item
/// that was inserted.
/**
* Provides constant time insertion at the end of the list structure.
*/
T *insert_tail (T *new_item);
/// Adds @a new_item to the head of the list.Returns the new item that
/// was inserted.
/**
* Provides constant time insertion at the head of the list.
*/
T *insert_head (T *new_item);
/// Removes the head of the list and returns a pointer to that item.
/**
* Removes and returns the first {item} in the list. Returns
* internal node's address on success, 0 if the queue was empty.
* This method will *not* free the internal node.
*/
T* delete_head (void);
/// Removes the tail of the list and returns a pointer to that item.
/**
* Removes and returns the last {item} in the list. Returns
* internal nodes's address on success, 0 if the queue was
* empty. This method will *not* free the internal node.
*/
T *delete_tail (void);
// = Additional utility methods.
///Empty the list.
/**
* Reset the {ACE_Double_Linked_List} to be empty.
* Notice that since no one is interested in the items within,
* This operation will delete all items.
*/
void reset (void);
/// Get the {slot}th element in the set. Returns -1 if the element
/// isn't in the range {0..{size} - 1}, else 0.
/**
* Iterates through the list to the desired index and assigns the provides pointer
* with the address of the node occupying that index.
*/
int get (T *&item, size_t slot = 0);
/// The number of items in the queue.
/**
* Constant time call to return the current size of the list.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Use DNode address directly.
/**
* Constant time removal of an item from the list using it's address.
*/
int remove (T *n);
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
protected:
/// Delete all the nodes in the list.
/**
* Removes and deallocates memory for all of the list nodes.
*/
void delete_nodes (void);
/// Copy nodes from {rhs} into this list.
/**
* Copy the elements of the provided list by allocated new nodes and assigning
* them with the proper data.
*/
void copy_nodes (const ACE_Double_Linked_List<T> &rhs);
/// Setup header pointer. Called after we create the head node in ctor.
/**
* Initialize the head pointer so that the list has a dummy node.
*/
void init_head (void);
///Constant time insert a new item into the list structure.
/**
* Insert a @a new_item into the list. It will be added before
* or after @a old_item. Default is to insert the new item *after*
* {head_}. Return 0 if succeed, -1 if error occured.
*/
int insert_element (T *new_item,
int before = 0,
T *old_item = 0);
///Constant time delete an item from the list structure.
/**
* Remove @a item from the list. Return 0 if succeed, -1 otherwise.
* Notice that this function checks if item is {head_} and either its
* {next_} or {prev_} is NULL. The function resets item's {next_} and
* {prev_} to 0 to prevent clobbering the double-linked list if a user
* tries to remove the same node again.
*/
int remove_element (T *item);
/// Head of the circular double-linked list.
T *head_;
/// Size of this list.
size_t size_;
/// Allocation Strategy of the queue.
ACE_Allocator *allocator_;
};
template <class T> class ACE_DLList;
template <class T> class ACE_DLList_Iterator;
template <class T> class ACE_DLList_Reverse_Iterator;
typedef ACE_Double_Linked_List<ACE_DLList_Node> ACE_DLList_Base;
//typedef ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
// ACE_DLList_Iterator_Base;
//typedef ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
// ACE_DLList_Reverse_Iterator_Base;
//@@ These two typedefs (inherited from James Hu's original design)
// have been removed because Sun CC 4.2 had problems with it. I guess
// having the DLList_Iterators inheriting from a class which is
// actually a typedef leads to problems. #define'ing rather than
// typedef'ing worked, but as per Carlos's reccomendation, I'm just
// replacing all references to the base classes with their actual
// type. Matt Braun (6/15/99)
/**
* @class ACE_DLList
*
* @brief A double-linked list container class.
*
* ACE_DLList is a simple, unbounded container implemented using a
* double-linked list. It is critical to remember that ACE_DLList inherits
* from ACE_Double_Linked_List, wrapping each T pointer in a ACE_DLList_Node
* object which satisfies the next/prev pointer requirements imposed by
* ACE_Double_Linked_List.
*
* Each item inserted to an ACE_DLList is a pointer to a T object. The
* caller is responsible for lifetime of the T object. ACE_DLList takes no
* action on the T object; it is not copied on insertion and it is not
* deleted on removal from the ACE_DLList.
*/
template <class T>
class ACE_DLList : public ACE_DLList_Base
{
friend class ACE_DLList_Node;
friend class ACE_Double_Linked_List_Iterator<T>;
friend class ACE_DLList_Iterator<T>;
friend class ACE_DLList_Reverse_Iterator<T>;
public:
/// Delegates to ACE_Double_Linked_List.
void operator= (const ACE_DLList<T> &l);
/**
* @name Queue-like insert and delete methods
*/
//@{
/**
* Insert pointer for a new item at the tail of the list.
*
* @return Pointer to item inserted; 0 on error.
*/
T *insert_tail (T *new_item);
/**
* Insert pointer for a new item at the head of the list.
*
* @return Pointer to item inserted; 0 on error.
*/
T *insert_head (T *new_item);
/**
* Removes the item at the head of the list and returns its pointer.
*
* @return Pointer to previously inserted item; 0 if the list is empty,
* an error occurred, or the original pointer inserted was 0.
*/
T *delete_head (void);
/**
* Removes the item at the tail of the list and returns its pointer.
*
* @return Pointer to previously inserted item; 0 if the list is empty,
* an error occurred, or the original pointer inserted was 0.
*/
T *delete_tail (void);
//@}
/**
* Provide random access to any item in the list.
*
* @param item Receives a pointer to the T object pointer held at the
* specified position in the list.
* @param slot Position in the list to access. The first position is 0.
*
* @retval 0 Success; T pointer returned in item.
* @retval -1 Error, most likely slot is outside the range of the list.
*/
int get (T *&item, size_t slot = 0);
/// Delegates to ACE_Double_Linked_List.
void dump (void) const;
/// Delegates to ACE_Double_Linked_List.
int remove (ACE_DLList_Node *n);
/**
* Constructor.
*
* @param the_allocator Allocator to use for allocating ACE_DLList_Node
* objects that wrap T objects for inclusion in the
* list. If 0, ACE_Allocator::instance() is used.
*/
ACE_DLList (ACE_Allocator *the_allocator = 0);
/// Delegates to ACE_Double_Linked_List.
ACE_DLList (const ACE_DLList<T> &l);
/**
* Deletes all ACE_DLList_Node objects in the list starting from the head.
* No T objects referred to by the deleted ACE_DLList_Node objects are
* modified or freed. If you desire all of the T objects in the list to
* be deleted as well, code such as this should be used prior to destroying
* the ACE_DLList:
* @code
ACE_DLList<Item> list;
... // insert dynamically allocated Items...
Item *p;
while ((p = list.delete_head()) != 0)
delete *p;
@endcode
*/
~ACE_DLList (void);
};
/**
* @class ACE_DLList_Iterator
*
* @brief A double-linked list container class iterator.
*
* This implementation uses ACE_Double_Linked_List_Iterator to
* perform the logic behind this container class. It delegates
* all of its calls to ACE_Double_Linked_List_Iterator.
*/
template <class T>
class ACE_DLList_Iterator : public ACE_Double_Linked_List_Iterator <ACE_DLList_Node>
{
friend class ACE_DLList<T>;
friend class ACE_DLList_Node;
public:
// = Initialization method.
ACE_DLList_Iterator (ACE_DLList<T> &l);
/**
* Retasks the iterator to iterate over a new
* Double_Linked_List. This allows clients to reuse an iterator
* without incurring the constructor overhead. If you do use this,
* be aware that if there are more than one reference to this
* iterator, the other "clients" may be very bothered when their
* iterator changes.
* @@ Here be dragons. Comments?
*/
void reset (ACE_DLList<T> &l);
// = Iteration methods.
/// Move forward by one element in the list. Returns 0 when all the
/// items in the list have been seen, else 1.
int advance (void);
/// Pass back the {next_item} that hasn't been seen in the list.
/// Returns 0 when all items have been seen, else 1.
int next (T *&);
/**
* @deprecated Delegates to ACE_Double_Linked_List_Iterator, except that
* whereas the Double_Linked_List version of next returns the node, this next
* returns the contents of the node
*/
T *next (void) const;
/**
* Removes the current item (i.e., {next}) from the list.
* Note that DLList iterators do not support {advance_and_remove}
* directly (defined in its base class) and you will need to
* release the element returned by it.
*/
int remove (void);
/// Delegates to ACE_Double_Linked_List_Iterator.
void dump (void) const;
private:
ACE_DLList<T> *list_;
};
/**
* @class ACE_DLList_Reverse_Iterator
*
* @brief A double-linked list container class iterator.
*
* This implementation uses ACE_Double_Linked_List_Iterator to
* perform the logic behind this container class. It delegates
* all of its calls to ACE_Double_Linked_List_Iterator.
*/
template <class T>
class ACE_DLList_Reverse_Iterator : public ACE_Double_Linked_List_Reverse_Iterator <ACE_DLList_Node>
{
friend class ACE_DLList<T>;
friend class ACE_DLList_Node;
public:
// = Initialization method.
ACE_DLList_Reverse_Iterator (ACE_DLList<T> &l);
/**
* Retasks the iterator to iterate over a new
* Double_Linked_List. This allows clients to reuse an iterator
* without incurring the constructor overhead. If you do use this,
* be aware that if there are more than one reference to this
* iterator, the other "clients" may be very bothered when their
* iterator changes.
* @@ Here be dragons. Comments?
*/
void reset (ACE_DLList<T> &l);
// = Iteration methods.
/// Move forward by one element in the list. Returns 0 when all the
/// items in the list have been seen, else 1.
int advance (void);
/// Pass back the {next_item} that hasn't been seen in the list.
/// Returns 0 when all items have been seen, else 1.
int next (T *&);
/// @deprecated Delegates to ACE_Double_Linked_List_Iterator.
T *next (void) const;
/// Removes the current item (i.e., {next}) from the list.
/// Note that DLList iterators do not support {advance_and_remove}
/// directly (defined in its base class) and you will need to
/// release the element returned by it.
int remove (void);
/// Delegates to ACE_Double_Linked_List_Iterator.
void dump (void) const;
private:
ACE_DLList<T> *list_;
};
// Forward declaration.
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set;
/**
* @class ACE_Fixed_Set_Iterator_Base
*
* @brief Implements a common base class for iterators for a unordered set.
*/
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Iterator_Base
{
public:
// = Iteration methods.
/// Pass back the {next_item} that hasn't been seen in the Set.
/// Returns 0 when all items have been seen, else 1.
int next (T *&next_item);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Move to the first element in the set. Returns 0 if the
/// set is empty, else 1.
int first (void);
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
protected:
// = Initialization method.
ACE_Fixed_Set_Iterator_Base (ACE_Fixed_Set<T, ACE_SIZE> &s);
/// Set we are iterating over.
ACE_Fixed_Set<T, ACE_SIZE> &s_;
/// How far we've advanced over the set.
ssize_t next_;
/// The number of non free items that the iterator had pointed at.
size_t iterated_items_;
/// Dump the state of an object.
void dump_i (void) const;
/// Pass back the {next_item} that hasn't been seen in the Set.
/// Returns 0 when all items have been seen, else 1.
int next_i (T *&next_item);
};
/**
* @class ACE_Fixed_Set_Iterator
*
* @brief Iterates through an unordered set.
*
* This implementation of an unordered set uses a fixed array.
* Allows deletions while iteration is occurring.
*/
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Iterator : public ACE_Fixed_Set_Iterator_Base <T, ACE_SIZE>
{
public:
// = Initialization method.
ACE_Fixed_Set_Iterator (ACE_Fixed_Set<T, ACE_SIZE> &s);
// = Iteration methods.
/// Pass back the {next_item} that hasn't been seen in the Set.
/// Returns 0 when all items have been seen, else 1.
int next (T *&next_item);
/// Dump the state of an object.
void dump (void) const;
/// Remove the item where the itearetor is located at.
/// Returns 1 if it removes a item, else 0.
/// Pass back the removed {item}.
int remove (T *&item);
/// STL-like iterator dereference operator: returns a reference
/// to the node underneath the iterator.
T & operator* (void);
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
};
/**
* @class ACE_Fixed_Set_Const_Iterator
*
* @brief Iterates through a const unordered set.
*
* This implementation of an unordered set uses a fixed array.
*/
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set_Const_Iterator : public ACE_Fixed_Set_Iterator_Base <T, ACE_SIZE>
{
public:
// = Initialization method.
ACE_Fixed_Set_Const_Iterator (const ACE_Fixed_Set<T, ACE_SIZE> &s);
// = Iteration methods.
/// Pass back the {next_item} that hasn't been seen in the Set.
/// Returns 0 when all items have been seen, else 1.
int next (const T *&next_item);
/// Dump the state of an object.
void dump (void) const;
/// STL-like iterator dereference operator: returns a reference
/// to the node underneath the iterator.
const T & operator* (void) const ;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
};
/**
* @class ACE_Fixed_Set
*
* @brief Implement a simple unordered set of {T} with maximum {ACE_SIZE}.
*
* This implementation of an unordered set uses a fixed array.
* It does not allow duplicate members. The set provides linear insertion/deletion
* operations.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Fixed array
* - Duplicates allowed?
* No
* - Random access allowed?
* No
* - Search speed
* Linear
* - Insert/replace speed
* Linear
* - Iterator still valid after change to container?
* Yes
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
* -# operator==
*/
template <class T, size_t ACE_SIZE>
class ACE_Fixed_Set
{
public:
friend class ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>;
friend class ACE_Fixed_Set_Iterator<T, ACE_SIZE>;
friend class ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>;
// Trait definitions.
typedef ACE_Fixed_Set_Iterator<T, ACE_SIZE> ITERATOR;
typedef ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE> CONST_ITERATOR;
// = Initialization and termination methods.
/// Default Constructor.
/**
* Creates an empy set
*/
ACE_Fixed_Set (void);
/// Copy constructor.
/**
* Initializes a set to be a copy of the set parameter.
*/
ACE_Fixed_Set (const ACE_Fixed_Set<T, ACE_SIZE> &);
/// Assignment operator.
/**
* Deep copy of one set to another.
*/
void operator= (const ACE_Fixed_Set<T, ACE_SIZE> &);
/// Destructor.
/**
* Destroys a set.
*/
~ACE_Fixed_Set (void);
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* Performs constant time check to determine if a set is empty.
*/
int is_empty (void) const;
/// Returns 1 if the container is full, otherwise returns 0.
/**
* Performs a constant time check to see if the set is full.
*/
int is_full (void) const;
// = Classic unordered set operations.
///Linear time insertion of an item unique to the set.
/**
* Insert @a new_item into the set (doesn't allow duplicates).
* Returns -1 if failures occur, 1 if item is already present, else
* 0.
*/
int insert (const T &new_item);
///Linear time removal operation of an item.
/**
* Remove first occurrence of {item} from the set. Returns 0 if
* it removes the item, -1 if it can't find the item, and -1 if a
* failure occurs. Removal doesn't reclaim memory for the @a item.
*/
int remove (const T &item);
/// Finds if @a item occurs in the set. Returns 0 if finds, else -1.
/**
* Performs a linear find operation for the specified @a item.
*/
int find (const T &item) const;
/// Size of the set.
/**
* Returns the current size of the set.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Holds the contents of the set.
struct
{
/// Item in the set.
T item_;
/// Keeps track of whether this item is in use or not.
int is_free_;
} search_structure_[ACE_SIZE];
/// Current size of the set.
size_t cur_size_;
/// Maximum size of the set.
size_t max_size_;
};
// Forward declaration.
template <class T>
class ACE_Bounded_Set;
/**
* @class ACE_Bounded_Set_Iterator
*
* @brief Iterates through an unordered set.
*
* This implementation of an unordered set uses a Bounded array.
* Allows deletions while iteration is occurring.
*/
template <class T>
class ACE_Bounded_Set_Iterator
{
public:
// = Initialization method.
ACE_Bounded_Set_Iterator (ACE_Bounded_Set<T> &s);
// = Iteration methods.
/// Pass back the {next_item} that hasn't been seen in the Set.
/// Returns 0 when all items have been seen, else 1.
int next (T *&next_item);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Move to the first element in the set. Returns 0 if the
/// set is empty, else 1.
int first (void);
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Set we are iterating over.
ACE_Bounded_Set<T> &s_;
/// How far we've advanced over the set.
ssize_t next_;
};
/**
* @class ACE_Bounded_Set
*
* @brief Implement a simple unordered set of {T} with maximum
* set at creation time.
*
* This implementation of an unordered set uses a Bounded array.
* This implementation does not allow duplicates. It provides
* linear insert/remove/find operations. Insertion/removal does not
* invalidate iterators, but caution should be taken to ensure
* expected behavior. Once initialized, the object has a maximum size
* which can only be increased by the assignment of another larger Bounded_Set.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Bounded array which can grow via assignment
* - Duplicates allowed?
* No
* - Random access allowed?
* No
* - Search speed
* Linear
* - Insert/replace speed
* Linear
* - Iterator still valid after change to container?
* Yes
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
* -# operator==
*/
template <class T>
class ACE_Bounded_Set
{
public:
friend class ACE_Bounded_Set_Iterator<T>;
// Trait definition.
typedef ACE_Bounded_Set_Iterator<T> ITERATOR;
enum
{
DEFAULT_SIZE = 10
};
// = Initialization and termination methods.
/// Construct a Bounded_Set using the default size.
/**
* The default constructor initializes the Bounded_Set to a maximum size
* specified by the DEFAULT_SIZE.
*/
ACE_Bounded_Set (void);
/// Construct a Bounded_Set with the provided sizeB.
/**
* Initialize the Bounded_Set to have a maximum size equal to the size
* parameter specified.
*/
ACE_Bounded_Set (size_t size);
/// Construct a Bounded_Set that is a copy of the provides Bounded_Set.
/**
* Initialize the Bounded_Set to be a copy of the Bounded_Set parameter.
*/
ACE_Bounded_Set (const ACE_Bounded_Set<T> &);
/// Assignment operator.
/**
* The assignment will make a deep copy of the Bounded_Set provided. If the
* rhs has more elements than the capacity of the lhs, then the lhs will be
* deleted and reallocated to accomadate the larger number of elements.
*/
void operator= (const ACE_Bounded_Set<T> &);
/// Destructor
/**
* Clean up the underlying dynamically allocated memory that is used by
* the Bounded_Set.
*/
~ACE_Bounded_Set (void);
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* A constant time check is performed to determine if the Bounded_Set is
* empty.
*/
int is_empty (void) const;
/// Returns 1 if the container is full, otherwise returns 0.
/**
* Performs a constant time check to determine if the Bounded_Set is at
* capacity.
*/
int is_full (void) const;
// = Classic unordered set operations.
///Inserts a new element unique to the set.
/**
* Insert @a new_item into the set (doesn't allow duplicates) in linear
* time.
* Returns -1 if failures occur, 1 if item is already present, else
* 0.
*/
int insert (const T &new_item);
///Finds the specified element and removes it from the set.
/**
* Remove first occurrence of @a item from the set. Returns 0 if it
* removes the item, -1 if it can't find the item, and -1 if a
* failure occurs. The linear remove operation does not reclaim the
* memory associated with the removed item.
*/
int remove (const T &item);
/// Finds if @a item occurs in the set. Returns 0 if finds, else -1.
/**
* find preforms a linear search for {item} and returns 0 on successful
* find and -1 otherwise.
*/
int find (const T &item) const;
/// Size of the set.
/**
* Returns a size_t representing the current size of the set.
*/
size_t size (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
struct Search_Structure
{
/// Item in the set.
T item_;
/// Keeps track of whether this item is in use or not.
int is_free_;
};
/// Holds the contents of the set.
Search_Structure *search_structure_;
/// Current size of the set.
size_t cur_size_;
/// Maximum size of the set.
size_t max_size_;
};
/**
* @class ACE_Ordered_MultiSet_Iterator
*
* @brief Implement a bidirectional iterator over an ordered multiset.
* This class template requires that < operator semantics be
* defined for the parameterized type {T}, but does not impose
* any restriction on how that ordering operator is implemented.
*/
template <class T>
class ACE_Ordered_MultiSet_Iterator
{
public:
friend class ACE_Ordered_MultiSet<T>;
// = Initialization method.
ACE_Ordered_MultiSet_Iterator (ACE_Ordered_MultiSet<T> &s);
// = Iteration methods.
/// Pass back the {next_item} that hasn't been seen in the ordered multiset.
/// Returns 0 when all items have been seen, else 1.
int next (T *&next_item) const;
/// Repositions the iterator at the first item in the ordered multiset
/// Returns 0 if the list is empty else 1.
int first (void);
/// Repositions the iterator at the last item in the ordered multiset
/// Returns 0 if the list is empty else 1.
int last (void);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Move backward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int retreat (void);
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Dump the state of an object.
void dump (void) const;
/// Returns a reference to the internal element {this} is pointing to.
T& operator* (void);
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Pointer to the current node in the iteration.
ACE_DNode<T> *current_;
/// Pointer to the set we're iterating over.
ACE_Ordered_MultiSet<T> &set_;
};
/**
* @class ACE_Ordered_MultiSet
*
* @brief Implement a simple ordered multiset of {T} of unbounded size
* that allows duplicates. This class template requires that <
* operator semantics be defined for the parameterized type {T}, but
* does not impose any restriction on how that ordering operator is
* implemented. The set is implemented as a linked list.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Double linked list
* - Duplicates allowed?
* Yes
* - Random access allowed?
* No
* - Search speed
* Linear
* - Insert/replace speed
* Linear
* - Iterator still valid after change to container?
* Yes
* - Frees memory for removed elements?
* Yes
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
* -# operator==
* -# operator<
*/
template <class T>
class ACE_Ordered_MultiSet
{
public:
friend class ACE_Ordered_MultiSet_Iterator<T>;
// Trait definition.
typedef ACE_Ordered_MultiSet_Iterator<T> ITERATOR;
// = Initialization and termination methods.
/// Constructor. Use user specified allocation strategy
/// if specified.
/**
* Initialize the set using the allocation strategy specified. If none, use the
* default strategy.
*/
ACE_Ordered_MultiSet (ACE_Allocator *the_allocator = 0);
/// Copy constructor.
/**
* Initialize the set to be a copy of the provided set.
*/
ACE_Ordered_MultiSet (const ACE_Ordered_MultiSet<T> &);
/// Destructor.
/**
* Delete the nodes of the set.
*/
~ACE_Ordered_MultiSet (void);
/// Assignment operator.
/**
* Delete the nodes in lhs, and copy the nodes from the rhs.
*/
void operator= (const ACE_Ordered_MultiSet<T> &);
// = Check boundary conditions.
/// Returns 1 if the container is empty, otherwise returns 0.
/**
* Constant time check to determine if the set is empty.
*/
int is_empty (void) const;
/// Size of the set.
/**
* Constant time check to determine the size of the set.
*/
size_t size (void) const;
// = Classic unordered set operations.
/// Insert @a new_item into the ordered multiset.
/// Returns -1 if failures occur, else 0.
/**
* Linear time, order preserving insert into the set beginning at the head.
*/
int insert (const T &new_item);
///Linear time insert beginning at the point specified by the provided iterator.
/**
* Insert @a new_item into the ordered multiset, starting its search at
* the node pointed to by the iterator, and if insertion was successful,
* updates the iterator to point to the newly inserted node.
* Returns -1 if failures occur, else 0.
*/
int insert (const T &new_item, ITERATOR &iter);
/// Remove first occurrence of @a item from the set. Returns 0 if
/// it removes the item, -1 if it can't find the item.
/**
* Linear time search operation which removes the item from the set if found .
*/
int remove (const T &item);
///Linear find operation.
/**
* Finds first occurrence of @a item in the multiset, using the iterator's
* current position as a hint to improve performance. If find succeeds,
* it positions the iterator at that node and returns 0, or if it cannot
* locate the node, it leaves the iterator alone and just returns -1.
*/
int find (const T &item, ITERATOR &iter) const;
/// Reset the ACE_Ordered_MultiSet to be empty.
/**
* Delete the nodes inside the set.
*/
void reset (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/**
* Insert @a item, starting its search at the position given,
* and if successful updates the passed pointer to point to
* the newly inserted item's node.
*/
int insert_from (const T &item, ACE_DNode<T> *start_position,
ACE_DNode<T> **new_position);
/**
* Looks for first occurrence of @a item in the ordered set, using the
* passed starting position as a hint: if there is such an instance, it
* updates the new_position pointer to point to this node and returns 0;
* if there is no such node, then if there is a node before where the
* item would have been, it updates the new_position pointer to point
* to this node and returns -1; if there is no such node, then if there
* is a node after where the item would have been, it updates the
* new_position pointer to point to this node (or 0 if there is no such
* node) and returns 1;
*/
int locate (const T &item, ACE_DNode<T> *start_position,
ACE_DNode<T> *&new_position) const;
/// Delete all the nodes in the Set.
void delete_nodes (void);
/// Copy nodes into this set.
void copy_nodes (const ACE_Ordered_MultiSet<T> &);
/// Head of the bilinked list of Nodes.
ACE_DNode<T> *head_;
/// Head of the bilinked list of Nodes.
ACE_DNode<T> *tail_;
/// Current size of the set.
size_t cur_size_;
/// Allocation strategy of the set.
ACE_Allocator *allocator_;
};
// ****************************************************************
/**
* @class ACE_Array
*
* @brief A dynamic array class.
*
* This class extends ACE_Array_Base, adding comparison operators.
*
* <b> Requirements and Performance Characteristics</b>
* - Internal Structure
* Dynamic array
* - Duplicates allowed?
* Yes
* - Random access allowed?
* Yes
* - Search speed
* N/A
* - Insert/replace speed
* O(1)
* - Iterator still valid after change to container?
* - In general, yes.
* - If array size is changed during iteration, no.
* - Frees memory for removed elements?
* No
* - Items inserted by
* Value
* - Requirements for contained type
* -# Default constructor
* -# Copy constructor
* -# operator=
* -# operator!=
*
* @sa ACE_Array_Base. This class inherits its operations and requirements.
*/
template <class T>
class ACE_Array : public ACE_Array_Base<T>
{
public:
// Define a "trait"
typedef T TYPE;
typedef ACE_Array_Iterator<T> ITERATOR;
/// Dynamically create an uninitialized array.
/**
* Initialize an empty array of the specified size using the provided
* allocation strategy.
*/
ACE_Array (size_t size = 0,
ACE_Allocator* alloc = 0);
/// Dynamically initialize the entire array to the {default_value}.
/**
* Initialize an array the given size placing the default_value in each index.
*/
ACE_Array (size_t size,
const T &default_value,
ACE_Allocator* alloc = 0);
///Copy constructor.
/**
* The copy constructor performs initialization by making an exact
* copy of the contents of parameter {s}, i.e., *this == s will
* return true.
*/
ACE_Array (const ACE_Array<T> &s);
///Assignment operator
/**
* Assignment operator performs an assignment by making an exact
* copy of the contents of parameter {s}, i.e., *this == s will
* return true. Note that if the {max_size_} of {array_} is >= than
* {s.max_size_} we can copy it without reallocating. However, if
* {max_size_} is < {s.max_size_} we must delete the {array_},
* reallocate a new {array_}, and then copy the contents of {s}.
*/
void operator= (const ACE_Array<T> &s);
// = Compare operators
///Equality comparison operator.
/**
* Compare this array with {s} for equality. Two arrays are equal
* if their {size}'s are equal and all the elements from 0 .. {size}
* are equal.
*/
bool operator== (const ACE_Array<T> &s) const;
///Inequality comparison operator.
/**
* Compare this array with {s} for inequality such that {*this} !=
* {s} is always the complement of the boolean return value of
* {*this} == {s}.
*/
bool operator!= (const ACE_Array<T> &s) const;
};
ACE_END_VERSIONED_NAMESPACE_DECL
#if defined (__ACE_INLINE__)
#include "ace/Containers_T.inl"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Containers_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Containers_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#include /**/ "ace/post.h"
#endif /* ACE_CONTAINERS_T_H */
|