/usr/include/hphp/util/job-queue.h is in hhvm-dev 3.11.1+dfsg-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | /*
+----------------------------------------------------------------------+
| HipHop for PHP |
+----------------------------------------------------------------------+
| Copyright (c) 2010-2015 Facebook, Inc. (http://www.facebook.com) |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
*/
#ifndef incl_HPHP_UTIL_JOB_QUEUE_H_
#define incl_HPHP_UTIL_JOB_QUEUE_H_
#include <memory>
#include <time.h>
#include <vector>
#include <set>
#include <boost/range/adaptors.hpp>
#include <folly/Memory.h>
#include "hphp/util/alloc.h"
#include "hphp/util/async-func.h"
#include "hphp/util/atomic.h"
#include "hphp/util/compatibility.h"
#include "hphp/util/exception.h"
#include "hphp/util/health-monitor-types.h"
#include "hphp/util/lock.h"
#include "hphp/util/logger.h"
#include "hphp/util/synchronizable-multi.h"
#include "hphp/util/timer.h"
namespace HPHP {
///////////////////////////////////////////////////////////////////////////////
/**
* A queue-based multi-threaded job processing facility. Internally, we have a
* queue of jobs and a list of workers, each of which runs in its own thread.
* Job queue can take new jobs on the fly and workers will continue to pull
* jobs off the queue and work on it.
*
* To use it, simply define your own job and worker class like this,
*
* class MyJob {
* public:
* // storing job data
* };
*
* class MyWorker : public JobQueueWorker<MyJob*> {
* public:
* virtual void doJob(MyJob *job) {
* // process the job
* delete job; // if it was new-ed
* }
* };
*
* Now, use JobQueueDispatcher to start the whole thing,
*
* JobQueueDispatcher<MyJob*, MyWorker> dispatcher(40, NULL); // 40 threads
* dispatcher.start();
* ...
* dispatcher.enqueue(new MyJob(...));
* ...
* dispatcher.stop();
*
* Note this class is different from JobListDispatcher that uses a vector to
* store prepared jobs. With JobQueueDispatcher, job queue is normally empty
* initially and new jobs are pushed into the queue over time. Also, workers
* can be stopped individually.
*
* Job process ordering
* ====================
* By default, requests are processed in FIFO order.
*
* In addition, we support an option where the request processing order can flip
* between FIFO or LIFO based on the length of the queue. This can be enabled by
* setting the 'lifoSwitchThreshold' parameter. If the job queue is configured
* to be in FIFO mode, and the current queue length exceeds
* lifoSwitchThreshold, then the workers will begin work on requests in LIFO
* order until the queue size is below the threshold in which case we resume in
* FIFO order. Setting the queue to be in LIFO mode initially will have the
* opposite behavior. This is useful when we are in a loaded situation and we
* want to prioritize the newest requests.
*
* You can configure a LIFO ordered queue by setting lifoSwitchThreshold to 0.
*/
///////////////////////////////////////////////////////////////////////////////
namespace detail {
struct NoDropCachePolicy { static void dropCache() {} };
}
struct IQueuedJobsReleaser {
virtual ~IQueuedJobsReleaser() { }
virtual int32_t numOfJobsToRelease() = 0;
};
struct SimpleReleaser : IQueuedJobsReleaser {
explicit SimpleReleaser(int32_t rate)
: m_queuedJobsReleaseRate(rate){}
int32_t numOfJobsToRelease() override {
return m_queuedJobsReleaseRate;
}
private:
int m_queuedJobsReleaseRate = 3;
};
/**
* A job queue that's suitable for multiple threads to work on.
*/
template<typename TJob,
bool waitable = false,
class DropCachePolicy = detail::NoDropCachePolicy>
class JobQueue : public SynchronizableMulti {
public:
// trivial class for signaling queue stop
class StopSignal {};
public:
/**
* Constructor.
*/
JobQueue(int threadCount, bool threadRoundRobin, int dropCacheTimeout,
bool dropStack, int lifoSwitchThreshold=INT_MAX,
int maxJobQueuingMs = -1, int numPriorities = 1,
int queuedJobsReleaseRate = 3,
IHostHealthObserver* healthStatus = nullptr)
: SynchronizableMulti(threadRoundRobin ? 1 : threadCount),
m_jobCount(0), m_stopped(false), m_workerCount(0),
m_dropCacheTimeout(dropCacheTimeout), m_dropStack(dropStack),
m_lifoSwitchThreshold(lifoSwitchThreshold),
m_maxJobQueuingMs(maxJobQueuingMs),
m_jobReaperId(-1), m_healthStatus(healthStatus),
m_queuedJobsReleaser(
std::make_shared<SimpleReleaser>(queuedJobsReleaseRate)) {
m_jobQueues.resize(numPriorities);
}
/**
* Put a job into the queue and notify a worker to pick it up.
*/
void enqueue(TJob job, int priority=0) {
assert(priority >= 0);
assert(priority < m_jobQueues.size());
timespec enqueueTime;
Timer::GetMonotonicTime(enqueueTime);
Lock lock(this);
m_jobQueues[priority].emplace_back(job, enqueueTime);
++m_jobCount;
notify();
}
/**
* Grab a job from the queue for processing. Since the job was not created
* by this queue class, it's up to a worker class on whether to deallocate
* the job object correctly.
*/
TJob dequeueMaybeExpired(int id, int q, bool inc, bool* expired) {
if (id == m_jobReaperId.load()) {
*expired = true;
return dequeueOnlyExpiredImpl(id, q, inc);
}
timespec now;
Timer::GetMonotonicTime(now);
return dequeueMaybeExpiredImpl(id, q, inc, now, expired);
}
/**
* Purely for making sure no new jobs are queued when we are stopping.
*/
void stop() {
Lock lock(this);
m_stopped = true;
notifyAll(); // so all waiting threads can find out queue is stopped
}
void waitEmpty() {}
void signalEmpty() {}
/**
* Keeps track of how many active workers are working on the queue.
*/
void incActiveWorker() {
++m_workerCount;
}
int decActiveWorker() {
return --m_workerCount;
}
int getActiveWorker() {
return m_workerCount;
}
/**
* Keep track of how many jobs are queued, but not yet been serviced.
*/
int getQueuedJobs() {
return m_jobCount;
}
/**
* One worker can be designated as the job reaper. The job reaper's job is to
* check if the oldest job on the queue has expired and if so, terminate that
* job without processing it. When the job reaper work calls
* dequeueMaybeExpired(), it'll only return the oldest job and only if it's
* expired. Otherwise dequeueMaybeExpired() will block until a job expires.
*/
void setJobReaperId(int id) {
assert(m_maxJobQueuingMs > 0);
m_jobReaperId.store(id);
}
int getJobReaperId() const {
return m_jobReaperId.load();
}
int releaseQueuedJobs() {
int toRelease = m_queuedJobsReleaser->numOfJobsToRelease();
if (toRelease <= 0) {
return 0;
}
Lock lock(this);
int iter;
for (iter = 0; iter < toRelease && iter < m_jobCount; iter++) {
notify();
}
return iter;
}
private:
friend class JobQueue_Expiration_Test;
TJob dequeueMaybeExpiredImpl(int id, int q, bool inc, const timespec& now,
bool* expired) {
*expired = false;
Lock lock(this);
bool flushed = false;
bool ableToDeque = (m_healthStatus == nullptr ?
true : (m_healthStatus->getStatus() != HealthLevel::BackOff));
while (m_jobCount == 0 || !ableToDeque) {
uint32_t kNumPriority = m_jobQueues.size();
if (m_jobQueues[kNumPriority - 1].size() > 0) {
// we do not block HealthMon requests (with the highest priority)
break;
}
if (m_stopped) {
throw StopSignal();
}
if (m_dropCacheTimeout <= 0 || flushed) {
wait(id, q, false);
} else if (!wait(id, q, true, m_dropCacheTimeout)) {
// since we timed out, maybe we can turn idle without holding memory
if (m_jobCount == 0) {
ScopedUnlock unlock(this);
flush_thread_caches();
if (m_dropStack && s_stackLimit) {
flush_thread_stack();
}
DropCachePolicy::dropCache();
flushed = true;
}
}
if (!ableToDeque) {
ableToDeque = m_healthStatus->getStatus() != HealthLevel::BackOff;
}
}
if (inc) incActiveWorker();
--m_jobCount;
// look across all our queues from highest priority to lowest.
for (auto& jobs : boost::adaptors::reverse(m_jobQueues)) {
if (jobs.empty()) {
continue;
}
// peek at the beginning of the queue to see if the request has already
// timed out.
if (m_maxJobQueuingMs > 0 &&
gettime_diff_us(jobs.front().second, now) >
m_maxJobQueuingMs * 1000) {
*expired = true;
TJob job = jobs.front().first;
jobs.pop_front();
return job;
}
if (m_jobCount >= m_lifoSwitchThreshold) {
TJob job = jobs.back().first;
jobs.pop_back();
return job;
}
TJob job = jobs.front().first;
jobs.pop_front();
return job;
}
assert(false);
return TJob(); // make compiler happy.
}
TJob dequeueOnlyExpiredImpl(int id, int q, bool inc) {
Lock lock(this);
assert(m_maxJobQueuingMs > 0);
while(!m_stopped) {
long waitTimeUs = m_maxJobQueuingMs * 1000;
for (auto& jobs : boost::adaptors::reverse(m_jobQueues)) {
if (!jobs.empty()) {
timespec now;
Timer::GetMonotonicTime(now);
int64_t queuedTimeUs = gettime_diff_us(jobs.front().second, now);
if (queuedTimeUs > m_maxJobQueuingMs * 1000) {
if (inc) incActiveWorker();
--m_jobCount;
TJob job = jobs.front().first;
jobs.pop_front();
return job;
}
// oldest job hasn't expired yet. wake us up when it will.
long waitTimeForQueue = m_maxJobQueuingMs * 1000 - queuedTimeUs;
waitTimeUs = ((waitTimeUs < waitTimeForQueue) ?
waitTimeUs :
waitTimeForQueue);
}
}
if (wait(id, q, false, waitTimeUs / 1000000, waitTimeUs % 1000000)) {
// We got woken up by somebody calling notify (as opposed to timeout),
// then some work might be on the queue. We only expire things here,
// so let's notify somebody else as well.
notify();
}
}
throw StopSignal();
}
int m_jobCount;
std::vector<std::deque<std::pair<TJob, timespec>>> m_jobQueues;
bool m_stopped;
std::atomic<int> m_workerCount;
const int m_dropCacheTimeout;
const bool m_dropStack;
const int m_lifoSwitchThreshold;
const int m_maxJobQueuingMs;
std::atomic<int> m_jobReaperId;
IHostHealthObserver* m_healthStatus; // the dispatcher responsible for this
// JobQueue
std::shared_ptr<IQueuedJobsReleaser> m_queuedJobsReleaser;
};
template<class TJob, class Policy>
struct JobQueue<TJob,true,Policy> : JobQueue<TJob,false,Policy> {
JobQueue(int threadCount, bool threadRoundRobin, int dropCacheTimeout,
bool dropStack, int lifoSwitchThreshold=INT_MAX,
int maxJobQueuingMs = -1, int numPriorities = 1,
int queuedJobsReleaseRate = 3,
IHostHealthObserver* healthStatus = nullptr) :
JobQueue<TJob,false,Policy>(threadCount,
threadRoundRobin,
dropCacheTimeout,
dropStack,
lifoSwitchThreshold,
maxJobQueuingMs,
numPriorities,
queuedJobsReleaseRate,
healthStatus) {
pthread_cond_init(&m_cond, nullptr);
}
~JobQueue() {
pthread_cond_destroy(&m_cond);
}
void waitEmpty() {
Lock lock(this);
while (this->getActiveWorker() || this->getQueuedJobs()) {
pthread_cond_wait(&m_cond, &this->getMutex().getRaw());
}
}
bool pollEmpty() {
Lock lock(this);
return !(this->getActiveWorker() || this->getQueuedJobs());
}
void signalEmpty() {
pthread_cond_signal(&m_cond);
}
private:
pthread_cond_t m_cond;
};
///////////////////////////////////////////////////////////////////////////////
/**
* Base class for a customized worker.
*
* DropCachePolicy is an extra callback for specific actions to take
* when we decide to drop stack/caches.
*/
template<typename TJob,
typename TContext = void*,
bool countActive = false,
bool waitable = false,
class Policy = detail::NoDropCachePolicy>
class JobQueueWorker {
public:
typedef TJob JobType;
typedef TContext ContextType;
typedef JobQueue<TJob, waitable, Policy> QueueType;
typedef Policy DropCachePolicy;
static const bool Waitable = waitable;
static const bool CountActive = countActive;
/**
* Default constructor.
*/
JobQueueWorker()
: m_func(nullptr), m_context(), m_stopped(false), m_queue(nullptr) {
}
virtual ~JobQueueWorker() {
}
/**
* Two-phase object creation for easier derivation and for JobQueueDispatcher
* to easily create a vector of workers.
*/
void create(int id, QueueType* queue, void *func, ContextType context) {
assert(queue);
m_id = id;
m_queue = queue;
m_func = func;
m_context = context;
}
/**
* The only functions a subclass needs to implement.
*/
virtual void doJob(TJob job) = 0;
virtual void abortJob(TJob job) {
Logger::Warning("Job dropped by JobQueueDispatcher because of timeout.");
}
virtual void onThreadEnter() {}
virtual void onThreadExit() {}
/**
* Start this worker thread.
*/
void start() {
assert(m_queue);
onThreadEnter();
while (!m_stopped) {
try {
bool expired = false;
TJob job = m_queue->dequeueMaybeExpired(m_id, s_numaNode,
countActive, &expired);
if (expired) {
abortJob(job);
} else {
doJob(job);
}
if (countActive) {
if (!m_queue->decActiveWorker() && waitable) {
Lock lock(m_queue);
if (!m_queue->getActiveWorker() &&
!m_queue->getQueuedJobs()) {
m_queue->signalEmpty();
}
}
}
} catch (const typename QueueType::StopSignal&) {
m_stopped = true; // queue is empty and stopped, so we are done
}
}
onThreadExit();
}
/**
* Stop this worker thread.
*/
void stop() {
m_stopped = true;
}
protected:
int m_id;
void *m_func;
ContextType m_context;
bool m_stopped;
private:
QueueType* m_queue;
};
///////////////////////////////////////////////////////////////////////////////
/**
* Driver class to push through the whole thing.
*/
template<class TWorker>
class JobQueueDispatcher : public IHostHealthObserver {
public:
/**
* Constructor.
*/
JobQueueDispatcher(int threadCount, bool threadRoundRobin,
int dropCacheTimeout, bool dropStack,
typename TWorker::ContextType context,
int lifoSwitchThreshold = INT_MAX,
int maxJobQueuingMs = -1, int numPriorities = 1,
int queuedJobsReleaseRate = 3)
: m_stopped(true), m_healthStatus(HealthLevel::Bold), m_id(0),
m_context(context), m_maxThreadCount(threadCount),
m_queue(threadCount, threadRoundRobin, dropCacheTimeout, dropStack,
lifoSwitchThreshold, maxJobQueuingMs, numPriorities,
queuedJobsReleaseRate, this),
m_startReaperThread(maxJobQueuingMs > 0) {
assert(threadCount >= 1);
if (!TWorker::CountActive) {
// If TWorker does not support counting the number of
// active workers, just start all of the workers eagerly
for (int i = 0; i < threadCount; i++) {
addWorkerImpl(false);
}
}
}
int32_t dispatcher_id = 0;
~JobQueueDispatcher() {
stop();
for (typename
std::set<AsyncFunc<TWorker>*>::iterator iter = m_funcs.begin();
iter != m_funcs.end(); ++iter) {
delete *iter;
}
for (typename
std::set<TWorker*>::iterator iter = m_workers.begin();
iter != m_workers.end(); ++iter) {
delete *iter;
}
}
int getActiveWorker() {
return m_queue.getActiveWorker();
}
int getQueuedJobs() {
return m_queue.getQueuedJobs();
}
int getTargetNumWorkers() {
if (TWorker::CountActive) {
int target = getActiveWorker() + getQueuedJobs();
return (target > m_maxThreadCount) ? m_maxThreadCount : target;
} else {
return m_maxThreadCount;
}
}
/**
* Creates worker threads and start running them. This is non-blocking.
*/
void start() {
Lock lock(m_mutex);
m_queue.setNumGroups(num_numa_nodes());
// Spin up more worker threads if appropriate
int target = getTargetNumWorkers();
for (int n = m_workers.size(); n < target; ++n) {
addWorkerImpl(false);
}
for (typename
std::set<AsyncFunc<TWorker>*>::iterator iter = m_funcs.begin();
iter != m_funcs.end(); ++iter) {
(*iter)->start();
}
m_stopped = false;
if (m_startReaperThread) {
// If we have set a max timeout for requests on the queue, start a reaper
// thread just for expiring off old requests so we guarantee requests are
// taken off the queue as soon as possible when they expire even if all
// other worker threads are stalled.
m_queue.setJobReaperId(addReaper());
}
}
/**
* Enqueue a new job.
*/
void enqueue(typename TWorker::JobType job, int priority = 0) {
m_queue.enqueue(job, priority);
// Spin up another worker thread if appropriate
int target = getTargetNumWorkers();
int n = m_workers.size();
if (n < target) {
addWorker();
}
}
/**
* Add a worker thread on the fly.
*/
void addWorker() {
Lock lock(m_mutex);
if (!m_stopped) {
addWorkerImpl(true);
}
}
/*
* Add N new worker threads.
*/
void addWorkers(int n) {
Lock lock(m_mutex);
if (m_stopped) return;
m_maxThreadCount += n;
if (!TWorker::CountActive) {
for (int i = 0; i < n; ++i) {
addWorkerImpl(true);
}
} else {
while (m_workers.size() < getTargetNumWorkers()) {
addWorkerImpl(true);
}
}
}
void getWorkers(std::vector<TWorker*> &workers) {
Lock lock(m_mutex);
workers.insert(workers.end(), m_workers.begin(), m_workers.end());
}
void waitEmpty(bool stop = true) {
if (m_stopped) return;
m_queue.waitEmpty();
if (stop) this->stop();
}
bool pollEmpty() {
if (m_stopped) return true;
return m_queue.pollEmpty();
}
/**
* Stop all workers after all jobs are processed. No new jobs should be
* enqueued at this moment, or this call may block for longer time.
*/
void stop() {
// TODO(t5572120): If stop has already been called when the destructor
// runs, we'd bail out here and potentially start destroying AsyncFuncs
// that are still running.
if (m_stopped) return;
m_stopped = true;
m_queue.stop();
bool exceptioned = false;
Exception exception;
while (true) {
AsyncFunc<TWorker> *func = nullptr;
{
Lock lock(m_mutex);
if (!m_funcs.empty()) {
func = *m_funcs.begin();
m_funcs.erase(func);
} else if (m_reaperFunc) {
func = m_reaperFunc.release();
}
}
if (func == nullptr) {
break;
}
try {
func->waitForEnd();
} catch (Exception &e) {
exceptioned = true;
exception = e;
}
delete func;
}
if (exceptioned) {
throw exception;
}
}
void run() {
start();
stop();
}
void notifyNewStatus(HealthLevel newStatus) override {
bool curStopDequeue = (newStatus == HealthLevel::BackOff);
if (!curStopDequeue) {
// release blocked requests in queue if any
m_queue.releaseQueuedJobs();
}
m_healthStatus = newStatus;
}
HealthLevel getStatus() override {
return m_healthStatus;
}
private:
bool m_stopped;
HealthLevel m_healthStatus;
int m_id;
typename TWorker::ContextType m_context;
int m_maxThreadCount;
JobQueue<typename TWorker::JobType,
TWorker::Waitable,
typename TWorker::DropCachePolicy> m_queue;
Mutex m_mutex;
std::set<TWorker*> m_workers;
std::set<AsyncFunc<TWorker> *> m_funcs;
std::unique_ptr<TWorker> m_reaper;
std::unique_ptr<AsyncFunc<TWorker>> m_reaperFunc;
const bool m_startReaperThread;
int addReaper() {
m_reaper = folly::make_unique<TWorker>();
m_reaperFunc = folly::make_unique<AsyncFunc<TWorker>>(m_reaper.get(),
&TWorker::start);
int id = m_id++;
m_reaper->create(id, &m_queue, m_reaperFunc.get(), m_context);
m_reaperFunc->start();
return id;
}
// return the id for the worker.
int addWorkerImpl(bool start) {
TWorker *worker = new TWorker();
AsyncFunc<TWorker> *func = new AsyncFunc<TWorker>(worker, &TWorker::start);
m_workers.insert(worker);
m_funcs.insert(func);
int id = m_id++;
worker->create(id, &m_queue, func, m_context);
if (start) {
func->start();
}
return id;
}
};
///////////////////////////////////////////////////////////////////////////////
}
#endif
|