This file is indexed.

/usr/include/hphp/util/sparse-id-containers.h is in hhvm-dev 3.11.1+dfsg-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
   +----------------------------------------------------------------------+
   | HipHop for PHP                                                       |
   +----------------------------------------------------------------------+
   | Copyright (c) 2010-2015 Facebook, Inc. (http://www.facebook.com)     |
   +----------------------------------------------------------------------+
   | This source file is subject to version 3.01 of the PHP license,      |
   | that is bundled with this package in the file LICENSE, and is        |
   | available through the world-wide-web at the following url:           |
   | http://www.php.net/license/3_01.txt                                  |
   | If you did not receive a copy of the PHP license and are unable to   |
   | obtain it through the world-wide-web, please send a note to          |
   | license@php.net so we can mail you a copy immediately.               |
   +----------------------------------------------------------------------+
*/
#ifndef incl_HPHP_SPARSE_ID_CONTAINERS_H_
#define incl_HPHP_SPARSE_ID_CONTAINERS_H_

#include <cstdlib>
#include <cstring>
#include <cassert>
#include <algorithm>
#include <type_traits>
#include <utility>

#include <folly/gen/String.h>

#include "hphp/util/compilation-flags.h"
#include "hphp/util/safe-cast.h"

namespace HPHP {

//////////////////////////////////////////////////////////////////////

/*
 * Time-efficient representations for sparse sets and sparse maps keyed with
 * integers from a known universe (i.e. values from zero to some maximum).  It
 * also has the peculiar (but maybe occasionally useful) property of iteration
 * order matching insertion order as long as you haven't erased anything yet.
 *
 * Space consumption is O(universe), where universe is the maximum value the
 * set can hold.  See the constructor for more information on this.  The set
 * version has several member functions with preconditions relating to universe
 * size.
 *
 * The datastructure implemented here is from this:
 *
 *   http://dl.acm.org/citation.cfm?id=176484
 *
 * Some notes about this implementation:
 *
 *    o The set doesn't support set complement.  It's O(universe), so if you
 *      need it it's probably better to use a bitset of some sort.
 *
 *    o Iterators are invalidated on any call to a non-const member function.
 *
 *    o Moving from a set or map leaves it in an undetermined (but valid)
 *      state.  Notably this includes potentially changing its universe size.
 *
 *    o Set operations involving multiple sets are generally only legal if both
 *      sets have the same universe size.  Exceptions are expressions relating
 *      to EqualityComparable, Assignable, and swap(), for reasons relating to
 *      moving potentially changing universe size.
 *
 *    o Lookups and insertions can be done through a different type than the
 *      containers actually hold.  This is to ease using non-integer types as
 *      "keys" in these classes, as long as they can be mapped down to ids.  An
 *      'extractor' function object type can be provided as a template
 *      parameter to control how the mapping works.
 *
 * Also, note that for very small universes, even if the bits are sparse
 * there's a good chance you'll be better off with some kind of bitset than the
 * set version of this.
 *
 */

//////////////////////////////////////////////////////////////////////

namespace sparse_id_detail {

template<class T, class Lookup>
struct default_extract {
  T operator()(Lookup l) const {
    size_t convert = l;
    return safe_cast<T>(convert);
  }
};

}

//////////////////////////////////////////////////////////////////////

template<
  class T,
  class LookupT = T,
  class Extract = sparse_id_detail::default_extract<T,LookupT>
>
struct sparse_id_set {
  using value_type     = T;
  using size_type      = value_type;
  using const_iterator = const T*;

  static_assert(
    std::is_integral<T>::value && std::is_unsigned<T>::value,
    "sparse_id_set is intended for use with unsigned integer types"
  );

  /*
   * When constructing a sparse_id_set, you must provide a 'universe size' for
   * the ids.  This is one greater than the maximum value you'll insert into
   * the set.
   *
   * All functions dealing with values have a precondition that the values fit
   * in the universe size, and most functions involving multiple sparse_id_sets
   * (essentially everything except swap) will have a precondition that the two
   * sets have the same universe size.
   */
  explicit sparse_id_set(T universe_size)
    : m_universe_size{universe_size}
    , m_next{0}
    , m_mem{
        universe_size
          ? static_cast<T*>(std::malloc(sizeof(T) * universe_size * 2))
          : nullptr
      }
  {
    // Note: the sparse part of m_mem is deliberately uninitialized, but we do
    // it for valgrind or asan builds.
#if defined(FOLLY_SANITIZE_ADDRESS) || defined(VALGRIND)
    std::memset(m_mem, 0, sizeof(T) * universe_size);
#endif
  }
  ~sparse_id_set() { if (m_universe_size) std::free(m_mem); }

  /*
   * Copy this set from `o'.
   *
   * Post: operator==(o)
   */
  sparse_id_set(const sparse_id_set& o)
    : sparse_id_set(o.m_universe_size)
  {
    *this |= o;
  }

  /*
   * Move construct a set from `o'.
   *
   * The set `o' is left in an unspecified but valid state.  It's
   * universe_size() is not even guaranteed to be the same after it is
   * moved from.
   */
  sparse_id_set(sparse_id_set&& o) noexcept
    : m_universe_size{o.m_universe_size}
    , m_next{o.m_next}
    , m_mem{o.m_mem}
  {
    o.m_universe_size = 0;
    if (debug) {
      o.m_mem = nullptr;
      o.m_next = 0;
    }
  }

  /*
   * Copy assignment.
   *
   * Post: operator==(o)
   */
  sparse_id_set& operator=(const sparse_id_set& o) {
    if (m_universe_size == o.m_universe_size) {
      clear();
      *this |= o;
      return *this;
    }
    sparse_id_set tmp(o);
    swap(o);
    return *this;
  }

  /*
   * Move assignment.
   *
   * Leaves `o' in an unspecified, but valid state.  It may not have the same
   * universe size that it had before being moved from.
   */
  sparse_id_set& operator=(sparse_id_set&& o) noexcept {
    swap(o);
    if (debug) {
      // Make sure no one relies on the universe staying the same.
      sparse_id_set tmp(0);
      tmp.swap(o);
    }
    return *this;
  }

  /*
   * Returns the universe size of this sparse_id_set.  Once created, a set's
   * universe size can not change unless you move-construct or move-assign from
   * it.
   */
  size_type universe_size() const { return m_universe_size; }

  /*
   * Iteration.  Make sure you don't mutate the set while you're using its
   * iterators.
   *
   * The order of elements in the set is guaranteed to be the same as the order
   * of insertion.
   */
  const_iterator begin() const  { return const_iterator(dense()); }
  const_iterator end() const    { return const_iterator(dense() + m_next); }
  const_iterator cbegin() const { return const_iterator(dense()); }
  const_iterator cend() const   { return const_iterator(dense() + m_next); }

  /*
   * Since we iterate in insertion order, it might be convenient to ask what's
   * at the front or the back.  This class is definitely not a full model of
   * Sequence, however.
   */
  T front() const { assert(!empty()); return dense()[0]; }
  T back() const { assert(!empty()); return dense()[m_next - 1]; }

  /*
   * Number of elements in this set.
   */
  size_type size() const { return m_next; }

  /*
   * Returns: size() != 0
   */
  bool empty() const { return !size(); }

  /*
   * Clear all members from the set.  O(1).
   *
   * Post: empty()
   */
  void clear() { m_next = 0; }

  /*
   * Returns: whether this sparse_id_set contains a particular value.  O(1).
   */
  bool contains(LookupT lt) const {
    return containsImpl(Extract()(lt));
  }

  /*
   * Returns: whether this sparse_id_set contains a particular value.  O(1).
   * Does not require that the id is in range.
   */
  bool contains_safe(LookupT lt) const {
    auto const t = Extract()(lt);
    return t < m_universe_size && containsImpl(t);
  }

  /*
   * Insert a new value into the set.  O(1)
   *
   * Post: contains an element with the id of `lt'
   */
  void insert(LookupT lt) {
    auto const t = Extract()(lt);
    assert(t < m_universe_size);
    if (containsImpl(t)) return;
    dense()[m_next] = t;
    sparse()[t] = m_next;
    ++m_next;
  }

  /*
   * Remove an element from the set, if it is a member.  (Does not assume that
   * it is.)
   *
   * Post: !contains(lt)
   */
  void erase(LookupT lt) {
    auto const t = Extract()(lt);
    assert(t < m_universe_size);
    // Swap with back element and update sparse ptrs.
    auto const didx = sparse()[t];  // possibly reads uninitialized mem
    if (didx >= m_next || dense()[didx] != t) return;
    auto const moving = dense()[m_next - 1];
    sparse()[moving] = didx;
    dense()[didx] = moving;
    --m_next;
    // No need to write to sparse()[t].  If it's read, next and dense are
    // rechecked to ensure it's actually relevant.
  }

  /*
   * These sets are EqualityComparable, even if they aren't from the save
   * universe.  (Rationale: if you move construct from something it's nice that
   * it is still legal to compare to other things it was legally comparable to
   * before that.)
   *
   * This returns whether the two sets have the same elements, regardless of
   * the order they were inserted.
   *
   * But note that it's O(size()) worst case.  You probably should just never
   * use this function.
   */
  bool operator==(const sparse_id_set& o) const {
    if (universe_size() != o.universe_size()) return false;
    if (size() != o.size()) return false;
    for (auto v : *this) if (!o.containsImpl(v)) return false;
    return true;
  }
  bool operator!=(const sparse_id_set& o) const { return !(*this == o); }

  /*
   * Union, difference and intersection operators.
   *
   * All of these operators are only provided as versions that modify the lhs
   * in place.  Idiomatic uses are going to involve updating id sets that
   * already exist, so even with our move-construction support it will tend to
   * involve allocations compared to mutation-based usage-styles.
   *
   * Union (|=) and difference (-=) are O(o.size()), while intersection (&=) is
   * O(this->size()).
   *
   * Pre: universe_size() == o.universe_size()
   */
  sparse_id_set& operator|=(const sparse_id_set& o) {
    assert(m_universe_size == o.m_universe_size);
    for (auto t : o) insert(t);
    return *this;
  }
  sparse_id_set& operator-=(const sparse_id_set& o) {
    assert(m_universe_size == o.m_universe_size);
    for (auto t : o) erase(t);
    return *this;
  }
  sparse_id_set& operator&=(const sparse_id_set& o) {
    assert(m_universe_size == o.m_universe_size);
    auto fwd = T{0};
    auto back = m_next;
    while (fwd != back) {
      assert(fwd < back);
      if (!o.containsImpl(dense()[fwd])) {
        auto const val = dense()[--back];
        sparse()[val] = fwd;
        dense()[fwd] = val;
      } else {
        ++fwd;
      }
    }
    m_next = back;
    return *this;
  }

  /*
   * Swap the contents of two sets.
   *
   * This function is unusual in that it does not have any preconditions about
   * universe sizes matching.
   */
  void swap(sparse_id_set& o) noexcept {
    std::swap(m_universe_size, o.m_universe_size);
    std::swap(m_mem, o.m_mem);
    std::swap(m_next, o.m_next);
  }

  /*
   * Convert a sparse id set to a std::string, intended for debug printing.
   */
  friend std::string show(const sparse_id_set& set) {
    using namespace folly::gen;
    return from(set)
      | eachTo<std::string>()
      | unsplit<std::string>(" ")
      ;
  }

private:
  bool containsImpl(T t) const {
    assert(t < m_universe_size);
    auto const didx = sparse()[t];  // may read uninitialized memory
    return didx < m_next && dense()[didx] == t;
  }

private:
  T* sparse()             { return m_mem; }
  T* dense()              { return m_mem + m_universe_size; }
  const T* sparse() const { return m_mem; }
  const T* dense() const  { return m_mem + m_universe_size; }

private:
  T m_universe_size;
  T m_next;
  T* m_mem;
};

//////////////////////////////////////////////////////////////////////

template<
  class K,
  class V,
  class LookupKey = K,
  class KExtract = sparse_id_detail::default_extract<K,LookupKey>
>
struct sparse_id_map {
  using value_type     = std::pair<const K,V>;
  using size_type      = K;
  using const_iterator = const value_type*;

  static_assert(
    std::is_integral<K>::value && std::is_unsigned<K>::value,
    "sparse_id_set is intended for use with unsigned integer types"
  );

  /*
   * When constructing a sparse_id_map, you must provide a 'universe size' for
   * the ids.  This is one greater than the maximum key you'll insert into the
   * map.
   */
  explicit sparse_id_map(K universe_size)
    : m_universe_size(universe_size)
    , m_next{0}
    , m_mem{
        universe_size
          ? std::malloc(sizeof(K) * universe_size +
              sizeof(value_type) * universe_size)
          : nullptr
      }
  {
    // Note: the sparse part of m_mem is deliberately uninitialized, but we do
    // it for valgrind or asan builds.
#if defined(FOLLY_SANITIZE_ADDRESS) || defined(VALGRIND)
    std::memset(m_mem, 0, sizeof(K) * universe_size);
#endif
  }
  ~sparse_id_map() {
    if (!m_universe_size) return;
    if (!std::is_trivially_destructible<V>::value) {
      for (auto& kv : *this) {
        kv.~value_type();
      }
    }
    std::free(m_mem);
  }

  /*
   * Copy this map from `o'.  Nothrow as long as V has a nothrow copy
   * constructor.
   *
   * Post: operator==(o)
   */
  sparse_id_map(const sparse_id_map& o)
    : m_universe_size{o.m_universe_size}
    , m_next{o.m_next}
    , m_mem{
        m_universe_size
          ? std::malloc(sizeof(K) * m_universe_size +
              sizeof(value_type) * m_universe_size)
          : nullptr
      }
  {
    auto idx = K{0};
    auto initialize = [&] {
      for (; idx < m_next; ++idx) {
        new (&dense()[idx]) value_type(o.dense()[idx]);
        sparse()[o.dense()[idx].first] = idx;
      }
    };
    if (std::is_trivially_destructible<V>::value ||
        std::is_nothrow_copy_constructible<V>::value) {
      initialize();
      return;
    }

    try {
      initialize();
    } catch (...) {
      while (idx-- > 0) {
        dense()[idx].~value_type();
      }
      throw;
    }
  }

  /*
   * Move construct a map from `o'.  Leaves `o' in an unspecified but valid
   * state.  (Notably the universe size may be changed.)
   *
   * Nothrow guarantee.
   */
  sparse_id_map(sparse_id_map&& o) noexcept
    : m_universe_size{o.m_universe_size}
    , m_next{o.m_next}
    , m_mem{o.m_mem}
  {
    o.m_universe_size = 0;
    if (debug) {
      o.m_mem = nullptr;
      o.m_next = 0;
    }
  }

  /*
   * Copy assignment.  Make this map equivalent to `o'.
   *
   * Strong exception guarantee.
   */
  sparse_id_map& operator=(const sparse_id_map& o) {
    sparse_id_map tmp(o);
    swap(tmp);
    return *this;
  }

  /*
   * Move assign from `o'.
   *
   * Leaves `o' in an unspecified but valid state.  Notably the universe size
   * may be changed.
   *
   * Nothrow guarantee.
   */
  sparse_id_map& operator=(sparse_id_map&& o) noexcept {
    swap(o);
    return *this;
  }

  /*
   * Returns the universe size of this sparse_id_map.  Once created, a map's
   * universe size can not change unless you move-construct or move-assign from
   * it.
   */
  size_type universe_size() const { return m_universe_size; }

  /*
   * Iteration.  Make sure you don't mutate the map while you're using its
   * iterators.
   *
   * The order of elements in the map is guaranteed to be the same as the order
   * of insertion.
   */
  const_iterator begin() const  { return const_iterator(dense()); }
  const_iterator end() const    { return const_iterator(dense() + m_next); }
  const_iterator cbegin() const { return const_iterator(dense()); }
  const_iterator cend() const   { return const_iterator(dense() + m_next); }

  /*
   * Since we iterate in insertion order, it might be convenient to ask what's
   * at the front or the back.  This class is definitely not a full model of
   * Sequence, however.
   */
  const value_type& front() const {
    assert(!empty());
    return dense()[0];
  }
  const value_type& back() const {
    assert(!empty());
    return dense()[m_next - 1];
  }

  /*
   * Number of elements in this map.
   */
  size_type size() const { return m_next; }

  /*
   * Returns: size() != 0
   */
  bool empty() const { return !size(); }

  /*
   * Clear all members from the map.  O(1) if V is trivially destructable,
   * O(size()) if not.
   *
   * Post: empty()
   */
  void clear() {
    if (!std::is_trivially_destructible<V>::value) {
      for (auto& kv : *this) {
        kv.~value_type();
      }
    }
    m_next = 0;
  }

  /*
   * Returns: whether this sparse_id_map contains a particular key.  O(1).
   */
  bool contains(LookupKey lk) const {
    return containsImpl(KExtract()(lk));
  }

  /*
   * Returns: whether this sparse_id_map contains a particular value.  O(1).
   * Does not require that the id is in range.
   */
  bool contains_safe(LookupKey lk) const {
    auto const k = KExtract()(lk);
    return k < m_universe_size && containsImpl(k);
  }

  /*
   * Get a reference to the value for key `k', inserting it with a default
   * constructed value if it doesn't exist.  Strong guarantee.
   */
  V& operator[](LookupKey lk) {
    auto const k = KExtract()(lk);
    if (!containsImpl(k)) insert(std::make_pair(k, V{}));
    return dense()[sparse()[k]].second;
  }

  /*
   * Insert a new value into the set.  O(1).  Strong exception guarantee.
   *
   * Post: contains an element with id v.first
   */
  void insert(const value_type& v) {
    assert(v.first < m_universe_size);
    if (containsImpl(v.first)) return;
    new (&dense()[m_next]) value_type(v);
    sparse()[v.first] = m_next;
    ++m_next;
  }

  /*
   * Insert a new value into the set, moving it if we need it.  O(1).  Strong
   * exception guarantee.
   *
   * Post: contains an element with id v.first
   */
  void insert(value_type&& v) {
    assert(v.first < m_universe_size);
    if (containsImpl(v.first)) return;
    new (&dense()[m_next]) value_type(std::move(v));
    sparse()[v.first] = m_next;
    ++m_next;
  }

  /*
   * Remove an element from the set, if it is a member.  (Does not assume that
   * it is.)  No throw as long as V has a nothrow move assignment operator.
   * Strong guarantee otherwise.
   *
   * Post: !contains(lk)
   */
  void erase(LookupKey lk) {
    auto const key = KExtract()(lk);
    assert(key < m_universe_size);
    // Move in back element and update sparse ptrs.
    auto const didx = sparse()[key];  // possibly reads uninitialized mem
    if (didx >= m_next || dense()[didx].first != key) return;
    auto& moving = dense()[m_next - 1];
    auto const moved_key = moving.first;
    if (didx < m_next - 1) {
      dense()[didx].second = std::move(moving.second);
      const_cast<K&>(dense()[didx].first) = moved_key;
    }
    sparse()[moved_key] = didx;
    dense()[m_next - 1].~value_type();
    --m_next;
    // No need to write to sparse()[t].  If it's read, next and dense are
    // rechecked to ensure it's actually relevant.
  }

  /*
   * Model EqualityComparable, as long as the value is EqualityComparable.
   * Note that it's O(size()) worst case.
   *
   * This returns whether the two maps have equivalent key value pairs,
   * regardless of the order they were inserted.
   */
  bool operator==(const sparse_id_map& o) const {
    if (universe_size() != o.universe_size()) return false;
    if (size() != o.size()) return false;
    for (auto& kv : *this) {
      if (!o.containsImpl(kv.first)) return false;
      if (!(o.dense()[o.sparse()[kv.first]].second == kv.second)) {
        return false;
      }
    }
    return true;
  }
  bool operator!=(const sparse_id_map& o) const { return !(*this == o); }

  /*
   * Merge a map into this one by intersecting the keys, and using a
   * user-defined function to merge values that were present in both this and
   * `o'.  The user-defined value merge function should return a bool,
   * indicating whether the value should be considered changed.
   *
   * Basic guarantee only.  Nothrow if V has a nothrow move constructor or a
   * nothrow copy constructor.
   *
   * Complexity: O(size()).
   *
   * Returns: true if this map changed keys, or if the user-supplied function
   * returned true for any pair of values.
   *
   * Pre: universe_size() == o.universe_size()
   */
  template<class Fun>
  bool merge(const sparse_id_map& o, Fun val_merge) {
    assert(m_universe_size == o.m_universe_size);
    auto fwd = K{0};
    auto changed = false;
    while (fwd != m_next) {
      assert(fwd < m_next);
      auto const k = dense()[fwd].first;
      if (!o.containsImpl(k)) {
        changed = true;
        if (fwd == m_next - 1) {  // Avoid self-move assigning values.
          --m_next;
          continue;
        }
        // Order here is important for exception safety: we can't decrement
        // m_next until we've moved-from and then destroyed the old value.
        auto& tomove = dense()[m_next - 1];
        sparse()[tomove.first] = fwd;
        dense()[fwd].second = std::move(tomove.second);
        const_cast<K&>(dense()[fwd].first) = tomove.first;
        tomove.~value_type();
        --m_next;
        continue;
      }
      if (val_merge(dense()[fwd].second, o.dense()[o.sparse()[k]].second)) {
        changed = true;
      }
      ++fwd;
    }
    return changed;
  }

  /*
   * Swap the contents of two maps.
   */
  void swap(sparse_id_map& o) noexcept {
    std::swap(m_universe_size, o.m_universe_size);
    std::swap(m_mem, o.m_mem);
    std::swap(m_next, o.m_next);
  }

private:
  bool containsImpl(K k) const {
    assert(k < m_universe_size);
    auto const didx = sparse()[k];  // may read uninitialized memory
    return didx < m_next && dense()[didx].first == k;
  }

private:
  K* sparse() { return static_cast<K*>(m_mem); }
  const K* sparse() const { return static_cast<K*>(m_mem); }
  value_type* dense() {
    void* vpDense = sparse() + m_universe_size;
    return static_cast<value_type*>(vpDense);
  }
  const value_type* dense() const {
    return const_cast<sparse_id_map*>(this)->dense();
  }

private:
  K m_universe_size;
  K m_next;
  void* m_mem;
};

//////////////////////////////////////////////////////////////////////

// Non-member swaps for ADL swap idiom.

template<class T, class LT, class EX>
void swap(sparse_id_set<T,LT,EX>& a, sparse_id_set<T,LT,EX>& b) {
  a.swap(b);
}

template<class K, class V, class LK, class LKE>
void swap(sparse_id_map<K,V,LK,LKE>& a, sparse_id_map<K,V,LK,LKE>& b) {
  a.swap(b);
}

//////////////////////////////////////////////////////////////////////

}

#endif