/usr/include/hphp/util/asm-x64.h is in hhvm-dev 3.11.1+dfsg-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 | /*
+----------------------------------------------------------------------+
| HipHop for PHP |
+----------------------------------------------------------------------+
| Copyright (c) 2010-2015 Facebook, Inc. (http://www.facebook.com) |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
*/
#ifndef incl_HPHP_UTIL_ASM_X64_H_
#define incl_HPHP_UTIL_ASM_X64_H_
#include <boost/noncopyable.hpp>
#include <type_traits>
#include "hphp/util/data-block.h"
#include "hphp/util/atomic.h"
#include "hphp/util/immed.h"
#include "hphp/util/trace.h"
#include "hphp/util/safe-cast.h"
/*
* An experimental macro assembler for x64, that strives for low coupling to
* the runtime environment.
*
* There are more complete assemblers out there; if you use this one
* yourself, expect not to find all the instructions you wanted to use. You
* may have to go spelunking in the Intel manuals:
*
* http://www.intel.com/products/processor/manuals/
*
* If you're looking for something more fully baked, here are some options
* to consider:
*
* 1. Nanojit or llvm, both of which translate abstract virtual machine
* instructions to the native target architecture, or
* 2. The embedded assemblers from v8, the Sun JVM, etc.
*/
/*
* Some members cannot be const because their values aren't known in
* an initialization list. Like the opposite of the "mutable" keyword.
* This declares this property to readers.
*/
#define logical_const /* nothing */
namespace HPHP { namespace jit {
#define TRACEMOD ::HPHP::Trace::asmx64
//////////////////////////////////////////////////////////////////////
struct MemoryRef;
struct RIPRelativeRef;
struct ScaledIndex;
struct ScaledIndexDisp;
struct DispReg;
const uint8_t kOpsizePrefix = 0x66;
struct Reg64 {
explicit constexpr Reg64(int rn) : rn(rn) {}
// Integer conversion is allowed but only explicitly. (It's not
// unusual to want to printf registers, etc. Just cast it first.)
explicit constexpr operator int() const { return rn; }
MemoryRef operator[](intptr_t disp) const;
MemoryRef operator[](Reg64) const;
MemoryRef operator[](ScaledIndex) const;
MemoryRef operator[](ScaledIndexDisp) const;
MemoryRef operator[](DispReg) const;
constexpr bool operator==(Reg64 o) const { return rn == o.rn; }
constexpr bool operator!=(Reg64 o) const { return rn != o.rn; }
private:
int rn;
};
#define SIMPLE_REGTYPE(What) \
struct What { \
explicit constexpr What(int rn) : rn(rn) {} \
explicit constexpr operator int() const { return rn; } \
constexpr bool operator==(What o) const { return rn == o.rn; } \
constexpr bool operator!=(What o) const { return rn != o.rn; } \
private: \
int rn; \
}
SIMPLE_REGTYPE(Reg32);
SIMPLE_REGTYPE(Reg16);
SIMPLE_REGTYPE(Reg8);
SIMPLE_REGTYPE(RegXMM);
SIMPLE_REGTYPE(RegSF);
#undef SIMPLE_REGTYPE
struct RegRIP {
RIPRelativeRef operator[](intptr_t disp) const;
};
// Convert between physical registers of different sizes
inline Reg8 rbyte(Reg32 r) { return Reg8(int(r)); }
inline Reg8 rbyte(Reg64 r) { return Reg8(int(r)); }
inline Reg16 r16(Reg8 r) { return Reg16(int(r)); }
inline Reg32 r32(Reg8 r) { return Reg32(int(r)); }
inline Reg32 r32(Reg16 r) { return Reg32(int(r)); }
inline Reg32 r32(Reg64 r) { return Reg32(int(r)); }
inline Reg32 r32(Reg32 r) { return r; }
//////////////////////////////////////////////////////////////////////
/*
* The following structures define intermediate types for various
* addressing modes. They overload some operators to allow using
* registers to look somewhat like pointers.
*
* E.g. rax[rbx*2 + 3] or *(rax + rbx*2 + 3).
*
* These operators are not defined commutatively; the thought is it
* mandates the order you normally write them in a .S, but it could be
* changed if this proves undesirable.
*/
// reg*x
struct ScaledIndex {
explicit ScaledIndex(Reg64 index, intptr_t scale)
: index(index)
, scale(scale)
{
assert((scale == 0x1 || scale == 0x2 || scale == 0x4 || scale == 0x8) &&
"Invalid index register scaling (must be 1,2,4 or 8).");
assert(int(index) != -1 && "invalid register");
}
Reg64 index;
intptr_t scale;
};
// reg*x + disp
struct ScaledIndexDisp {
explicit ScaledIndexDisp(ScaledIndex si, intptr_t disp)
: si(si)
, disp(disp)
{}
ScaledIndexDisp operator+(intptr_t x) const {
return ScaledIndexDisp(si, disp + x);
}
ScaledIndexDisp operator-(intptr_t x) const {
return ScaledIndexDisp(si, disp - x);
}
ScaledIndex si;
intptr_t disp;
};
// reg+x
struct DispReg {
explicit DispReg(Reg64 base, intptr_t disp = 0)
: base(base)
, disp(disp)
{
assert(int(base) != -1 && "invalid register");
}
// Constructor for baseless().
explicit DispReg(intptr_t disp)
: base(-1)
, disp(disp)
{}
MemoryRef operator*() const;
MemoryRef operator[](intptr_t) const;
DispReg operator+(intptr_t x) const {
return DispReg(base, disp + x);
}
DispReg operator-(intptr_t x) const {
return DispReg(base, disp - x);
}
Reg64 base;
intptr_t disp;
};
// reg + reg*x + y
struct IndexedDispReg {
explicit IndexedDispReg(Reg64 base, ScaledIndex sr)
: base(base)
, index(sr.index)
, scale(sr.scale)
, disp(0)
{}
explicit IndexedDispReg(DispReg r)
: base(r.base)
, index(-1)
, scale(1)
, disp(r.disp)
{}
// Constructor for baseless()
explicit IndexedDispReg(ScaledIndexDisp sid)
: base(-1)
, index(sid.si.index)
, scale(sid.si.scale)
, disp(sid.disp)
{}
MemoryRef operator*() const;
MemoryRef operator[](intptr_t disp) const;
IndexedDispReg operator+(intptr_t disp) const {
auto ret = *this;
ret.disp += disp;
return ret;
}
IndexedDispReg operator-(intptr_t disp) const {
auto ret = *this;
ret.disp -= disp;
return ret;
}
Reg64 base;
Reg64 index;
int scale;
intptr_t disp; // TODO #4613274: should be int32_t
};
// rip+x
struct DispRIP {
explicit DispRIP(intptr_t disp) : disp(disp) {}
RIPRelativeRef operator*() const;
RIPRelativeRef operator[](intptr_t x) const;
DispRIP operator+(intptr_t x) const {
return DispRIP(disp + x);
}
DispRIP operator-(intptr_t x) const {
return DispRIP(disp - x);
}
intptr_t disp; // TODO #4613274: should be int32_t
};
// *(reg + x)
struct MemoryRef {
explicit MemoryRef(DispReg dr) : r(dr) {}
explicit MemoryRef(IndexedDispReg idr) : r(idr) {}
IndexedDispReg r;
};
// *(rip + x)
struct RIPRelativeRef {
explicit RIPRelativeRef(DispRIP r) : r(r) {}
DispRIP r;
};
inline MemoryRef IndexedDispReg::operator*() const {
return MemoryRef(*this);
}
inline MemoryRef IndexedDispReg::operator[](intptr_t x) const {
return *(*this + x);
}
inline MemoryRef DispReg::operator*() const {
return MemoryRef(*this);
}
inline MemoryRef DispReg::operator[](intptr_t x) const {
return *(*this + x);
}
inline RIPRelativeRef DispRIP::operator*() const {
return RIPRelativeRef(*this);
}
inline RIPRelativeRef DispRIP::operator[](intptr_t x) const {
return *(*this + x);
}
inline DispReg operator+(Reg64 r, intptr_t d) { return DispReg(r, d); }
inline DispReg operator-(Reg64 r, intptr_t d) { return DispReg(r, -d); }
inline DispRIP operator+(RegRIP r, intptr_t d) { return DispRIP(d); }
inline DispRIP operator-(RegRIP r, intptr_t d) { return DispRIP(d); }
inline ScaledIndex operator*(Reg64 r, int scale) {
return ScaledIndex(r, scale);
}
inline IndexedDispReg operator+(Reg64 base, ScaledIndex sr) {
return IndexedDispReg(base, sr);
}
inline ScaledIndexDisp operator+(ScaledIndex si, intptr_t disp) {
return ScaledIndexDisp(si, disp);
}
inline IndexedDispReg operator+(Reg64 b, Reg64 i) {
return b + ScaledIndex(i, 0x1);
}
inline MemoryRef operator*(Reg64 r) { return MemoryRef(DispReg(r)); }
inline DispRIP operator*(RegRIP r) { return DispRIP(0); }
inline MemoryRef Reg64::operator[](intptr_t disp) const {
return *(*this + disp);
}
inline MemoryRef Reg64::operator[](Reg64 idx) const {
return *(*this + idx * 1);
}
inline MemoryRef Reg64::operator[](ScaledIndex si) const {
return *(*this + si);
}
inline MemoryRef Reg64::operator[](DispReg dr) const {
return *(*this + ScaledIndex(dr.base, 0x1) + dr.disp);
}
inline MemoryRef Reg64::operator[](ScaledIndexDisp sid) const {
return *(*this + sid.si + sid.disp);
}
inline RIPRelativeRef RegRIP::operator[](intptr_t disp) const {
return *(*this + disp);
}
/*
* Used for the x64 addressing mode where there is a displacement,
* possibly with a scaled index, but no base register.
*/
inline MemoryRef baseless(intptr_t disp) { return *(DispReg { disp }); }
inline MemoryRef baseless(ScaledIndexDisp sid) {
return *(IndexedDispReg { sid });
}
//////////////////////////////////////////////////////////////////////
namespace reg {
constexpr Reg64 rax(0);
constexpr Reg64 rcx(1);
constexpr Reg64 rdx(2);
constexpr Reg64 rbx(3);
constexpr Reg64 rsp(4);
constexpr Reg64 rbp(5);
constexpr Reg64 rsi(6);
constexpr Reg64 rdi(7);
constexpr Reg64 r8 (8);
constexpr Reg64 r9 (9);
constexpr Reg64 r10(10);
constexpr Reg64 r11(11);
constexpr Reg64 r12(12);
constexpr Reg64 r13(13);
constexpr Reg64 r14(14);
constexpr Reg64 r15(15);
constexpr RegRIP rip = RegRIP();
constexpr Reg32 eax (0);
constexpr Reg32 ecx (1);
constexpr Reg32 edx (2);
constexpr Reg32 ebx (3);
constexpr Reg32 esp (4);
constexpr Reg32 ebp (5);
constexpr Reg32 esi (6);
constexpr Reg32 edi (7);
constexpr Reg32 r8d (8);
constexpr Reg32 r9d (9);
constexpr Reg32 r10d(10);
constexpr Reg32 r11d(11);
constexpr Reg32 r12d(12);
constexpr Reg32 r13d(13);
constexpr Reg32 r14d(14);
constexpr Reg32 r15d(15);
constexpr Reg16 ax (0);
constexpr Reg16 cx (1);
constexpr Reg16 dx (2);
constexpr Reg16 bx (3);
constexpr Reg16 sp (4);
constexpr Reg16 bp (5);
constexpr Reg16 si (6);
constexpr Reg16 di (7);
constexpr Reg16 r8w (8);
constexpr Reg16 r9w (9);
constexpr Reg16 r10w(10);
constexpr Reg16 r11w(11);
constexpr Reg16 r12w(12);
constexpr Reg16 r13w(13);
constexpr Reg16 r14w(14);
constexpr Reg16 r15w(15);
constexpr Reg8 al (0);
constexpr Reg8 cl (1);
constexpr Reg8 dl (2);
constexpr Reg8 bl (3);
constexpr Reg8 spl (4);
constexpr Reg8 bpl (5);
constexpr Reg8 sil (6);
constexpr Reg8 dil (7);
constexpr Reg8 r8b (8);
constexpr Reg8 r9b (9);
constexpr Reg8 r10b(10);
constexpr Reg8 r11b(11);
constexpr Reg8 r12b(12);
constexpr Reg8 r13b(13);
constexpr Reg8 r14b(14);
constexpr Reg8 r15b(15);
// Reminder: these registers may not be mixed in any instruction
// using a REX prefix (i.e. anything using r8-r15, spl, bpl, sil,
// dil, etc).
constexpr Reg8 ah(0x80 | 4);
constexpr Reg8 ch(0x80 | 5);
constexpr Reg8 dh(0x80 | 6);
constexpr Reg8 bh(0x80 | 7);
constexpr RegXMM xmm0(0);
constexpr RegXMM xmm1(1);
constexpr RegXMM xmm2(2);
constexpr RegXMM xmm3(3);
constexpr RegXMM xmm4(4);
constexpr RegXMM xmm5(5);
constexpr RegXMM xmm6(6);
constexpr RegXMM xmm7(7);
constexpr RegXMM xmm8(8);
constexpr RegXMM xmm9(9);
constexpr RegXMM xmm10(10);
constexpr RegXMM xmm11(11);
constexpr RegXMM xmm12(12);
constexpr RegXMM xmm13(13);
constexpr RegXMM xmm14(14);
constexpr RegXMM xmm15(15);
#define X(x) if (r == x) return "%"#x
inline const char* regname(Reg64 r) {
X(rax); X(rbx); X(rcx); X(rdx); X(rsp); X(rbp); X(rsi); X(rdi);
X(r8); X(r9); X(r10); X(r11); X(r12); X(r13); X(r14); X(r15);
return nullptr;
}
inline const char* regname(Reg32 r) {
X(eax); X(ecx); X(edx); X(ebx); X(esp); X(ebp); X(esi); X(edi);
X(r8d); X(r9d); X(r10d); X(r11d); X(r12d); X(r13d); X(r14d); X(r15d);
return nullptr;
}
inline const char* regname(Reg16 r) {
X(ax); X(cx); X(dx); X(bx); X(sp); X(bp); X(si); X(di);
X(r8w); X(r9w); X(r10w); X(r11w); X(r12w); X(r13w); X(r14w); X(r15w);
return nullptr;
}
inline const char* regname(Reg8 r) {
X(al); X(cl); X(dl); X(bl); X(spl); X(bpl); X(sil); X(dil);
X(r8b); X(r9b); X(r10b); X(r11b); X(r12b); X(r13b); X(r14b); X(r15b);
X(ah); X(ch); X(dh); X(bh);
return nullptr;
}
inline const char* regname(RegXMM r) {
X(xmm0); X(xmm1); X(xmm2); X(xmm3); X(xmm4); X(xmm5); X(xmm6);
X(xmm7); X(xmm8); X(xmm9); X(xmm10); X(xmm11); X(xmm12); X(xmm13);
X(xmm14); X(xmm15);
return nullptr;
}
inline const char* regname(RegSF r) {
return "%flags";
}
#undef X
}
//////////////////////////////////////////////////////////////////////
enum X64InstrFlags {
IF_REVERSE = 0x0001, // The operand encoding for some instructions are
// "backwards" in x64; these instructions are
// called "reverse" instructions. There are a few
// details about emitting "reverse" instructions:
// (1) for the R_M address mode, we use the MR
// opcode, (2) for M_R and R address modes, we use
// the RM opcode, and (3) for the R_R address mode,
// we still use MR opcode, but we have to swap the
// first argument and the second argument.
IF_TWOBYTEOP = 0x0002, // Some instructions have two byte opcodes. For
// these instructions, an additional byte (0x0F) is
// emitted before the standard opcode byte.
IF_JCC = 0x0004, // instruction is jcc
IF_IMUL = 0x0008, // instruction is imul
IF_HAS_IMM8 = 0x0010, // instruction has an encoding that takes an 8-bit
// immediate
IF_SHIFT = 0x0020, // instruction is rol, ror, rcl, rcr, shl, shr, sar
IF_RET = 0x0040, // instruction is ret
IF_SHIFTD = 0x0080, // instruction is shld, shrd
IF_NO_REXW = 0x0100, // rexW prefix is not needed
IF_MOV = 0x0200, // instruction is mov
IF_COMPACTR = 0x0400, // instruction supports compact-R encoding
IF_RAX = 0x0800, // instruction supports special rax encoding
IF_XCHG = 0x1000, // instruction is xchg (not xchgb)
IF_BYTEREG = 0x2000, // instruction is movzbq, movsbq
IF_66PREFIXED = 0x4000, // instruction requires a manditory 0x66 prefix
IF_F3PREFIXED = 0x8000, // instruction requires a manditory 0xf3 prefix
IF_F2PREFIXED = 0x10000, // instruction requires a manditory 0xf2 prefix
IF_THREEBYTEOP = 0x20000, // instruction requires a 0x0F 0x3A prefix
IF_ROUND = 0x40000, // instruction is round(sp)d
};
/*
Address mode to table index map:
Table index 0 <- R_R / M_R(n) / R_M(r) / R(n)
Table index 1 <- R_M(n) / M_R(r) / R(r)
Table index 2 <- I / R_I / M_I / R_R_I / M_R_I / R_M_I
Table index 3 <- "/digit" value used by the above address modes
Table index 4 <- special R_I (for rax)
Table index 5 <- compact-R / none
(n) - for normal instructions only (IF_REVERSE flag is not set)
(r) - for reverse instructions only (IF_REVERSE flag is set)
0xF1 is used to indicate invalid opcodes.
*/
struct X64Instr {
unsigned char table[6];
unsigned long flags;
};
// 0 1 2 3 4 5 flags
const X64Instr instr_divsd = { { 0x5E,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_movups = { { 0x10,0x11,0xF1,0x00,0xF1,0xF1 }, 0x0103 };
const X64Instr instr_movdqa = { { 0x6F,0x7F,0xF1,0x00,0xF1,0xF1 }, 0x4103 };
const X64Instr instr_movdqu = { { 0x6F,0x7F,0xF1,0x00,0xF1,0xF1 }, 0x8103 };
const X64Instr instr_movsd = { { 0x11,0x10,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_gpr2xmm = { { 0x6e,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x4002 };
const X64Instr instr_xmm2gpr = { { 0x7e,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x4002 };
const X64Instr instr_xmmsub = { { 0x5c,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_xmmadd = { { 0x58,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_xmmmul = { { 0x59,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_xmmsqrt = { { 0x51,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10102 };
const X64Instr instr_ucomisd = { { 0x2e,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x4102 };
const X64Instr instr_pxor= { { 0xef,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x4102 };
const X64Instr instr_psrlq= { { 0xF1,0xF1,0x73,0x02,0xF1,0xF1 }, 0x4112 };
const X64Instr instr_psllq= { { 0xF1,0xF1,0x73,0x06,0xF1,0xF1 }, 0x4112 };
const X64Instr instr_cvtsi2sd= { { 0x2a,0x2a,0xF1,0x00,0xF1,0xF1 }, 0x10002 };
const X64Instr instr_cvttsd2si={ { 0x2c,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10002 };
const X64Instr instr_lddqu = { { 0xF0,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x10103 };
const X64Instr instr_unpcklpd ={ { 0x14,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x4102 };
const X64Instr instr_jmp = { { 0xFF,0xF1,0xE9,0x04,0xE9,0xF1 }, 0x0910 };
const X64Instr instr_call = { { 0xFF,0xF1,0xE8,0x02,0xE8,0xF1 }, 0x0900 };
const X64Instr instr_push = { { 0xFF,0xF1,0x68,0x06,0xF1,0x50 }, 0x0510 };
const X64Instr instr_pop = { { 0x8F,0xF1,0xF1,0x00,0xF1,0x58 }, 0x0500 };
const X64Instr instr_inc = { { 0xFF,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_dec = { { 0xFF,0xF1,0xF1,0x01,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_not = { { 0xF7,0xF1,0xF1,0x02,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_notb = { { 0xF6,0xF1,0xF1,0x02,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_neg = { { 0xF7,0xF1,0xF1,0x03,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_negb = { { 0xF6,0xF1,0xF1,0x03,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_add = { { 0x01,0x03,0x81,0x00,0x05,0xF1 }, 0x0810 };
const X64Instr instr_addb = { { 0x00,0x02,0x80,0x00,0x04,0xF1 }, 0x0810 };
const X64Instr instr_sub = { { 0x29,0x2B,0x81,0x05,0x2D,0xF1 }, 0x0810 };
const X64Instr instr_subb = { { 0x28,0x2A,0x80,0x05,0x2C,0xF1 }, 0x0810 };
const X64Instr instr_and = { { 0x21,0x23,0x81,0x04,0x25,0xF1 }, 0x0810 };
const X64Instr instr_andb = { { 0x20,0x22,0x80,0x04,0x24,0xF1 }, 0x0810 };
const X64Instr instr_or = { { 0x09,0x0B,0x81,0x01,0x0D,0xF1 }, 0x0810 };
const X64Instr instr_orb = { { 0x08,0x0A,0x80,0x01,0x0C,0xF1 }, 0x0810 };
const X64Instr instr_xor = { { 0x31,0x33,0x81,0x06,0x35,0xF1 }, 0x0810 };
const X64Instr instr_xorb = { { 0x30,0x32,0x80,0x06,0x34,0xF1 }, 0x0810 };
const X64Instr instr_mov = { { 0x89,0x8B,0xC7,0x00,0xF1,0xB8 }, 0x0600 };
const X64Instr instr_movb = { { 0x88,0x8A,0xC6,0x00,0xF1,0xB0 }, 0x0610 };
const X64Instr instr_test = { { 0x85,0x85,0xF7,0x00,0xA9,0xF1 }, 0x0800 };
const X64Instr instr_testb = { { 0x84,0x84,0xF6,0x00,0xA8,0xF1 }, 0x0810 };
const X64Instr instr_cmp = { { 0x39,0x3B,0x81,0x07,0x3D,0xF1 }, 0x0810 };
const X64Instr instr_cmpb = { { 0x38,0x3A,0x80,0x07,0x3C,0xF1 }, 0x0810 };
const X64Instr instr_sbb = { { 0x19,0x1B,0x81,0x03,0x1D,0xF1 }, 0x0810 };
const X64Instr instr_sbbb = { { 0x18,0x1A,0x80,0x03,0x1C,0xF1 }, 0x0810 };
const X64Instr instr_adc = { { 0x11,0x13,0x81,0x02,0x15,0xF1 }, 0x0810 };
const X64Instr instr_lea = { { 0xF1,0x8D,0xF1,0x00,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_xchgb = { { 0x86,0x86,0xF1,0x00,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_xchg = { { 0x87,0x87,0xF1,0x00,0xF1,0x90 }, 0x1000 };
const X64Instr instr_imul = { { 0xAF,0xF7,0x69,0x05,0xF1,0xF1 }, 0x0019 };
const X64Instr instr_mul = { { 0xF7,0xF1,0xF1,0x04,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_div = { { 0xF7,0xF1,0xF1,0x06,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_idiv = { { 0xF7,0xF1,0xF1,0x07,0xF1,0xF1 }, 0x0000 };
const X64Instr instr_cdq = { { 0xF1,0xF1,0xF1,0x00,0xF1,0x99 }, 0x0400 };
const X64Instr instr_ret = { { 0xF1,0xF1,0xC2,0x00,0xF1,0xC3 }, 0x0540 };
const X64Instr instr_jcc = { { 0xF1,0xF1,0x80,0x00,0xF1,0xF1 }, 0x0114 };
const X64Instr instr_cmovcc = { { 0x40,0x40,0xF1,0x00,0xF1,0xF1 }, 0x0003 };
const X64Instr instr_setcc = { { 0x90,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0102 };
const X64Instr instr_movswx = { { 0xBF,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0003 };
const X64Instr instr_movsbx = { { 0xBE,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x2003 };
const X64Instr instr_movzwx = { { 0xB7,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0003 };
const X64Instr instr_movzbx = { { 0xB6,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x2003 };
const X64Instr instr_cwde = { { 0xF1,0xF1,0xF1,0x00,0xF1,0x98 }, 0x0400 };
const X64Instr instr_cqo = { { 0xF1,0xF1,0xF1,0x00,0xF1,0x99 }, 0x0000 };
const X64Instr instr_rol = { { 0xD3,0xF1,0xC1,0x00,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_ror = { { 0xD3,0xF1,0xC1,0x01,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_rcl = { { 0xD3,0xF1,0xC1,0x02,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_rcr = { { 0xD3,0xF1,0xC1,0x03,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_shl = { { 0xD3,0xF1,0xC1,0x04,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_shr = { { 0xD3,0xF1,0xC1,0x05,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_sar = { { 0xD3,0xF1,0xC1,0x07,0xF1,0xF1 }, 0x0020 };
const X64Instr instr_xadd = { { 0xC1,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0002 };
const X64Instr instr_cmpxchg = { { 0xB1,0xF1,0xF1,0x00,0xF1,0xF1 }, 0x0002 };
const X64Instr instr_nop = { { 0xF1,0xF1,0xF1,0x00,0xF1,0x90 }, 0x0500 };
const X64Instr instr_shld = { { 0xA5,0xF1,0xA4,0x00,0xF1,0xF1 }, 0x0082 };
const X64Instr instr_shrd = { { 0xAD,0xF1,0xAC,0x00,0xF1,0xF1 }, 0x0082 };
const X64Instr instr_int3 = { { 0xF1,0xF1,0xF1,0x00,0xF1,0xCC }, 0x0500 };
const X64Instr instr_roundsd = { { 0xF1,0xF1,0x0b,0x00,0xF1,0xF1 }, 0x64112 };
const X64Instr instr_cmpsd = { { 0xF1,0xF1,0xC2,0xF1,0xF1,0xF1 }, 0x10112 };
enum class RoundDirection : ssize_t {
nearest = 0,
floor = 1,
ceil = 2,
truncate = 3,
};
const char* show(RoundDirection);
enum class ComparisonPred : uint8_t {
// True if...
eq_ord = 0, // ...operands are ordered AND equal
ne_unord = 4, // ...operands are unordered OR unequal
};
enum ConditionCode {
CC_None = -1,
CC_O = 0x00,
CC_NO = 0x01,
CC_B = 0x02,
CC_NAE = 0x02,
CC_AE = 0x03,
CC_NB = 0x03,
CC_NC = 0x03,
CC_E = 0x04,
CC_Z = 0x04,
CC_NE = 0x05,
CC_NZ = 0x05,
CC_BE = 0x06,
CC_NA = 0x06,
CC_A = 0x07,
CC_NBE = 0x07,
CC_S = 0x08,
CC_NS = 0x09,
CC_P = 0x0A,
CC_NP = 0x0B,
CC_L = 0x0C,
CC_NGE = 0x0C,
CC_GE = 0x0D,
CC_NL = 0x0D,
CC_LE = 0x0E,
CC_NG = 0x0E,
CC_G = 0x0F,
CC_NLE = 0x0F,
};
// names of condition codes, indexable by the ConditionCode enum value.
extern const char* cc_names[];
inline ConditionCode ccNegate(ConditionCode c) {
return ConditionCode(int(c) ^ 1); // And you thought x86 was irregular!
}
///////////////////////////////////////////////////////////////////////////////
struct Label;
/**
* Copyright (c) 2009, Andrew J. Paroski
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * The names of the contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ANDREW J. PAROSKI BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
class X64Assembler : private boost::noncopyable {
friend struct Label;
/*
* Type for register numbers, independent of the size we're going to
* be using it as. Also, the same register number may mean different
* physical registers for different instructions (e.g. xmm0 and rax
* are both 0). Only for internal use in X64Assembler.
*/
enum class RegNumber : int {};
static const RegNumber noreg = RegNumber(-1);
public:
explicit X64Assembler(CodeBlock& cb) : codeBlock(cb) {}
CodeBlock& code() const { return codeBlock; }
CodeAddress base() const {
return codeBlock.base();
}
CodeAddress frontier() const {
return codeBlock.frontier();
}
void setFrontier(CodeAddress newFrontier) {
codeBlock.setFrontier(newFrontier);
}
size_t capacity() const {
return codeBlock.capacity();
}
size_t used() const {
return codeBlock.used();
}
size_t available() const {
return codeBlock.available();
}
bool contains(CodeAddress addr) const {
return codeBlock.contains(addr);
}
bool empty() const {
return codeBlock.empty();
}
void clear() {
codeBlock.clear();
}
bool canEmit(size_t nBytes) const {
assert(capacity() >= used());
return nBytes < (capacity() - used());
}
/*
* The following section defines the main interface for emitting
* x64.
*
* Simple Examples:
*
* a. movq (rax, rbx); // order is AT&T: src, dest
* a. loadq (*rax, rbx); // loads from *rax
* a. loadq (rax[0], rbx); // also loads from *rax
* a. storeq (rcx, rax[0xc]); // store to rax + 0xc
* a. addq (0x1, rbx); // increment rbx
*
* Addressing with index registers:
*
* a. movl (index, ecx);
* a. loadq (*rax, rbx);
* a. storeq (rbx, rbx[rcx*8]);
* a. call (rax); // indirect call
*
*/
#define BYTE_LOAD_OP(name, instr) \
void name##b(MemoryRef m, Reg8 r) { instrMR(instr, m, r); } \
#define LOAD_OP(name, instr) \
void name##q(MemoryRef m, Reg64 r) { instrMR(instr, m, r); } \
void name##l(MemoryRef m, Reg32 r) { instrMR(instr, m, r); } \
void name##w(MemoryRef m, Reg16 r) { instrMR(instr, m, r); } \
void name##q(RIPRelativeRef m, Reg64 r) { instrMR(instr, m, r); } \
BYTE_LOAD_OP(name, instr##b)
#define BYTE_STORE_OP(name, instr) \
void name##b(Reg8 r, MemoryRef m) { instrRM(instr, r, m); } \
void name##b(Immed i, MemoryRef m) { instrIM8(instr, i, m); } \
#define STORE_OP(name, instr) \
void name##w(Immed i, MemoryRef m) { instrIM16(instr, i, m); } \
void name##l(Immed i, MemoryRef m) { instrIM32(instr, i, m); } \
void name##w(Reg16 r, MemoryRef m) { instrRM(instr, r, m); } \
void name##l(Reg32 r, MemoryRef m) { instrRM(instr, r, m); } \
void name##q(Reg64 r, MemoryRef m) { instrRM(instr, r, m); } \
BYTE_STORE_OP(name, instr ## b)
#define BYTE_REG_OP(name, instr) \
void name##b(Reg8 r1, Reg8 r2) { instrRR(instr, r1, r2); } \
void name##b(Immed i, Reg8 r) { instrIR(instr, i, r); } \
#define REG_OP(name, instr) \
void name##q(Reg64 r1, Reg64 r2) { instrRR(instr, r1, r2); } \
void name##l(Reg32 r1, Reg32 r2) { instrRR(instr, r1, r2); } \
void name##w(Reg16 r1, Reg16 r2) { instrRR(instr, r1, r2); } \
void name##l(Immed i, Reg32 r) { instrIR(instr, i, r); } \
void name##w(Immed i, Reg16 r) { instrIR(instr, i, r); } \
BYTE_REG_OP(name, instr##b)
/*
* For when we a have a memory operand and the operand size is
* 64-bits, only a 32-bit (sign-extended) immediate is supported.
*/
#define IMM64_STORE_OP(name, instr) \
void name##q(Immed i, MemoryRef m) { \
return instrIM(instr, i, m); \
}
/*
* For instructions other than movq, even when the operand size is
* 64 bits only a 32-bit (sign-extended) immediate is supported.
*/
#define IMM64R_OP(name, instr) \
void name##q(Immed imm, Reg64 r) { \
always_assert(imm.fits(sz::dword)); \
return instrIR(instr, imm, r); \
}
#define FULL_OP(name, instr) \
LOAD_OP(name, instr) \
STORE_OP(name, instr) \
REG_OP(name, instr) \
IMM64_STORE_OP(name, instr) \
IMM64R_OP(name, instr)
// We rename x64's mov to store and load for improved code
// readability.
LOAD_OP (load, instr_mov)
STORE_OP (store, instr_mov)
IMM64_STORE_OP (store, instr_mov)
REG_OP (mov, instr_mov)
FULL_OP(add, instr_add)
FULL_OP(xor, instr_xor)
FULL_OP(sub, instr_sub)
FULL_OP(and, instr_and)
FULL_OP(or, instr_or)
FULL_OP(test,instr_test)
FULL_OP(cmp, instr_cmp)
FULL_OP(sbb, instr_sbb)
#undef IMM64_OP
#undef IMM64R_OP
#undef FULL_OP
#undef REG_OP
#undef STORE_OP
#undef LOAD_OP
#undef BYTE_LOAD_OP
#undef BYTE_STORE_OP
#undef BYTE_REG_OP
// 64-bit immediates work with mov to a register.
void movq(Immed64 imm, Reg64 r) { instrIR(instr_mov, imm, r); }
// movzbx is a special snowflake. We don't have movzbq because it behaves
// exactly the same as movzbl but takes an extra byte.
void loadzbl(MemoryRef m, Reg32 r) { instrMR(instr_movzbx,
m, rbyte(r)); }
void movzbl(Reg8 src, Reg32 dest) { emitRR32(instr_movzbx,
rn(src), rn(dest)); }
void movsbl(Reg8 src, Reg32 dest) { emitRR(instr_movsbx,
rn(src), rn(dest)); }
void loadsbq(MemoryRef m, Reg64 r) { instrMR(instr_movsbx,
m, r); }
void movsbq(Reg8 src, Reg64 dest) { emitRR(instr_movsbx,
rn(src), rn(dest)); }
void lea(MemoryRef p, Reg64 reg) { instrMR(instr_lea, p, reg); }
void lea(RIPRelativeRef p, Reg64 reg) { instrMR(instr_lea, p, reg); }
void xchgq(Reg64 r1, Reg64 r2) { instrRR(instr_xchg, r1, r2); }
void xchgl(Reg32 r1, Reg32 r2) { instrRR(instr_xchg, r1, r2); }
void xchgb(Reg8 r1, Reg8 r2) { instrRR(instr_xchgb, r1, r2); }
void imul(Reg64 r1, Reg64 r2) { instrRR(instr_imul, r1, r2); }
void push(Reg64 r) { instrR(instr_push, r); }
void pushl(Reg32 r) { instrR(instr_push, r); }
void pop (Reg64 r) { instrR(instr_pop, r); }
void idiv(Reg64 r) { instrR(instr_idiv, r); }
void incq(Reg64 r) { instrR(instr_inc, r); }
void incl(Reg32 r) { instrR(instr_inc, r); }
void incw(Reg16 r) { instrR(instr_inc, r); }
void decq(Reg64 r) { instrR(instr_dec, r); }
void decl(Reg32 r) { instrR(instr_dec, r); }
void decw(Reg16 r) { instrR(instr_dec, r); }
void notb(Reg8 r) { instrR(instr_notb, r); }
void not(Reg64 r) { instrR(instr_not, r); }
void neg(Reg64 r) { instrR(instr_neg, r); }
void negb(Reg8 r) { instrR(instr_negb, r); }
void ret() { emit(instr_ret); }
void ret(Immed i) { emitI(instr_ret, i.w(), sz::word); }
void cqo() { emit(instr_cqo); }
void nop() { emit(instr_nop); }
void int3() { emit(instr_int3); }
void ud2() { byte(0x0f); byte(0x0b); }
void pushf() { byte(0x9c); }
void popf() { byte(0x9d); }
void lock() { byte(0xF0); }
void push(MemoryRef m) { instrM(instr_push, m); }
void pop (MemoryRef m) { instrM(instr_pop, m); }
void incq(MemoryRef m) { instrM(instr_inc, m); }
void incl(MemoryRef m) { instrM32(instr_inc, m); }
void incw(MemoryRef m) { instrM16(instr_inc, m); }
void decq(MemoryRef m) { instrM(instr_dec, m); }
void decl(MemoryRef m) { instrM32(instr_dec, m); }
void decw(MemoryRef m) { instrM16(instr_dec, m); }
void movups(RegXMM x, MemoryRef m) { instrRM(instr_movups, x, m); }
void movups(MemoryRef m, RegXMM x) { instrMR(instr_movups, m, x); }
void movdqu(RegXMM x, MemoryRef m) { instrRM(instr_movdqu, x, m); }
void movdqu(MemoryRef m, RegXMM x) { instrMR(instr_movdqu, m, x); }
void movdqa(RegXMM x, RegXMM y) { instrRR(instr_movdqa, x, y); }
void movdqa(RegXMM x, MemoryRef m) { instrRM(instr_movdqa, x, m); }
void movdqa(MemoryRef m, RegXMM x) { instrMR(instr_movdqa, m, x); }
void movsd (RegXMM x, RegXMM y) { instrRR(instr_movsd, x, y); }
void movsd (RegXMM x, MemoryRef m) { instrRM(instr_movsd, x, m); }
void movsd (MemoryRef m, RegXMM x) { instrMR(instr_movsd, m, x); }
void movsd (RIPRelativeRef m, RegXMM x) { instrMR(instr_movsd, m, x); }
void lddqu (MemoryRef m, RegXMM x) { instrMR(instr_lddqu, m, x); }
void unpcklpd(RegXMM s, RegXMM d) { instrRR(instr_unpcklpd, d, s); }
void rorq (Immed i, Reg64 r) { instrIR(instr_ror, i, r); }
void shlq (Immed i, Reg64 r) { instrIR(instr_shl, i, r); }
void shrq (Immed i, Reg64 r) { instrIR(instr_shr, i, r); }
void sarq (Immed i, Reg64 r) { instrIR(instr_sar, i, r); }
void shll (Immed i, Reg32 r) { instrIR(instr_shl, i, r); }
void shrl (Immed i, Reg32 r) { instrIR(instr_shr, i, r); }
void shlw (Immed i, Reg16 r) { instrIR(instr_shl, i, r); }
void shrw (Immed i, Reg16 r) { instrIR(instr_shr, i, r); }
void shlq (Reg64 r) { instrR(instr_shl, r); }
void sarq (Reg64 r) { instrR(instr_sar, r); }
void roundsd (RoundDirection d, RegXMM src, RegXMM dst) {
emitIRR(instr_roundsd, rn(dst), rn(src), ssize_t(d));
}
void cmpsd(RegXMM src, RegXMM dst, ComparisonPred pred) {
emitIRR(instr_cmpsd, rn(dst), rn(src), ssize_t(pred));
}
/*
* Control-flow directives. Primitive labeling/patching facilities
* are available, as well as slightly higher-level ones via the
* Label class.
*/
bool jmpDeltaFits(CodeAddress dest) {
int64_t delta = dest - (codeBlock.frontier() + 5);
return deltaFits(delta, sz::dword);
}
void jmp(Reg64 r) { instrR(instr_jmp, r); }
void jmp(MemoryRef m) { instrM(instr_jmp, m); }
void call(Reg64 r) { instrR(instr_call, r); }
void call(MemoryRef m) { instrM(instr_call, m); }
void call(RIPRelativeRef m) { instrM(instr_call, m); }
void jmp8(CodeAddress dest) { emitJ8(instr_jmp, ssize_t(dest)); }
void jmp(CodeAddress dest) {
always_assert(dest && jmpDeltaFits(dest));
emitJ32(instr_jmp, ssize_t(dest));
}
void call(CodeAddress dest) {
always_assert(dest && jmpDeltaFits(dest));
emitJ32(instr_call, ssize_t(dest));
}
void jcc(ConditionCode cond, CodeAddress dest) {
emitCJ32(instr_jcc, cond, (ssize_t)dest);
}
void jcc8(ConditionCode cond, CodeAddress dest) {
emitCJ8(instr_jcc, cond, (ssize_t)dest);
}
void jmpAuto(CodeAddress dest) {
auto delta = dest - (codeBlock.frontier() + 2);
if (deltaFits(delta, sz::byte)) {
jmp8(dest);
} else {
jmp(dest);
}
}
void jccAuto(ConditionCode cc, CodeAddress dest) {
auto delta = dest - (codeBlock.frontier() + 2);
if (deltaFits(delta, sz::byte)) {
jcc8(cc, dest);
} else {
jcc(cc, dest);
}
}
void call(Label&);
void jmp(Label&);
void jmp8(Label&);
void jcc(ConditionCode, Label&);
void jcc8(ConditionCode, Label&);
#define CCS \
CC(o, CC_O) \
CC(no, CC_NO) \
CC(nae, CC_NAE) \
CC(ae, CC_AE) \
CC(nb, CC_NB) \
CC(e, CC_E) \
CC(z, CC_Z) \
CC(ne, CC_NE) \
CC(nz, CC_NZ) \
CC(b, CC_B) \
CC(be, CC_BE) \
CC(nbe, CC_NBE) \
CC(s, CC_S) \
CC(ns, CC_NS) \
CC(p, CC_P) \
CC(np, CC_NP) \
CC(nge, CC_NGE) \
CC(g, CC_G) \
CC(l, CC_L) \
CC(ge, CC_GE) \
CC(nl, CC_NL) \
CC(ng, CC_NG) \
CC(le, CC_LE) \
CC(nle, CC_NLE)
#define CC(_nm, _code) \
void j ## _nm(CodeAddress dest) { jcc(_code, dest); } \
void j ## _nm ## 8(CodeAddress dest) { jcc8(_code, dest); } \
void j ## _nm(Label&); \
void j ## _nm ## 8(Label&);
CCS
#undef CC
void setcc(int cc, Reg8 byteReg) {
emitCR(instr_setcc, cc, rn(byteReg), sz::byte);
}
#define CC(_nm, _cond) \
void set ## _nm(Reg8 byteReg) { \
setcc(_cond, byteReg); \
}
CCS
#undef CC
void psllq(Immed i, RegXMM r) { emitIR(instr_psllq, rn(r), i.b()); }
void psrlq(Immed i, RegXMM r) { emitIR(instr_psrlq, rn(r), i.b()); }
void movq_rx(Reg64 rSrc, RegXMM rdest) {
emitRR(instr_gpr2xmm, rn(rdest), rn(rSrc));
}
void movq_xr(RegXMM rSrc, Reg64 rdest) {
emitRR(instr_xmm2gpr, rn(rSrc), rn(rdest));
}
void addsd(RegXMM src, RegXMM srcdest) {
emitRR(instr_xmmadd, rn(srcdest), rn(src));
}
void mulsd(RegXMM src, RegXMM srcdest) {
emitRR(instr_xmmmul, rn(srcdest), rn(src));
}
void subsd(RegXMM src, RegXMM srcdest) {
emitRR(instr_xmmsub, rn(srcdest), rn(src));
}
void pxor(RegXMM src, RegXMM srcdest) {
emitRR(instr_pxor, rn(srcdest), rn(src));
}
void cvtsi2sd(Reg64 src, RegXMM dest) {
emitRR(instr_cvtsi2sd, rn(dest), rn(src));
}
void cvtsi2sd(MemoryRef m, RegXMM dest) {
instrMR(instr_cvtsi2sd, m, dest);
}
void ucomisd(RegXMM l, RegXMM r) {
emitRR(instr_ucomisd, rn(l), rn(r));
}
void sqrtsd(RegXMM src, RegXMM dest) {
emitRR(instr_xmmsqrt, rn(dest), rn(src));
}
void divsd(RegXMM src, RegXMM srcdest) {
emitRR(instr_divsd, rn(srcdest), rn(src));
}
void cvttsd2siq(RegXMM src, Reg64 dest) {
emitRR(instr_cvttsd2si, rn(dest), rn(src));
}
/*
* The following utility functions do more than emit specific code.
* (E.g. combine common idioms or patterns, smash code, etc.)
*/
void emitImmReg(Immed64 imm, Reg64 dest) {
if (imm.q() == 0) {
// Zeros the top bits also.
xorl (r32(dest), r32(dest));
return;
}
if (LIKELY(imm.q() > 0 && imm.fits(sz::dword))) {
// This will zero out the high-order bits.
movl (imm.l(), r32(dest));
return;
}
movq (imm.q(), dest);
}
static void patchJcc(CodeAddress jmp, CodeAddress dest) {
assert(jmp[0] == 0x0F && (jmp[1] & 0xF0) == 0x80);
ssize_t diff = dest - (jmp + 6);
*(int32_t*)(jmp + 2) = safe_cast<int32_t>(diff);
}
static void patchJcc8(CodeAddress jmp, CodeAddress dest) {
assert((jmp[0] & 0xF0) == 0x70);
ssize_t diff = dest - (jmp + 2); // one for opcode, one for offset
*(int8_t*)(jmp + 1) = safe_cast<int8_t>(diff);
}
static void patchJmp(CodeAddress jmp, CodeAddress dest) {
assert(jmp[0] == 0xE9);
ssize_t diff = dest - (jmp + 5);
*(int32_t*)(jmp + 1) = safe_cast<int32_t>(diff);
}
static void patchJmp8(CodeAddress jmp, CodeAddress dest) {
assert(jmp[0] == 0xEB);
ssize_t diff = dest - (jmp + 2); // one for opcode, one for offset
*(int8_t*)(jmp + 1) = safe_cast<int8_t>(diff);
}
static void patchCall(CodeAddress call, CodeAddress dest) {
assert(call[0] == 0xE8);
ssize_t diff = dest - (call + 5);
*(int32_t*)(call + 1) = safe_cast<int32_t>(diff);
}
void emitInt3s(int n) {
for (auto i = 0; i < n; ++i) {
byte(0xcc);
}
}
void emitNop(int n) {
if (n == 0) return;
static const uint8_t nops[][9] = {
{ },
{ 0x90 },
{ 0x66, 0x90 },
{ 0x0f, 0x1f, 0x00 },
{ 0x0f, 0x1f, 0x40, 0x00 },
{ 0x0f, 0x1f, 0x44, 0x00, 0x00 },
{ 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 },
{ 0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00 },
{ 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
// While n >= 9, emit 9 byte NOPs
while (n >= 9) {
bytes(9, nops[9]);
n -= 9;
}
bytes(n, nops[n]);
}
/*
* Low-level emitter functions.
*
* These functions are the core of the assembler, and can also be
* used directly.
*/
void byte(uint8_t b) {
codeBlock.byte(b);
}
void word(uint16_t w) {
codeBlock.word(w);
}
void dword(uint32_t dw) {
codeBlock.dword(dw);
}
void qword(uint64_t qw) {
codeBlock.qword(qw);
}
void bytes(size_t n, const uint8_t* bs) {
codeBlock.bytes(n, bs);
}
// op %r
// ------
// Restrictions:
// r cannot be set to 'none'
ALWAYS_INLINE
void emitCR(X64Instr op, int jcond, RegNumber regN, int opSz = sz::qword) {
assert(regN != noreg);
int r = int(regN);
// Opsize prefix
if (opSz == sz::word) {
byte(kOpsizePrefix);
}
// REX
unsigned char rex = 0;
bool highByteReg = false;
if (opSz == sz::byte) {
if (byteRegNeedsRex(r)) {
rex |= 0x40;
}
r = byteRegEncodeNumber(r, highByteReg);
}
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
if (r & 8) rex |= 1;
if (rex) {
byte(0x40 | rex);
if (highByteReg) byteRegMisuse();
}
// If the instruction supports compact-R mode, use that
if (op.flags & IF_COMPACTR) {
byte(op.table[5] | (r & 7));
return;
}
char opcode = (op.flags & IF_REVERSE) ? op.table[1] : op.table[0];
char rval = op.table[3];
// Handle two byte opcodes
if (op.flags & IF_TWOBYTEOP) byte(0x0F);
byte(opcode | jcond);
emitModrm(3, rval, r);
}
ALWAYS_INLINE
void emitR(X64Instr op, RegNumber r, int opSz = sz::qword) {
emitCR(op, 0, r, opSz);
}
ALWAYS_INLINE
void emitR32(X64Instr op, RegNumber r) {
emitCR(op, 0, r, sz::dword);
}
ALWAYS_INLINE
void emitR16(X64Instr op, RegNumber r) {
emitCR(op, 0, r, sz::word);
}
// op %r2, %r1
// -----------
// Restrictions:
// r1 cannot be set to noreg
// r2 cannot be set to noreg
ALWAYS_INLINE
void emitCRR(X64Instr op, int jcond, RegNumber rn1, RegNumber rn2,
int opSz = sz::qword) {
assert(rn1 != noreg && rn2 != noreg);
int r1 = int(rn1);
int r2 = int(rn2);
bool reverse = ((op.flags & IF_REVERSE) != 0);
prefixBytes(op.flags, opSz);
// The xchg instruction is special; we have compact encodings for
// exchanging with rax or eax.
if (op.flags & IF_XCHG) {
if (r1 == int(reg::rax)) {
// REX
unsigned char rex = 0;
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
assert(!(op.flags & IF_BYTEREG));
if (r2 & 8) rex |= (reverse ? 4 : 1);
if (rex) byte(0x40 | rex);
// If the second register is rax, emit opcode with the first
// register id embedded
byte(op.table[5] | (r2 & 7));
return;
} else if (r2 == int(reg::rax)) {
reverse = !reverse;
// REX
unsigned char rex = 0;
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) {
rex |= 8;
}
if (r1 & 8) rex |= (reverse ? 1 : 4);
if (rex) byte(0x40 | rex);
// If the first register is rax, emit opcode with the second
// register id embedded
byte(op.table[5] | (r1 & 7));
return;
}
}
// REX
unsigned char rex = 0;
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
bool highByteReg = false;
// movzbx's first operand is a bytereg regardless of operand size
if (opSz == sz::byte || (op.flags & IF_BYTEREG)) {
if (byteRegNeedsRex(r1) ||
(!(op.flags & IF_BYTEREG) && byteRegNeedsRex(r2))) {
rex |= 0x40;
}
r1 = byteRegEncodeNumber(r1, highByteReg);
r2 = byteRegEncodeNumber(r2, highByteReg);
}
if (r1 & 8) rex |= (reverse ? 1 : 4);
if (r2 & 8) rex |= (reverse ? 4 : 1);
if (rex) {
byte(0x40 | rex);
if (highByteReg) byteRegMisuse();
}
// For two byte opcodes
if ((op.flags & (IF_TWOBYTEOP | IF_IMUL)) != 0) byte(0x0F);
byte(op.table[0] | jcond);
if (reverse) {
emitModrm(3, r2, r1);
} else {
emitModrm(3, r1, r2);
}
}
ALWAYS_INLINE
void emitCRR32(X64Instr op, int jcond, RegNumber r1, RegNumber r2) {
emitCRR(op, jcond, r1, r2, sz::dword);
}
ALWAYS_INLINE
void emitRR(X64Instr op, RegNumber r1, RegNumber r2, int opSz = sz::qword) {
emitCRR(op, 0, r1, r2, opSz);
}
ALWAYS_INLINE
void emitRR32(X64Instr op, RegNumber r1, RegNumber r2) {
emitCRR(op, 0, r1, r2, sz::dword);
}
ALWAYS_INLINE
void emitRR16(X64Instr op, RegNumber r1, RegNumber r2) {
emitCRR(op, 0, r1, r2, sz::word);
}
ALWAYS_INLINE
void emitRR8(X64Instr op, RegNumber r1, RegNumber r2) {
emitCRR(op, 0, r1, r2, sz::byte);
}
// op $imm, %r
// -----------
// Restrictions:
// r cannot be set to noreg
ALWAYS_INLINE
void emitIR(X64Instr op, RegNumber rname, ssize_t imm,
int opSz = sz::qword) {
assert(rname != noreg);
int r = int(rname);
// Opsize prefix
prefixBytes(op.flags, opSz);
// Determine the size of the immediate. This might change opSz so
// do it first.
int immSize;
if ((op.flags & IF_MOV) && opSz == sz::qword) {
immSize = computeImmediateSizeForMovRI64(op, imm, opSz);
} else {
immSize = computeImmediateSize(op, imm, opSz);
}
// REX
unsigned char rex = 0;
bool highByteReg = false;
if (opSz == sz::byte) {
if (byteRegNeedsRex(r)) {
rex |= 0x40;
}
r = byteRegEncodeNumber(r, highByteReg);
}
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
if (r & 8) rex |= 1;
if (rex) {
byte(0x40 | rex);
if (highByteReg) byteRegMisuse();
}
// Use the special rax encoding if the instruction supports it
if (r == int(reg::rax) && immSize == sz::dword &&
(op.flags & IF_RAX)) {
byte(op.table[4]);
emitImmediate(op, imm, immSize);
return;
}
// Use the compact-R encoding if the operand size and the immediate
// size are the same
if ((op.flags & IF_COMPACTR) && immSize == opSz) {
byte(op.table[5] | (r & 7));
emitImmediate(op, imm, immSize);
return;
}
// For two byte opcodes
if ((op.flags & (IF_TWOBYTEOP | IF_IMUL)) != 0) byte(0x0F);
int rval = op.table[3];
// shift/rotate instructions have special opcode when
// immediate is 1
if ((op.flags & IF_SHIFT) != 0 && imm == 1) {
byte(0xd1);
emitModrm(3, rval, r);
// don't emit immediate
return;
}
int opcode = (immSize == sz::byte && opSz != sz::byte) ?
(op.table[2] | 2) : op.table[2];
byte(opcode);
emitModrm(3, rval, r);
emitImmediate(op, imm, immSize);
}
ALWAYS_INLINE
void emitIR32(X64Instr op, RegNumber r, ssize_t imm) {
emitIR(op, r, imm, sz::dword);
}
ALWAYS_INLINE
void emitIR16(X64Instr op, RegNumber r, ssize_t imm) {
emitIR(op, r, safe_cast<int16_t>(imm), sz::word);
}
ALWAYS_INLINE
void emitIR8(X64Instr op, RegNumber r, ssize_t imm) {
emitIR(op, r, safe_cast<int8_t>(imm), sz::byte);
}
// op $imm, %r2, %r1
// -----------------
// Restrictions:
// r1 cannot be set to noreg
// r2 cannot be set to noreg
ALWAYS_INLINE
void emitIRR(X64Instr op, RegNumber rn1, RegNumber rn2, ssize_t imm,
int opSz = sz::qword) {
assert(rn1 != noreg && rn2 != noreg);
int r1 = int(rn1);
int r2 = int(rn2);
bool reverse = ((op.flags & IF_REVERSE) != 0);
// Opsize prefix
prefixBytes(op.flags, opSz);
// REX
unsigned char rex = 0;
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
bool highByteReg = false;
if (opSz == sz::byte || (op.flags & IF_BYTEREG)) {
if (byteRegNeedsRex(r1) ||
(!(op.flags & IF_BYTEREG) && byteRegNeedsRex(r2))) {
rex |= 0x40;
}
r1 = byteRegEncodeNumber(r1, highByteReg);
r2 = byteRegEncodeNumber(r2, highByteReg);
}
if (r1 & 8) rex |= (reverse ? 1 : 4);
if (r2 & 8) rex |= (reverse ? 4 : 1);
if (rex) {
byte(0x40 | rex);
if (highByteReg) byteRegMisuse();
}
// Determine the size of the immediate
int immSize = computeImmediateSize(op, imm, opSz);
if (op.flags & IF_TWOBYTEOP || op.flags & IF_THREEBYTEOP) byte(0x0F);
if (op.flags & IF_THREEBYTEOP) byte(0x3a);
int opcode = (immSize == sz::byte && opSz != sz::byte &&
(op.flags & IF_ROUND) == 0) ?
(op.table[2] | 2) : op.table[2];
byte(opcode);
if (reverse) {
emitModrm(3, r2, r1);
} else {
emitModrm(3, r1, r2);
}
emitImmediate(op, imm, immSize);
}
ALWAYS_INLINE
void emitCI(X64Instr op, int jcond, ssize_t imm, int opSz = sz::qword) {
// Opsize prefix
prefixBytes(op.flags, opSz);
// REX
if ((op.flags & IF_NO_REXW) == 0) {
byte(0x48);
}
// Determine the size of the immediate
int immSize = computeImmediateSize(op, imm, opSz);
// Emit opcode
if ((op.flags & IF_JCC) != 0) {
// jcc is weird so we handle it separately
if (immSize != sz::byte) {
byte(0x0F);
byte(jcond | 0x80);
} else {
byte(jcond | 0x70);
}
} else {
int opcode = (immSize == sz::byte && opSz != sz::byte) ?
(op.table[2] | 2) : op.table[2];
byte(jcond | opcode);
}
emitImmediate(op, imm, immSize);
}
ALWAYS_INLINE
void emitI(X64Instr op, ssize_t imm, int opSz = sz::qword) {
emitCI(op, 0, imm, opSz);
}
ALWAYS_INLINE
void emitJ8(X64Instr op, ssize_t imm) {
assert((op.flags & IF_JCC) == 0);
ssize_t delta = imm - ((ssize_t)codeBlock.frontier() + 2);
// Emit opcode and 8-bit immediate
byte(0xEB);
byte(safe_cast<int8_t>(delta));
}
ALWAYS_INLINE
void emitCJ8(X64Instr op, int jcond, ssize_t imm) {
// this is for jcc only
assert(op.flags & IF_JCC);
ssize_t delta = imm - ((ssize_t)codeBlock.frontier() + 2);
// Emit opcode
byte(jcond | 0x70);
// Emit 8-bit offset
byte(safe_cast<int8_t>(delta));
}
ALWAYS_INLINE
void emitJ32(X64Instr op, ssize_t imm) {
// call and jmp are supported, jcc is not supported
assert((op.flags & IF_JCC) == 0);
int32_t delta =
safe_cast<int32_t>(imm - ((ssize_t)codeBlock.frontier() + 5));
uint8_t *bdelta = (uint8_t*)δ
uint8_t instr[] = { op.table[2],
bdelta[0], bdelta[1], bdelta[2], bdelta[3] };
bytes(5, instr);
}
ALWAYS_INLINE
void emitCJ32(X64Instr op, int jcond, ssize_t imm) {
// jcc is supported, call and jmp are not supported
assert(op.flags & IF_JCC);
int32_t delta =
safe_cast<int32_t>(imm - ((ssize_t)codeBlock.frontier() + 6));
uint8_t* bdelta = (uint8_t*)δ
uint8_t instr[6] = { 0x0f, uint8_t(0x80 | jcond),
bdelta[0], bdelta[1], bdelta[2], bdelta[3] };
bytes(6, instr);
}
// op disp(%br,%ir,s)
// (for reverse == false, hasImmediate == false, r == noreg)
// op $imm, disp(%br,%ir,s)
// (for reverse == false, hasImmediate == true, r == noreg)
// op %r, disp(%br,%ir,s)
// (for reverse == false, hasImmediate == false, r != noreg)
// op $imm, %r, disp(%br,%ir,s)
// (for reverse == false, hasImmediate == true, r != noreg)
// op disp(%br,%ir,s), %r
// (for reverse == true, hasImmediate == false, r != noreg)
// op $imm, disp(%br,%ir,s), %r
// (for reverse == true, hasImmediate == true, r != noreg)
// -----------------------------------------------------------------
// Restrictions:
// ir cannot be set to 'sp'
ALWAYS_INLINE
void emitCMX(X64Instr op, int jcond, RegNumber brName, RegNumber irName,
int s, int64_t disp,
RegNumber rName,
bool reverse = false,
ssize_t imm = 0,
bool hasImmediate = false,
int opSz = sz::qword,
bool ripRelative = false) {
assert(irName != rn(reg::rsp));
int ir = int(irName);
int r = int(rName);
int br = int(brName);
// The opsize prefix can be placed here, if the instruction
// deals with words.
// When an instruction has a manditory prefix, it goes before the
// REX byte if we end up needing one.
prefixBytes(op.flags, opSz);
// Determine immSize from the 'hasImmediate' flag
int immSize = sz::nosize;
if (hasImmediate) {
immSize = computeImmediateSize(op, imm, opSz);
}
if ((op.flags & IF_REVERSE) != 0) reverse = !reverse;
// Determine if we need to use a two byte opcode;
// imul is weird so we have a special case for it
bool twoByteOpcode = ((op.flags & IF_TWOBYTEOP) != 0) ||
((op.flags & IF_IMUL) != 0 && rName != noreg &&
immSize == sz::nosize);
// Again, imul is weird
if ((op.flags & IF_IMUL) != 0 && rName != noreg) {
reverse = !reverse;
}
// The wily rex byte, a multipurpose extension to the opcode space for x64
unsigned char rex = 0;
if ((op.flags & IF_NO_REXW) == 0 && opSz == sz::qword) rex |= 8;
bool highByteReg = false;
// XXX: This IF_BYTEREG check is a special case for movzbl: we currently
// encode it using an opSz of sz::byte but it doesn't actually have a
// byte-sized operand like other instructions can.
if (!(op.flags & IF_BYTEREG) && opSz == sz::byte && rName != noreg) {
if (byteRegNeedsRex(r)) {
rex |= 0x40;
}
r = byteRegEncodeNumber(r, highByteReg);
}
if (rName != noreg && (r & 8)) rex |= 4;
if (irName != noreg && (ir & 8)) rex |= 2;
if (brName != noreg && (br & 8)) rex |= 1;
if (rex) {
byte(0x40 | rex);
if (highByteReg) byteRegMisuse();
}
// Emit the opcode
if (immSize != sz::nosize) {
if (twoByteOpcode) byte(0x0F);
if (immSize == sz::byte && opSz != sz::byte) {
byte(op.table[2] | 2 | jcond);
} else {
byte(op.table[2] | jcond);
}
} else {
if (twoByteOpcode) byte(0x0F);
int opcode;
if ((op.flags & IF_IMUL) != 0) {
opcode = (rName == noreg) ? op.table[1] : op.table[0];
} else {
opcode = reverse ? op.table[1] : op.table[0];
}
byte(opcode | jcond);
}
// SIB byte if:
// 1. We're using an index register.
// 2. The base register is rsp-like.
// 3. We're doing a baseless disp access and it is not rip-relative.
bool sibIsNeeded =
ir != int(noreg) || /* 1 */
br == int(reg::rsp) || br == int(reg::r12) || /* 2 */
(br == int(noreg) && !ripRelative);
// If there is no register and no immediate, use the /r value
if (r == int(noreg)) r = op.table[3];
// If noreg was specified for 'ir', we use
// the encoding for the sp register
if (ir == int(noreg)) ir = 4;
int dispSize = sz::nosize;
if (disp != 0) {
if (!ripRelative && disp <= 127 && disp >= -128) {
dispSize = sz::byte;
} else {
dispSize = sz::dword;
}
}
// Set 'mod' based on the size of the displacement
int mod;
switch (dispSize) {
case sz::nosize: mod = 0; break;
case sz::byte: mod = 1; break;
default: mod = 2; break;
}
// Handle special cases for 'br'
if (br == int(noreg)) {
// If noreg was specified for 'br', we use the encoding
// for the rbp register (or rip, if we're emitting a
// rip-relative instruction), and we must set mod=0 and
// "upgrade" to a DWORD-sized displacement
br = 5;
mod = 0;
dispSize = sz::dword;
} else if ((br & 7) == 5 && dispSize == sz::nosize) {
// If br == rbp and no displacement was specified, we
// must "upgrade" to using a 1-byte displacement value
dispSize = sz::byte;
mod = 1;
}
// Emit modr/m and the sib
if (sibIsNeeded) {
// s: 0 1 2 3 4 5 6 7 8
static const int scaleLookup[] = { -1, 0, 1, -1, 2, -1, -1, -1, 3 };
assert(s > 0 && s <= 8);
int scale = scaleLookup[s];
assert(scale != -1);
emitModrm(mod, r, 4);
byte((scale << 6) | ((ir & 7) << 3) | (br & 7));
} else {
emitModrm(mod, r, br);
}
// Emit displacement if needed
if (dispSize == sz::dword) {
if (ripRelative) {
disp -= (int64_t)codeBlock.frontier() + immSize + dispSize;
}
dword(disp);
} else if (dispSize == sz::byte) {
byte(disp & 0xff);
}
// Emit immediate if needed
if (immSize != sz::nosize) {
emitImmediate(op, imm, immSize);
}
}
ALWAYS_INLINE
void emitIM(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
ssize_t imm, int opSz = sz::qword) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, imm, true, opSz);
}
ALWAYS_INLINE
void emitIM8(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
ssize_t imm) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, imm, true,
sz::byte);
}
ALWAYS_INLINE
void emitIM16(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
ssize_t imm) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, imm, true,
sz::word);
}
ALWAYS_INLINE
void emitIM32(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
ssize_t imm) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, imm, true, sz::dword);
}
ALWAYS_INLINE
void emitRM(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r, int opSz = sz::qword) {
emitCMX(op, 0, br, ir, s, disp, r, false, 0, false, opSz);
}
ALWAYS_INLINE
void emitRM32(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, false, 0, false, sz::dword);
}
ALWAYS_INLINE
void emitRM16(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, false, 0, false, sz::word);
}
ALWAYS_INLINE
void emitRM8(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, false, 0, false, sz::byte);
}
ALWAYS_INLINE
void emitCMR(X64Instr op, int jcond, RegNumber br, RegNumber ir,
int s, int disp, RegNumber r, int opSz = sz::qword) {
emitCMX(op, jcond, br, ir, s, disp, r, true, 0, false, opSz);
}
ALWAYS_INLINE
void emitMR(X64Instr op, RegNumber br, RegNumber ir, int s, int64_t disp,
RegNumber r, int opSz = sz::qword, bool ripRelative = false) {
emitCMX(op, 0, br, ir, s, disp, r, true, 0, false, opSz, ripRelative);
}
ALWAYS_INLINE
void emitMR32(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, true, 0, false, sz::dword);
}
ALWAYS_INLINE
void emitMR16(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, true, 0, false, sz::word);
}
ALWAYS_INLINE
void emitMR8(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r) {
emitCMX(op, 0, br, ir, s, disp, r, true, 0, false, sz::byte);
}
ALWAYS_INLINE
void emitIRM(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r, ssize_t imm, int opSz = sz::qword) {
emitCMX(op, 0, br, ir, s, disp, r, false, imm, true, opSz);
}
ALWAYS_INLINE
void emitIMR(X64Instr op, RegNumber br, RegNumber ir, int s, int disp,
RegNumber r, ssize_t imm, int opSz = sz::qword) {
emitCMX(op, 0, br, ir, s, disp, r, true, imm, true, opSz);
}
ALWAYS_INLINE
void emitM(X64Instr op, RegNumber br, RegNumber ir, int s, int64_t disp,
int opSz = sz::qword, bool ripRelative = false) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, 0, false, opSz,
ripRelative);
}
ALWAYS_INLINE
void emitM32(X64Instr op, RegNumber br, RegNumber ir, int s, int disp) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, 0, false, sz::dword);
}
ALWAYS_INLINE
void emitM16(X64Instr op, RegNumber br, RegNumber ir, int s, int disp) {
emitCMX(op, 0, br, ir, s, disp, noreg, false, 0, false, sz::word);
}
ALWAYS_INLINE
void emitCM(X64Instr op, int jcond, RegNumber br,
RegNumber ir, int s, int disp, int opSz = sz::qword) {
emitCMX(op, jcond, br, ir, s, disp, noreg, false, 0, false, opSz);
}
// emit (with no arguments)
ALWAYS_INLINE
void emit(X64Instr op) {
if ((op.flags & IF_NO_REXW) == 0) {
byte(0x48);
}
byte(op.table[5]);
}
// Segment register prefixes.
X64Assembler& fs() { byte(0x64); return *this; }
X64Assembler& gs() { byte(0x65); return *this; }
public:
/*
* The following functions use a naming convention for an older API
* to the assembler; conditional loads and moves haven't yet been
* ported.
*/
// CMOVcc [rbase + off], rdest
inline void cload_reg64_disp_reg64(ConditionCode cc, Reg64 rbase,
int off, Reg64 rdest) {
emitCMX(instr_cmovcc, cc, rn(rbase), noreg, sz::byte, off, rn(rdest),
false /*reverse*/);
}
inline void cload_reg64_disp_reg32(ConditionCode cc, Reg64 rbase,
int off, Reg32 rdest) {
emitCMX(instr_cmovcc, cc, rn(rbase), noreg, sz::byte, off, rn(rdest),
false /*reverse*/,
0 /*imm*/,
false /*hasImmediate*/,
sz::dword /*opSz*/);
}
inline void cmov_reg64_reg64(ConditionCode cc, Reg64 rsrc, Reg64 rdest) {
emitCRR(instr_cmovcc, cc, rn(rsrc), rn(rdest));
}
private:
bool byteRegNeedsRex(int rn) const {
// Without a rex, 4 through 7 mean the high 8-bit byte registers.
return rn >= 4 && rn <= 7;
}
int byteRegEncodeNumber(int rn, bool& seenHigh) const {
// We flag a bit in ah, ch, dh, bh so byteRegNeedsRex doesn't
// trigger.
if (rn & 0x80) seenHigh = true;
return rn & ~0x80;
}
// In 64-bit mode, you can't mix accesses to high byte registers
// with low byte registers other than al,cl,bl,dl. We assert this.
void byteRegMisuse() const {
assert(!"High byte registers can't be used with new x64 registers, or"
" anything requiring a REX prefix");
}
int computeImmediateSize(X64Instr op,
ssize_t imm,
int opsize = sz::dword) {
// Most instructions take a 32-bit or 16-bit immediate,
// depending on the presence of the opsize prefix (0x66).
int immSize = opsize == sz::word ? sz::word : sz::dword;
// ret always takes a 16-bit immediate.
if (op.flags & IF_RET) {
immSize = sz::word;
}
// Use an 8-bit immediate if the instruction supports it and if
// the immediate value fits in a byte
if (deltaFits(imm, sz::byte) && (op.flags & IF_HAS_IMM8) != 0) {
immSize = sz::byte;
}
return immSize;
}
void emitModrm(int x, int y, int z) {
byte((x << 6) | ((y & 7) << 3) | (z & 7));
}
/*
* The mov instruction supports an 8 byte immediate for the RI
* address mode when opSz is qword. It also supports a 4-byte
* immediate with opSz qword (the immediate is sign-extended).
*
* On the other hand, if it fits in 32-bits as an unsigned, we can
* change opSz to dword, which will zero the top 4 bytes instead of
* sign-extending.
*/
int computeImmediateSizeForMovRI64(X64Instr op, ssize_t imm, int& opSz) {
assert(opSz == sz::qword);
if (deltaFits(imm, sz::dword)) {
return computeImmediateSize(op, imm);
}
if (magFits(imm, sz::dword)) {
opSz = sz::dword;
return sz::dword;
}
return sz::qword;
}
void emitImmediate(X64Instr op, ssize_t imm, int immSize) {
if (immSize == sz::nosize) {
return;
}
if ((op.flags & (IF_SHIFT | IF_SHIFTD)) == 0) {
if (immSize == sz::dword) {
dword(imm);
} else if (immSize == sz::byte) {
byte(imm);
} else if (immSize == sz::word) {
word(imm);
} else {
qword(imm);
}
} else {
// we always use a byte-sized immediate for shift instructions
byte(imm);
}
}
void prefixBytes(unsigned long flags, int opSz) {
if (opSz == sz::word && !(flags & IF_RET)) byte(kOpsizePrefix);
if (flags & IF_66PREFIXED) byte(0x66);
if (flags & IF_F2PREFIXED) byte(0xF2);
if (flags & IF_F3PREFIXED) byte(0xF3);
}
private:
RegNumber rn(Reg8 r) { return RegNumber(int(r)); }
RegNumber rn(Reg16 r) { return RegNumber(int(r)); }
RegNumber rn(Reg32 r) { return RegNumber(int(r)); }
RegNumber rn(Reg64 r) { return RegNumber(int(r)); }
RegNumber rn(RegXMM r) { return RegNumber(int(r)); }
// Wraps a bunch of the emit* functions to make using them with the
// typed wrappers more terse. We should have these replace
// the emit functions eventually.
#define UMR(m) rn(m.r.base), rn(m.r.index), m.r.scale, m.r.disp
#define URIP(m) noreg, noreg, sz::byte, m.r.disp
void instrR(X64Instr op, Reg64 r) { emitR(op, rn(r)); }
void instrR(X64Instr op, Reg32 r) { emitR32(op, rn(r)); }
void instrR(X64Instr op, Reg16 r) { emitR16(op, rn(r)); }
void instrR(X64Instr op, Reg8 r) { emitR(op, rn(r), sz::byte); }
void instrRR(X64Instr op, Reg64 x, Reg64 y) { emitRR(op, rn(x), rn(y)); }
void instrRR(X64Instr op, Reg32 x, Reg32 y) { emitRR32(op, rn(x), rn(y)); }
void instrRR(X64Instr op, Reg16 x, Reg16 y) { emitRR16(op, rn(x), rn(y)); }
void instrRR(X64Instr op, Reg8 x, Reg8 y) { emitRR8(op, rn(x), rn(y)); }
void instrRR(X64Instr op, RegXMM x, RegXMM y) { emitRR(op, rn(x), rn(y)); }
void instrM(X64Instr op, MemoryRef m) { emitM(op, UMR(m)); }
void instrM(X64Instr op, RIPRelativeRef m) { emitM(op, URIP(m),
sz::qword, true); }
void instrM32(X64Instr op, MemoryRef m) { emitM32(op, UMR(m)); }
void instrM16(X64Instr op, MemoryRef m) { emitM16(op, UMR(m)); }
void instrRM(X64Instr op,
Reg64 r,
MemoryRef m) { emitRM(op, UMR(m), rn(r)); }
void instrRM(X64Instr op,
Reg32 r,
MemoryRef m) { emitRM32(op, UMR(m), rn(r)); }
void instrRM(X64Instr op,
Reg16 r,
MemoryRef m) { emitRM16(op, UMR(m), rn(r)); }
void instrRM(X64Instr op,
Reg8 r,
MemoryRef m) { emitRM8(op, UMR(m), rn(r)); }
void instrRM(X64Instr op,
RegXMM x,
MemoryRef m) { emitRM(op, UMR(m), rn(x)); }
void instrMR(X64Instr op,
MemoryRef m,
Reg64 r) { emitMR(op, UMR(m), rn(r)); }
void instrMR(X64Instr op,
MemoryRef m,
Reg32 r) { emitMR32(op, UMR(m), rn(r)); }
void instrMR(X64Instr op,
MemoryRef m,
Reg16 r) { emitMR16(op, UMR(m), rn(r)); }
void instrMR(X64Instr op,
MemoryRef m,
Reg8 r) { emitMR8(op, UMR(m), rn(r)); }
void instrMR(X64Instr op,
MemoryRef m,
RegXMM x) { emitMR(op, UMR(m), rn(x)); }
void instrMR(X64Instr op,
RIPRelativeRef m,
Reg64 r) { emitMR(op, URIP(m), rn(r),
sz::qword, true); }
void instrMR(X64Instr op,
RIPRelativeRef m,
RegXMM r) { emitMR(op, URIP(m), rn(r),
sz::qword, true); }
void instrIR(X64Instr op, Immed64 i, Reg64 r) {
emitIR(op, rn(r), i.q());
}
void instrIR(X64Instr op, Immed i, Reg64 r) {
emitIR(op, rn(r), i.q());
}
void instrIR(X64Instr op, Immed i, Reg32 r) {
emitIR32(op, rn(r), i.l());
}
void instrIR(X64Instr op, Immed i, Reg16 r) {
emitIR16(op, rn(r), i.w());
}
void instrIR(X64Instr op, Immed i, Reg8 r) {
emitIR8(op, rn(r), i.b());
}
void instrIM(X64Instr op, Immed i, MemoryRef m) {
emitIM(op, UMR(m), i.q());
}
void instrIM32(X64Instr op, Immed i, MemoryRef m) {
emitIM32(op, UMR(m), i.l());
}
void instrIM16(X64Instr op, Immed i, MemoryRef m) {
emitIM16(op, UMR(m), i.w());
}
void instrIM8(X64Instr op, Immed i, MemoryRef m) {
emitIM8(op, UMR(m), i.b());
}
#undef UMR
#undef URIP
CodeBlock& codeBlock;
};
//////////////////////////////////////////////////////////////////////
struct Label : private boost::noncopyable {
explicit Label()
: m_a(nullptr)
, m_address(nullptr)
{}
~Label() {
if (!m_toPatch.empty()) {
assert(m_a && m_address && "Label had jumps but was never set");
}
for (auto& ji : m_toPatch) {
switch (ji.type) {
case Branch::Jmp: ji.a->patchJmp(ji.addr, m_address); break;
case Branch::Jmp8: ji.a->patchJmp8(ji.addr, m_address); break;
case Branch::Jcc: ji.a->patchJcc(ji.addr, m_address); break;
case Branch::Jcc8: ji.a->patchJcc8(ji.addr, m_address); break;
case Branch::Call: ji.a->patchCall(ji.addr, m_address); break;
}
}
}
void jmp(X64Assembler& a) {
addJump(&a, Branch::Jmp);
a.jmp(m_address ? m_address : a.frontier());
}
void jmp8(X64Assembler& a) {
addJump(&a, Branch::Jmp8);
a.jmp8(m_address ? m_address : a.frontier());
}
void jcc(X64Assembler& a, ConditionCode cc) {
addJump(&a, Branch::Jcc);
a.jcc(cc, m_address ? m_address : a.frontier());
}
void jcc8(X64Assembler& a, ConditionCode cc) {
addJump(&a, Branch::Jcc8);
a.jcc8(cc, m_address ? m_address : a.frontier());
}
void call(X64Assembler& a) {
addJump(&a, Branch::Call);
a.call(m_address ? m_address : a.frontier());
}
void jmpAuto(X64Assembler& a) {
assert(m_address);
auto delta = m_address - (a.frontier() + 2);
if (deltaFits(delta, sz::byte)) {
jmp8(a);
} else {
jmp(a);
}
}
void jccAuto(X64Assembler& a, ConditionCode cc) {
assert(m_address);
auto delta = m_address - (a.frontier() + 2);
if (deltaFits(delta, sz::byte)) {
jcc8(a, cc);
} else {
jcc(a, cc);
}
}
friend void asm_label(X64Assembler& a, Label& l) {
assert(!l.m_address && !l.m_a && "Label was already set");
l.m_a = &a;
l.m_address = a.frontier();
}
private:
enum class Branch {
Jcc,
Jcc8,
Jmp,
Jmp8,
Call
};
struct JumpInfo {
Branch type;
X64Assembler* a;
CodeAddress addr;
};
private:
void addJump(X64Assembler* a, Branch type) {
if (m_address) return;
JumpInfo info;
info.type = type;
info.a = a;
info.addr = a->codeBlock.frontier();
m_toPatch.push_back(info);
}
private:
X64Assembler* m_a;
CodeAddress m_address;
std::vector<JumpInfo> m_toPatch;
};
inline void X64Assembler::jmp(Label& l) { l.jmp(*this); }
inline void X64Assembler::jmp8(Label& l) { l.jmp8(*this); }
inline void X64Assembler::jcc(ConditionCode c, Label& l) { l.jcc(*this, c); }
inline void X64Assembler::jcc8(ConditionCode c, Label& l) { l.jcc8(*this, c); }
inline void X64Assembler::call(Label& l) { l.call(*this); }
#define CC(nm, code) \
inline void X64Assembler::j##nm(Label& l) { l.jcc(*this, code); } \
inline void X64Assembler::j##nm##8(Label& l) { l.jcc8(*this, code); }
CCS
#undef CC
//////////////////////////////////////////////////////////////////////
/*
* Select the assembler which contains a given address.
*
* E.g.:
*
* Asm& a = codeBlockChoose(toPatch, a, acold);
* a.patchJmp(...);
*/
inline CodeBlock& codeBlockChoose(CodeAddress addr) {
always_assert_flog(false,
"address {} was not part of any known code block", addr);
}
template<class... Blocks>
CodeBlock& codeBlockChoose(CodeAddress addr, CodeBlock& a, Blocks&... as) {
if (a.contains(addr)) return a;
return codeBlockChoose(addr, as...);
}
//////////////////////////////////////////////////////////////////////
struct DecodedInstruction {
explicit DecodedInstruction(uint8_t* ip) { decode(ip); }
std::string toString();
size_t size() { return m_size; }
bool hasPicOffset() const { return m_flags.picOff; }
uint8_t* picAddress() const;
bool setPicAddress(uint8_t* target);
bool hasOffset() const { return m_offSz != 0; }
int32_t offset() const;
bool hasImmediate() const { return m_immSz; }
int64_t immediate() const;
bool setImmediate(int64_t value);
bool isNop() const;
bool isBranch(bool allowCond = true) const;
bool isCall() const;
bool isJmp() const;
bool isLea() const;
ConditionCode jccCondCode() const;
bool shrinkBranch();
void widenBranch();
uint8_t getModRm() const;
private:
void decode(uint8_t* ip);
bool decodePrefix(uint8_t* ip);
int decodeRexVexXop(uint8_t* ip);
int decodeOpcode(uint8_t* ip);
void determineOperandsMap0(uint8_t* ip);
void determineOperandsMap1(uint8_t* ip);
void determineOperandsMap2(uint8_t* ip);
void determineOperandsMap3(uint8_t* ip);
int decodeModRm(uint8_t* ip);
int decodeImm(uint8_t* ip);
uint8_t* m_ip;
uint32_t m_size;
union {
uint32_t m_flagsVal;
struct {
uint32_t lock : 1;
uint32_t repNE : 1;
uint32_t rep : 1;
uint32_t cs : 1;
uint32_t ss : 1;
uint32_t ds : 1;
uint32_t es : 1;
uint32_t fs : 1;
uint32_t gs : 1;
uint32_t bTaken : 1;
uint32_t bNotTaken : 1;
uint32_t opndSzOvr : 1;
uint32_t addrSzOvr : 1;
uint32_t rex : 1;
uint32_t vex : 1;
uint32_t xop : 1;
uint32_t w : 1;
uint32_t r : 1;
uint32_t x : 1;
uint32_t b : 1;
uint32_t l : 1;
uint32_t def64 : 1;
uint32_t immIsAddr : 1;
uint32_t picOff : 1;
uint32_t hasModRm : 1;
uint32_t hasSib : 1;
} m_flags;
};
uint8_t m_map_select;
uint8_t m_xtra_op;
uint8_t m_opcode;
uint8_t m_immSz;
uint8_t m_offSz;
};
#undef TRACEMOD
#undef logical_const
#undef CCS
}}
#endif
|