This file is indexed.

/usr/include/gnash/snappingrange.h is in gnash-dev 0.8.11~git20160109-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
// 
//   Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012
//   Free Software Foundation, Inc.
// 
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.    See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
// 

#ifndef GNASH_SNAPPINGRANGE_H
#define GNASH_SNAPPINGRANGE_H

#include "Range2d.h"

#include <vector>
#include <iterator>
#include <algorithm>
#include <ostream>
#include <cstdint>

namespace gnash {

namespace geometry {

/// \brief
/// Snapping range class. Can hold a number of 2D ranges and combines 
/// ranges that come very close. This class is used for multiple invalidated
/// bounds calculation.
//
/// Additionally to merge intersecting ranges this class also "snaps" ranges
/// together which "probably" would be rendered in one single step. When the
/// area of the potential merged range is not much greater than the sum of
/// two single range areas, then these two ranges are merged together to one
/// single range. The "snap factor" defines how much bigger the merged area
/// can become to be a snap candidate (it's the maximum allowed factor that
/// the merged area can be greater than the sum).
///
/// Optimally the factor 1.0 would be best, but multiple snapping ranges also
/// increase rendering preprocessing overhead and the factor tries to equalize
/// this. The default value is usually fine for most situations.
///
/// The factor method makes sure that very close, but also very different 
/// shapes, don't get merged, like in the following example:
///
///                    +---+
///                    |   |        
///                    |   |        
///                    |   |        
///                    |   |        
///                    |   |
///                    +---+
///     +-----------------------------------+
///     |                                   |
///     +-----------------------------------+        
///
/// Merging these two ranges would create a much bigger range which in some
/// situations means that rendering is notably slower (for example, when 
/// there is a scaled bitmap behind these shapes).

// Forward declarations.
namespace {

    /// returns true when two ranges should be merged together
    template<typename T> inline bool snaptest(
            const geometry::Range2d<T>& range1,
            const geometry::Range2d<T>& range2, const float snapFactor);
}

template <typename T>
class SnappingRanges2d
{
public:
    typedef geometry::Range2d<T> RangeType;
    typedef std::vector<RangeType> RangeList; 
    typedef typename RangeList::size_type size_type;    

    template<typename U> friend std::ostream& operator<<(std::ostream& os,
                    const SnappingRanges2d<U>& r);
    
    SnappingRanges2d() 
        :
        _snapFactor(1.3f),
        _singleMode(false),
        _rangesLimit(50),
        _combineCounter(0)
    {
    }

    /// Templated copy constructor, for casting between range types
    template <typename U>
    SnappingRanges2d(const SnappingRanges2d<U>& from)
        :
        _snapFactor(from.getSnapFactor()), 
        _singleMode(from.getSingleMode()),
        _rangesLimit(from.getRangeCountLimit()),
        _combineCounter(0)
    {
        if (from.isWorld()) setWorld();
        else if (from.isNull()) setNull();
        else {
            // TODO: can we safely assume that the 'from' parameter was
            //             finalized ?

            // TODO: use visitor pattern !
            for (size_type i = 0, e = from.size(); i != e; ++i) {
                const Range2d<U>& r = from.getRange(i);
                RangeType rc(r);
                add(rc);
            }
        }
    }
    
    /// Sets the snapping factor (which must be > 1.0). Higher factors make
    /// the ranges more attractive for snapping. A good value is usually 1.3.
    void setSnapFactor(const float factor) {
        assert(factor > 1.0f);
        _snapFactor = factor;
    }
    
    float getSnapFactor() const {
        return _snapFactor;
    }
    
    /// if mode==true, then the snapping ranges will act like a normal Range2d
    void setSingleMode(const bool mode) {
        _singleMode = mode;
    }
    
    bool getSingleMode() const {
        return _singleMode;
    }    
    
    /// Sets the maximum number of ranges allowed (to avoid lots of small
    /// ranges)
    void setRangeCountLimit(const size_type limit) {
        _rangesLimit = limit;
    }
    
    size_type getRangeCountLimit() const {
        return _rangesLimit;
    }
    
    /// Copy the snapping settings from another ranges list, without
    /// copying the ranges itself
    void inheritConfig(const SnappingRanges2d<T>& from) {
        _snapFactor = from._snapFactor;
        _singleMode = from._singleMode;
    }
    
    /// Merge two ranges based on snaptest.
    struct ExpandToIfSnap
    {
    public:
        ExpandToIfSnap(const RangeType& rt, const float snapFactor)
            :
            _rt(rt),
            _snapFactor(snapFactor)
        {}
        
        bool operator()(RangeType& r) {
            if (snaptest(r, _rt, _snapFactor)) {
                r.expandTo(_rt);
                return false;
            }
            return true;
        }
    private:
        const RangeType& _rt;
        const float _snapFactor;
    };

    class Scale
    {
    public:
        Scale(const float scale) : _scale(scale) {}
        void operator()(RangeType& r) {
            r.scale(_scale);
        }
    private:
        const float _scale;
    };

    class GrowBy
    {
    public:
        GrowBy(const float factor) : _factor(factor) {}
        void operator()(RangeType& r) {
            r.growBy(_factor);
        }
    private:
        const float _factor;
    };

    class AddTo
    {
    public:
        AddTo(SnappingRanges2d<T>& us) : _this(us) {}
        void operator()(const RangeType& r) {
            _this.add(r);
        }
    private:
        SnappingRanges2d<T>& _this;
    };
    
    class IntersectsRange
    {
    public:
        IntersectsRange(const RangeType& range) : _range(range) {}
        bool operator()(const RangeType& us) {
            return us.intersects(_range);
        }
    private:
        const RangeType& _range;
    };
    
    class ContainsPoint
    {
    public:
        ContainsPoint(const T x, const T y) : _x(x), _y(y) {}
        bool operator()(const RangeType& us) {
            return us.contains(_x, _y);
        }
    private:
        const T _x, _y;
    };
    
    class ContainsRange
    {
    public:
        ContainsRange(const RangeType& range) : _range(range) {}
        bool operator()(const RangeType& us) {
            return us.contains(_range);
        }
    private:
        const RangeType& _range;
    };


    /// Add a Range to the set, merging when possible and appropriate
    void add(const RangeType& range) {
        if (range.isWorld()) {
            setWorld();
            return;
        }
        
        if (range.isNull()) return;
        
        if (_singleMode) {
            if (_ranges.empty()) _ranges.resize(1);
            _ranges[0].expandTo(range);
            return;
        }
        
        ExpandToIfSnap exp(range, _snapFactor);
        if (visit(exp)) return;

        // reached this point we need a new range 
        _ranges.push_back(range);
        
        combineRangesLazy();
    }
    
    /// combines two snapping ranges
    void add(const SnappingRanges2d<T>& other) {
        const RangeList& rl = other._ranges;
        std::for_each(rl.begin(), rl.end(), AddTo(*this));
    }

    /// Grows all ranges by the specified amount 
    void growBy(const T amount) {
    
        if (isWorld() || isNull()) return;
        
        std::for_each(_ranges.begin(), _ranges.end(), GrowBy(amount));
        combineRangesLazy();
    }

    /// Scale all ranges by the specified factor
    void scale(const float factor) {
    
        if (isWorld() || isNull()) return;
        
        std::for_each(_ranges.begin(), _ranges.end(), Scale(factor));
        combineRangesLazy();
    }
    
    /// Resets to NULL range
    void setNull() {
        _ranges.clear();
    }
    
    /// Resets to one range with world flags
    void setWorld() {
        if (isWorld()) return;
        _ranges.resize(1);
        _ranges[0].setWorld();
    }
    
    /// Returns true, when the ranges equal world range
    bool isWorld() const {
        return ((size()==1) && (_ranges.front().isWorld()));
    }
    
    /// Returns true, when there is no range
    bool isNull() const {
        return _ranges.empty();
    }
    
    /// Returns the number of ranges in the list
    size_type size() const {
        finalize();
        return _ranges.size();
    }
    
    /// Returns the range at the specified index
    const RangeType& getRange(size_type index) const {
        finalize();
        assert(index<size());
        return _ranges[index];
    }
    
    /// Return a range that surrounds *all* added ranges. This is used mainly
    /// for compatibilty issues. 
    RangeType getFullArea() const {
        RangeType range;
        
        range.setNull();
        
        int rcount = _ranges.size();
        
        for (int rno=0; rno<rcount; rno++) 
            range.expandTo(_ranges[rno]);
        
        return range;     
    }
    

    /// Returns true if any of the ranges intersect the given range
    //
    /// Note that a NULL range doesn't intersect anything
    /// and a WORLD range intersects everything except a NULL Range.
    ///
    bool intersects(const RangeType& r) const {
    
        finalize();
        return std::find_if(_ranges.begin(), _ranges.end(), IntersectsRange(r))
            != _ranges.end();
    }
    
    /// Returns true if any of the ranges contains the point
    bool contains(T x, T y) const {
    
        finalize();
        return std::find_if(_ranges.begin(), _ranges.end(), ContainsPoint(x, y))
            != _ranges.end();
    }

    /// Returns true if any of the ranges contains the range
    //
    /// Note that a NULL range is not contained in any range and
    /// a WORLD range is onluy contained in another WORLD range.
    ///
    bool contains(const RangeType& r) const {
    
        finalize();
        return std::find_if(_ranges.begin(), _ranges.end(), ContainsRange(r))
            != _ranges.end();
    }

    /// \brief
    /// Returns true if all ranges in the given SnappingRanges2d 
    /// are contained in at least one of the ranges composing this
    /// one.
    ///
    /// Note that a NULL range is not contained in any range and
    /// a WORLD range is onluy contained in another WORLD range.
    ///
    bool contains(const SnappingRanges2d<T>& o) const
    {
    
        finalize();
        // o.finalize(); // should I finalize the other range too ?

        // Null range set doesn't contain and isn't contained by anything
        if ( isNull() ) return false;
        if ( o.isNull() ) return false;

        // World range contains everything (except null ranges)
        if ( isWorld() ) return true;

        // This snappingrange is neither NULL nor WORLD
        // The other can still be WORLD, but in that case the
        // first iteration would return false
        //
        /// TODO: use a visitor !
        for (unsigned rno=0, rcount=o.size(); rno<rcount; rno++) 
        {
            RangeType r = o.getRange(rno);
            if ( ! contains(r) )
            {
                return false;
            }
        }
            
        return true;
    
    }
    
    
    /// Intersect this ranges list with the given ranges list,
    /// updating the current ranges list.
    /// Note this is currently a relatively expensive operation    
    /// for complex lists.
    ///
    void intersect(const SnappingRanges2d<T>& o) 
    {
        if (o.isNull()) {
            setNull();
            return;
        }
        
        if (o.isWorld()) return;
        
        // We create a new ranges set for each range in "o" and
        // then update ourselves with the *union* of these ranges.
        // Anybody knows a better method (in terms of efficieny) ?    
     
        std::vector<SnappingRanges2d<T> > list;
        list.reserve(o.size());
    
        //TODO: use a visitor !
        for (unsigned rno=0, rcount=o.size(); rno<rcount; rno++) {
            
            // add a copy of ourselves to the list
            list.push_back(*this);
            
            // intersect that copy with the single range
            list.back().intersect(o.getRange(rno));
            
        } 
        
        // update ourselves with the union of the "list"
        setNull();
        for (auto& range : list) {
            add(range);
        }
                            
    }
    
    
    /// Intersects this ranges list with the given single range,
    /// updating the current ranges list.
    void intersect(const RangeType& r) 
    {
    
        finalize();

        if (isWorld()) {            // world intersection with X = X
            setNull();    
            add(r);
            return;
        }
        
        if (isNull()) return; // NULL will always remain NULL
        
        if (r.isNull()) {         // X intersection with NULL = NULL
            setNull();
            return;
        }
        
        if (r.isWorld()) return;    // X intersection with WORLD = X
        
        // TODO: use a vector (remember to walk in reverse dir.)
        for (int rno=_ranges.size()-1; rno>=0; rno--) {     
        
            RangeType newrange = Intersection(_ranges[rno], r);
            
            if (newrange.isNull())
                _ranges.erase(_ranges.begin() + rno);
            else             
                _ranges[rno] = newrange;
        }
    }
    
    /// Combines known ranges. Previously merged ranges may have come close
    /// to other ranges. Algorithm could be optimized. 
    void combineRanges() const {
    
        // makes no sense in single mode
        if (_singleMode) return;
    
        bool restart = true;
        
        _combineCounter = 0;
        
        while (restart) {
        
            int rcount = _ranges.size();

            restart=false;
        
            for (int i=0; i<rcount; i++) {
            
                for (int j=i+1; j<rcount; j++) {
                
                    if (snaptest(_ranges[i], _ranges[j], _snapFactor)) {
                        // merge i + j
                        _ranges[i].expandTo(_ranges[j]);
                        
                        _ranges.erase(_ranges.begin() + j);
                        
                        restart=true; // restart from beginning
                        break;
                        
                    } 
                } 
                
                if (restart) break;
            } 
        } 
        
        // limit number of ranges
        if (_ranges.size() > _rangesLimit) {
        
            // We found way too much ranges, so reduce to just one single range.
            // We could also double the factor and try again, but that probably
            // won't make much difference, so we avoid the trouble...
            
            RangeType single = getFullArea();            
            _ranges.resize(1);
            _ranges[0] = single;
        
        }
    
    }
    
    /// Visit the current Ranges set
    //
    /// Visitor functor will be invoked
    /// for each RangeType in the current set.
    /// 
    /// The visitor functor will 
    /// receive a RangeType reference; must return true if
    /// it wants next item or true to exit the loop.
    ///
    /// @return false if the visitor reached the end.
    template<class V> inline bool visit(V& visitor) const
    {
        typename RangeList::iterator it, e;
        for (it = _ranges.begin(), e = _ranges.end(); it != e; ++it) {
            if (!visitor(*it)) break;
        }
        return it != _ranges.end();
    }

    /// Visit the current Ranges set
    //
    /// Visitor functor will be invoked inconditionally
    /// for each RangeType in the current set.
    /// 
    /// The visitor functor will receive a RangeType reference.
    ///
    template<class V> inline void visitAll(V& visitor) const
    {
        for_each(_ranges.begin(), _ranges.end(), visitor);
    }
    
private:

    
    /// Calls combineRanges() once in a while, but not always. Avoids too many
    /// combineRanges() checks, which could slow down everything.
    void combineRangesLazy() const {
        const size_type max = 5;
        ++_combineCounter;
        if (_combineCounter > max) combineRanges();
    }
            
    void finalize() const {
        if (_combineCounter > 0) combineRanges();
    } 
        
    /// The current Ranges list.
    //
    /// Mutable due to lazy finalization. This isn't very nice, but better than
    /// const_cast.
    mutable RangeList _ranges;

    /// snapping factor - see setSnapFactor() 
    float _snapFactor;
    
    /// if set, only a single, outer range is maintained (extended). 
    bool _singleMode;
    
    /// maximum number of ranges allowed
    size_type _rangesLimit;     
    
    /// Counter used in finalizing ranges.
    mutable size_type _combineCounter;
        
};

template <class T>
std::ostream&
operator<< (std::ostream& os, const SnappingRanges2d<T>& r)
{
    if ( r.isNull() ) return os << "NULL";
    if ( r.isWorld() ) return os << "WORLD";

    typedef typename SnappingRanges2d<T>::RangeList R;

    const R& ranges = r._ranges;

    std::copy(ranges.begin(), ranges.end(),
            std::ostream_iterator<typename R::value_type>(os, ","));

    return os;
}
    
namespace {

template<typename T>
inline bool snaptest(const geometry::Range2d<T>& range1,
        const geometry::Range2d<T>& range2, const float snapFactor)
{

    // when they intersect anyway, they should of course be merged! 
    // TODO: not really, a "+" style ranges list might be worth to 
    // remain unmerged (but needs special handling, i.e. create three
    // ranges out of two)...
    if (range1.intersects(range2)) return true;
        
    geometry::Range2d<T> temp = range1;
    temp.expandTo(range2);
    
    return (range1.getArea() + range2.getArea()) * snapFactor >
        temp.getArea();

} 
    
} // anonymous namespace
} // namespace geometry

/// Standard snapping 2d ranges type for invalidated bounds calculation    
typedef geometry::SnappingRanges2d<std::int32_t> InvalidatedRanges;

} //namespace gnash

#endif