This file is indexed.

/usr/include/JAGS/distribution/ArrayDist.h is in jags 4.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#ifndef ARRAY_DIST_H_
#define ARRAY_DIST_H_

#include <distribution/Distribution.h>

#include <vector>
#include <string>

namespace jags {

struct RNG;

/**
 * @short Matrix- or array-valued distribution
 *
 * This is the most general sub-class for distributions and is used
 * whenever a distribution takes values in a matrix or
 * higher-dimensional array (e.g. Wishart) or has parameters that are
 * array-valued (e.g. multivariate normal).
 */
class ArrayDist : public Distribution
{
public:
    /**
     * Constructor.
     * @param name name of the distribution as used in the BUGS language
     * @param npar number of parameters, excluding upper and lower bounds
     */
    ArrayDist(std::string const &name, unsigned int npar);
    /**
     * @param x Value at which to evaluate the density.
     *
     * @param type Indicates whether the full probability density
     * function is required (PDF_FULL) or whether partial calculations
     * are permitted (PDF_PRIOR, PDF_LIKELIHOOD). See PDFType for
     * details.
     *
     * @param length Size of the array x.
     *
     * @param parameters Vector of parameter values of the
     * distribution.
     * 
     * @param dims Dimensions of the parameters.
     *
     * @returns The log probability density.  If the density should be
     * zero because x is inconsistent with the parameters then -Inf is
     * returned. If the parameters are invalid
     * (i.e. checkParameterValue returns false), then the return value
     * is undefined.
     */
    virtual double 
	logDensity(double const *x, unsigned int length, PDFType type,
		   std::vector<double const *> const &parameters,
		   std::vector<std::vector<unsigned int> > const &dims,
		   double const *lbound, double const *ubound) const = 0;
    /**
     * Draws a random sample from the distribution. 
     *
     * @param x Array to which the sample values are written
     *
     * @param length Size of the array x.
     * 
     * @param parameters Parameters for the distribution. This vector
     * should be of length npar().  Each element is a pointer to the
     * start of an array containing the parameters. The size of the 
     * array should correspond to the dims parameter. 
     *
     * @param dims Dimensions of the parameters
     *
     * @param lbound pointer to array containing the lower boundary of
     * the distribution. This should be of size length or may be NULL if
     * there is no lower boundary.
     *
     * @param lbound pointer to array containing the upper boundary of
     * the distribution. This should be of size length or may be NULL if
     * there is no upper boundary.
     *
     * @param rng pseudo-random number generator to use.
     *
     * @exception length_error 
     */
    virtual void 
	randomSample(double *x, unsigned int length,
		     std::vector<double const *> const &parameters,
		     std::vector<std::vector<unsigned int> > const  &dims,
		     double const *lbound, double const *ubound,
		     RNG *rng) 	const = 0;
    /**
     * Returns a typical value from the distribution.  The meaning of
     * this will depend on the distribution, but it will normally be a
     * mean, median or mode.
     *
     * @param x Array to which the sample values are written
     *
     * @param length Size of the array x.
     * 
     * @param parameters  Vector of parameter values for the distribution.
     * This vector should be of length npar().
     *
     * @param dims Vector of parameter dimensions.
     *
     * @exception length_error 
     */
    virtual void 
	typicalValue(double *x, unsigned int length,
		     std::vector<double const *> const &parameters,
		     std::vector<std::vector<unsigned int> > const &dims,
		     double const *lbound, double const *ubound)
	const = 0;
    /**
     * Checks that dimensions of the parameters are correct.
     */
    virtual bool 
	checkParameterDim (std::vector<std::vector<unsigned int> > const &parameters) 
	const = 0;
    /**
     * Checks that the values of the parameters are consistent with
     * the distribution. For example, some distributions require than
     * certain parameters are positive, or lie in a given range.
     *
     * This function assumes that checkParameterDim returns true.
     */
    virtual bool 
	checkParameterValue(std::vector<double const *> const &parameters,
			    std::vector<std::vector<unsigned int> > const &dims) const = 0;
    /**
     * Calculates what the dimension of the distribution should be,
     * based on the dimensions of its parameters. 
     */
    virtual std::vector<unsigned int> 
	dim (std::vector <std::vector<unsigned int> > const &args) const = 0;
    /**
     * Returns the number of degrees of freedom of the distribution
     * given the dimensions of the parameters. By default this is the
     * product of the elements of the dimension vector returned by
     * ArrayDist#dim. However, some distributions are constrained: and
     * the support occupies a lower dimensional subspace. In this
     * case, the df member function must be overrideen.
     */
    virtual unsigned int df(std::vector<std::vector<unsigned int> > const &dims)
	const;
    /**
     * Returns the support of an unbounded distribution
     */
    virtual void 
	support(double *lower, double *upper, unsigned int length,
		std::vector<double const *> const &support,
		std::vector<std::vector<unsigned int> > const &dims) const = 0;
    /**
     * Returns a Monte Carlo estimate of the Kullback-Leibler
     * divergence between distributions with two different parameter
     * values. This is done by drawing random samples from the
     * distribution with the first set of parameters and then
     * calculating the log-likelihood ratio with respect to the second
     * set of parameters.
     *
     * A subclass of ArrayDist can overload this function if the
     * Kullback-Leibler divergence for the distribution it represents
     * can be expressed in closed form.
     *
     * @param par1 First set of parameters
     * @param par2 Second set of parameter values
     * @param dims Vector of parameter dimensions, common to both par1 and par2
     * @param rng Random number generator
     * @param nrep Number of replicates on which to base the estimate
     */
    double KL(std::vector<double const *> const &par1,
	      std::vector<double const *> const &par2,
	      std::vector<std::vector<unsigned int> > const &dims,
	      double const *lower, double const *upper,
	      RNG *rng, unsigned int nrep) const;
    /**
     * Returns the Kullback-Leibler divergence between distributions
     * with two different parameter values.
     *
     * This is a virtual function that must be overloaded for any
     * distribution that allows exact Kullback-Leibler divergence
     * calculations. The default method returns JAGS_NA, indicating that
     * the method is not implemented.
     */
    virtual double KL(std::vector<double const *> const &par1,
		      std::vector<double const *> const &par2,
		      std::vector<std::vector<unsigned int> > const &dims)
	const;
};

} /* namespace jags */

#endif /* ARRAY_DIST_H_ */