This file is indexed.

/usr/bin/last-train is in last-align 712-1ubuntu1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#! /usr/bin/env python
# Copyright 2015 Martin C. Frith

import fileinput, math, optparse, os, signal, subprocess, sys

def tabSeparatedString(things):
    return "\t".join(map(str, things))

def scaleFromHeader(lines):
    for line in lines:
        for i in line.split():
            if i.startswith("t="):
                return float(i[2:])
    raise Exception("couldn't read the scale")

def scoreMatrixFromHeader(lines):
    matrix = []
    for line in lines:
        w = line.split()
        if len(w) > 2 and len(w[1]) == 1:
            matrix.append(w[1:])
        elif matrix:
            break
    return matrix

def scaledMatrix(matrix, scaleIncrease):
    return matrix[0:1] + [i[0:1] + [int(j) * scaleIncrease for j in i[1:]]
                          for i in matrix[1:]]

def countsFromLastOutput(lines, opts):
    matrix = []
    # use +1 pseudocounts as a kludge to mitigate numerical problems:
    matches = 1.0
    deletes = 2.0  # 1 open + 1 extension
    inserts = 2.0  # 1 open + 1 extension
    delOpens = 1.0
    insOpens = 1.0
    alignments = 0  # no pseudocount here
    for line in lines:
        if line[0] == "s":
            strand = line.split()[4]  # slow?
        if line[0] == "c":
            c = map(float, line.split()[1:])
            if not matrix:
                matrixSize = int(math.sqrt(len(c) - 10))
                matrix = [[1.0] * matrixSize for i in range(matrixSize)]
            identities = sum(c[i * matrixSize + i] for i in range(matrixSize))
            alignmentLength = c[-10] + c[-9] + c[-8]
            if 100 * identities > opts.pid * alignmentLength: continue
            for i in range(matrixSize):
                for j in range(matrixSize):
                    if strand == "+" or opts.S == "0":
                        matrix[i][j]       += c[i * matrixSize + j]
                    else:
                        matrix[-1-i][-1-j] += c[i * matrixSize + j]
            matches += c[-10]
            deletes += c[-9]
            inserts += c[-8]
            delOpens += c[-7]
            insOpens += c[-6]
            alignments += 1
    gapCounts = matches, deletes, inserts, delOpens, insOpens, alignments
    return matrix, gapCounts

def scoreFromProb(scale, prob):
    if prob > 0: logProb = math.log(prob)
    else:        logProb = -800  # exp(-800) is exactly zero, on my computer
    return int(round(scale * logProb))

def costFromProb(scale, prob):
    return -scoreFromProb(scale, prob)

def matProbsFromCounts(counts, opts):
    r = range(len(counts))
    if opts.revsym:  # add complement (reverse strand) substitutions
        counts = [[counts[i][j] + counts[-1-i][-1-j] for j in r] for i in r]
    if opts.matsym:  # symmetrize the substitution matrix
        counts = [[counts[i][j] + counts[j][i] for j in r] for i in r]
    identities = sum(counts[i][i] for i in r)
    total = sum(map(sum, counts))
    probs = [[j / total for j in i] for i in counts]

    print "# substitution percent identity: %g" % (100 * identities / total)
    print
    print "# count matrix:"
    for i in counts:
        print "#", tabSeparatedString(i)
    print
    print "# probability matrix:"
    for i in probs:
        print "#", tabSeparatedString("%g" % j for j in i)
    print

    return probs

def printMatScores(scores):
    print "# score matrix:"
    for i in scores:
        print "#", tabSeparatedString(i)
    print

def gapProbsFromCounts(counts, opts):
    matches, deletes, inserts, delOpens, insOpens, alignments = counts
    if not alignments: raise Exception("no alignments")
    gaps = deletes + inserts
    gapOpens = delOpens + insOpens
    denominator = matches + gapOpens + (alignments + 1)  # +1 pseudocount
    if opts.gapsym:
        delOpenProb = gapOpens / denominator / 2
        insOpenProb = gapOpens / denominator / 2
        delExtendProb = (gaps - gapOpens) / gaps
        insExtendProb = (gaps - gapOpens) / gaps
    else:
        delOpenProb = delOpens / denominator
        insOpenProb = insOpens / denominator
        delExtendProb = (deletes - delOpens) / deletes
        insExtendProb = (inserts - insOpens) / inserts

    print "# aligned letter pairs:", matches
    print "# deletes:", deletes
    print "# inserts:", inserts
    print "# delOpens:", delOpens
    print "# insOpens:", insOpens
    print "# alignments:", alignments
    print "# mean delete size: %g" % (deletes / delOpens)
    print "# mean insert size: %g" % (inserts / insOpens)
    print "# delOpenProb: %g" % delOpenProb
    print "# insOpenProb: %g" % insOpenProb
    print "# delExtendProb: %g" % delExtendProb
    print "# insExtendProb: %g" % insExtendProb
    print

    delCloseProb = 1 - delExtendProb
    insCloseProb = 1 - insExtendProb
    firstDelProb = delOpenProb * delCloseProb
    firstInsProb = insOpenProb * insCloseProb
    # if we define "alignment" to mean "set of indistinguishable paths":
    #delExtendProb += firstDelProb
    #insExtendProb += firstInsProb
    delExistProb = firstDelProb / delExtendProb
    insExistProb = firstInsProb / insExtendProb

    return delExistProb, insExistProb, delExtendProb, insExtendProb

def scoreFromLetterProbs(scale, pairProb, prob1, prob2):
    probRatio = pairProb / (prob1 * prob2)
    return scoreFromProb(scale, probRatio)

def matScoresFromProbs(scale, probs):
    rowProbs = map(sum, probs)
    colProbs = map(sum, zip(*probs))
    return [[scoreFromLetterProbs(scale, j, x, y) for j, y in zip(i, colProbs)]
            for i, x in zip(probs, rowProbs)]

def gapCostsFromProbs(scale, probs):
    delExistProb, insExistProb, delExtendProb, insExtendProb = probs
    delExistCost = costFromProb(scale, delExistProb)
    insExistCost = costFromProb(scale, insExistProb)
    delExtendCost = costFromProb(scale, delExtendProb)
    insExtendCost = costFromProb(scale, insExtendProb)
    if delExtendCost == 0: delExtendCost = 1
    if insExtendCost == 0: insExtendCost = 1
    return delExistCost, insExistCost, delExtendCost, insExtendCost

def guessAlphabet(matrixSize):
    if matrixSize ==  4: return "ACGT"
    if matrixSize == 20: return "ACDEFGHIKLMNPQRSTVWY"
    raise Exception("can't handle unusual alphabets")

def matrixWithLetters(matrix):
    alphabet = guessAlphabet(len(matrix))
    return [alphabet] + [[a] + i for a, i in zip(alphabet, matrix)]

def writeLine(out, *things):
    out.write(" ".join(map(str, things)) + "\n")

def writeMatrixWithLetters(matrix, out):
    writeLine(out, " ", tabSeparatedString(matrix[0]))
    for i in matrix[1:]:
        writeLine(out, i[0], tabSeparatedString(i[1:]))

def writeGapCosts(gapCosts, out):
    delExistCost, insExistCost, delExtendCost, insExtendCost = gapCosts
    writeLine(out, "#last -a", delExistCost)
    writeLine(out, "#last -A", insExistCost)
    writeLine(out, "#last -b", delExtendCost)
    writeLine(out, "#last -B", insExtendCost)

def printGapCosts(gapCosts):
    delExistCost, insExistCost, delExtendCost, insExtendCost = gapCosts
    print "# delExistCost:", delExistCost
    print "# insExistCost:", insExistCost
    print "# delExtendCost:", delExtendCost
    print "# insExtendCost:", insExtendCost
    print

def tryToMakeChildProgramsFindable():
    myDir = os.path.dirname(__file__)
    srcDir = os.path.join(myDir, os.pardir, "src")
    # put srcDir first, to avoid getting older versions of LAST:
    os.environ["PATH"] = srcDir + os.pathsep + os.environ["PATH"]

def fixedLastalArgs(opts):
    x = ["lastal", "-j7"]
    if opts.D: x.append("-D" + opts.D)
    if opts.E: x.append("-E" + opts.E)
    if opts.s: x.append("-s" + opts.s)
    if opts.S: x.append("-S" + opts.S)
    if opts.T: x.append("-T" + opts.T)
    if opts.m: x.append("-m" + opts.m)
    if opts.P: x.append("-P" + opts.P)
    if opts.Q: x.append("-Q" + opts.Q)
    return x

def lastTrain(opts, args):
    tryToMakeChildProgramsFindable()
    scaleIncrease = 20  # while training, up-scale the scores by this amount
    x = fixedLastalArgs(opts)
    if opts.r: x.append("-r" + opts.r)
    if opts.q: x.append("-q" + opts.q)
    if opts.p: x.append("-p" + opts.p)
    if opts.a: x.append("-a" + opts.a)
    if opts.b: x.append("-b" + opts.b)
    if opts.A: x.append("-A" + opts.A)
    if opts.B: x.append("-B" + opts.B)
    x += args
    y = ["last-split", "-n"]
    p = subprocess.Popen(x, stdout=subprocess.PIPE)
    q = subprocess.Popen(y, stdin=p.stdout, stdout=subprocess.PIPE)
    externalScale = scaleFromHeader(q.stdout)
    internalScale = externalScale * scaleIncrease
    if opts.Q:
        externalMatrix = scoreMatrixFromHeader(q.stdout)
        internalMatrix = scaledMatrix(externalMatrix, scaleIncrease)
    oldParameters = []

    print "# maximum percent identity:", opts.pid
    print "# scale of score parameters:", externalScale
    print "# scale used while training:", internalScale
    print

    while True:
        print "#", " ".join(x)
        print
        matCounts, gapCounts = countsFromLastOutput(q.stdout, opts)
        gapProbs = gapProbsFromCounts(gapCounts, opts)
        gapCosts = gapCostsFromProbs(internalScale, gapProbs)
        printGapCosts(gapCosts)
        if opts.Q:
            if gapCosts in oldParameters: break
            oldParameters.append(gapCosts)
        else:
            matProbs = matProbsFromCounts(matCounts, opts)
            matScores = matScoresFromProbs(internalScale, matProbs)
            printMatScores(matScores)
            parameters = gapCosts, matScores
            if parameters in oldParameters: break
            oldParameters.append(parameters)
            internalMatrix = matrixWithLetters(matScores)
        x = fixedLastalArgs(opts)
        x.append("-p-")
        x += args
        p = subprocess.Popen(x, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
        writeGapCosts(gapCosts, p.stdin)
        writeMatrixWithLetters(internalMatrix, p.stdin)
        p.stdin.close()
        # in python2.6, the next line must come after p.stdin.close()
        q = subprocess.Popen(y, stdin=p.stdout, stdout=subprocess.PIPE)

    gapCosts = gapCostsFromProbs(externalScale, gapProbs)
    writeGapCosts(gapCosts, sys.stdout)
    if opts.s: writeLine(sys.stdout, "#last -s", opts.s)
    if opts.S: writeLine(sys.stdout, "#last -S", opts.S)
    if not opts.Q:
        matScores = matScoresFromProbs(externalScale, matProbs)
        externalMatrix = matrixWithLetters(matScores)
    writeMatrixWithLetters(externalMatrix, sys.stdout)

if __name__ == "__main__":
    signal.signal(signal.SIGPIPE, signal.SIG_DFL)  # avoid silly error message
    usage = "%prog lastdb-name sequence-file(s)"
    description = "Try to find suitable score parameters for aligning the given sequences."
    op = optparse.OptionParser(usage=usage, description=description)
    og = optparse.OptionGroup(op, "Training options")
    og.add_option("--revsym", action="store_true",
                  help="force reverse-complement symmetry")
    og.add_option("--matsym", action="store_true",
                  help="force symmetric substitution matrix")
    og.add_option("--gapsym", action="store_true",
                  help="force insertion/deletion symmetry")
    og.add_option("--pid", type="float", default=100, help=
                  "skip alignments with > PID% identity (default: %default)")
    op.add_option_group(og)
    og = optparse.OptionGroup(op, "Initial parameter options")
    og.add_option("-r", metavar="SCORE",
                  help="match score (default: 6 if Q>0, else 5)")
    og.add_option("-q", metavar="COST",
                  help="mismatch cost (default: 18 if Q>0, else 5)")
    og.add_option("-p", metavar="NAME", help="match/mismatch score matrix")
    og.add_option("-a", metavar="COST",
                  help="gap existence cost (default: 21 if Q>0, else 15)")
    og.add_option("-b", metavar="COST",
                  help="gap extension cost (default: 9 if Q>0, else 3)")
    og.add_option("-A", metavar="COST", help="insertion existence cost")
    og.add_option("-B", metavar="COST", help="insertion extension cost")
    op.add_option_group(og)
    og = optparse.OptionGroup(op, "Alignment options")
    og.add_option("-D", metavar="LENGTH",
                  help="query letters per random alignment (default: 1e6)")
    og.add_option("-E", metavar="EG2",
                  help="maximum expected alignments per square giga")
    og.add_option("-s", metavar="STRAND", help=
                  "0=reverse, 1=forward, 2=both (default: 2 if DNA, else 1)")
    og.add_option("-S", metavar="NUMBER", default="1", help=
                  "score matrix applies to forward strand of: " +
                  "0=reference, 1=query (default: %default)")
    og.add_option("-T", metavar="NUMBER",
                  help="type of alignment: 0=local, 1=overlap (default: 0)")
    og.add_option("-m", metavar="COUNT", help=
                  "maximum initial matches per query position (default: 10)")
    og.add_option("-P", metavar="THREADS",
                  help="number of parallel threads")
    og.add_option("-Q", metavar="NUMBER",
                  help="input format: 0=fasta, 1=fastq-sanger")
    op.add_option_group(og)
    (opts, args) = op.parse_args()
    if len(args) < 2: op.error("I need a lastdb index and query sequences")
    if not opts.p and (not opts.Q or opts.Q == "0"):
        if not opts.r: opts.r = "5"
        if not opts.q: opts.q = "5"
        if not opts.a: opts.a = "15"
        if not opts.b: opts.b = "3"

    try: lastTrain(opts, args)
    except KeyboardInterrupt: pass  # avoid silly error message
    except Exception, e:
        prog = os.path.basename(sys.argv[0])
        sys.exit(prog + ": error: " + str(e))