This file is indexed.

/usr/include/gnash/asobj/Geometry.h is in gnash-dev 0.8.11~git20160109-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
//
//   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
//   Free Software Foundation, Inc
// 
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
//

#ifndef GNASH_GEOMETRY_H
#define GNASH_GEOMETRY_H

#include "dsodefs.h"
#include "SWFMatrix.h"
#include "SWFRect.h"
#include "Point2d.h"

#include <vector> // for path composition
#include <cmath> // sqrt


// Forward declarations
namespace gnash {
    class LineStyle;
}

namespace gnash { 

/// \brief
/// Defines an edge with a control point and an anchor point.
/// 
/// Could be a quadratic bezier curve, or a straight line(degenerated curve).
///
class Edge
{
public:
    
    // Quadratic bezier: point = p0 * t^2 + p1 * 2t(1-t) + p2 * (1-t)^2
    point cp; // control point, TWIPS
    point ap; // anchor    point, TWIPS

    constexpr Edge()
        :
        cp(0, 0),
        ap(0, 0)
    {}
    
    constexpr Edge(std::int32_t cx, std::int32_t cy, std::int32_t ax,
                   std::int32_t ay)
        :
        cp(cx, cy),
        ap(ax, ay)
    {}

    constexpr Edge(const Edge& from)
        : 
        cp(from.cp),
        ap(from.ap)
    {}

    constexpr Edge(const point& ncp, const point& nap)
        :
        cp(ncp),
        ap(nap)
    {}

    bool straight() const
    {
        return cp == ap;
    }
    
    /// Transform the edge according to the given SWFMatrix.
    void transform(const SWFMatrix& mat)
    {
        mat.transform(ap);
        mat.transform(cp);
    }

    /// Return squared distance between point pt and segment A-B
    static double
    squareDistancePtSeg(const point& p, const point& A, const point& B)
    {
        std::int32_t dx = B.x - A.x;
        std::int32_t dy = B.y - A.y;

        if ( dx == 0 && dy == 0 ) 
        {
            return p.squareDistance(A);
        }

        std::int32_t pdx = p.x - A.x;
        std::int32_t pdy = p.y - A.y;

        double u = (static_cast<double>(pdx) * dx + static_cast<double>(pdy) * dy ) /
            (static_cast<double>(dx)*dx + static_cast<double>(dy)*dy );

        if (u <= 0)
        {
            return p.squareDistance(A); 
        }

        if (u >= 1)
        {
            return p.squareDistance(B);
        }

        point px(A, B, u); // FIXME: this interpolation introduce a precision loss (point is int-based)
        return p.squareDistance(px);
    }

    /// Return distance between point pt and segment A-B
    static double
    distancePtSeg(const point& pt, const point& A, const point& B)
    {
        const double square = squareDistancePtSeg(pt, A, B);
        return std::sqrt(square);
    }

    /// Find point of the quadratic curve defined by points A,C,B
    //
    /// @param A The first point
    /// @param C The second point (control point)
    /// @param B The third point (anchor point)
    /// @return The point.
    /// @param t the step factor between 0 and 1
    static point
    pointOnCurve(const point& A, const point& C, const point& B, float t)
    {
        point Q1(A, C, t);
        point Q2(C, B, t);
        point R(Q1, Q2, t);

        return R;
    }

    /// Return square distance between point pt and the point on curve found by
    /// applying the T parameter to the quadratic bezier curve function
    //
    /// @param A The first point of the bezier curve
    /// @param C The second point of the bezier curve (control point)
    /// @param B The third point of the bezier curve (anchor point)
    /// @param p The point we want to compute distance from 
    /// @param t the step factor between 0 and 1
    ///
    static std::int64_t squareDistancePtCurve(const point& A,
                         const point& C,
                         const point& B,
                         const point& p, float t)
    {
        return p.squareDistance( pointOnCurve(A, C, B, t) );
    }
};


/// A subset of a shape, a series of edges sharing a single set of styles. 
class DSOEXPORT Path
{
public:
    /// Left fill style index (1-based)
    unsigned m_fill0;

    /// Right fill style index (1-based)
    unsigned m_fill1;

    /// Line style index (1-based)
    unsigned m_line;

    /// Start point of the path
    point ap; 

    /// Edges forming the path
    std::vector<Edge> m_edges;

    /// This flag is set when the path is the first one of a new "sub-shape".
    /// All paths with a higher index in the list belong to the same 
    /// shape unless they have m_new_shape==true on their own.
    /// Sub-shapes affect the order in which outlines and shapes are rendered.
    
    /// Default constructor
    //
    Path()
    {
        reset(0, 0, 0, 0, 0);
    }

    Path(const Path& from)
        : 
        m_fill0(from.m_fill0),
        m_fill1(from.m_fill1),
        m_line(from.m_line),
        ap(from.ap),
        m_edges(from.m_edges)
    {
    }
    
    /// Initialize a path 
    //
    /// @param ax
    ///    X coordinate of path origin in TWIPS
    ///
    /// @param ay
    ///    Y coordinate in path origin in TWIPS
    ///
    /// @param fill0
    ///    Fill style index for left fill (1-based).
    ///    Zero means NO style.
    ///
    /// @param fill1
    ///    Fill style index for right fill (1-based)
    ///    Zero means NO style.
    ///
    /// @param line
    ///    Line style index for right fill (1-based).
    ///    Zero means NO style.
    Path(std::int32_t ax, std::int32_t ay,
            unsigned fill0, unsigned fill1, unsigned line)
    {
        reset(ax, ay, fill0, fill1, line);
    }

    /// Re-initialize a path, maintaining the "new shape" flag untouched
    //
    /// @param ax
    ///    X coordinate of path origin in TWIPS
    ///
    /// @param ay
    ///    Y coordinate in path origin in TWIPS
    ///
    /// @param fill0
    ///    Fill style index for left fill
    ///
    /// @param fill1
    ///    Fill style index for right fill
    //
    /// @param line
    ///    Line style index for right fill
    ///
    void reset(std::int32_t ax, std::int32_t ay,
            unsigned fill0, unsigned fill1, unsigned line)
    // Reset all our members to the given values, and clear our edge list.
    {
        ap.x = ax;
        ap.y = ay;
        m_fill0 = fill0;
        m_fill1 = fill1;
        m_line = line;

        m_edges.resize(0);
        assert(empty());
    }

    /// Expand given SWFRect to include bounds of this path
    //
    /// @param r
    ///    The rectangle to expand with our own bounds
    ///
    /// @param thickness
    ///    The thickess of our lines, half the thickness will
    ///    be added in all directions in swf8+, all of it will
    ///    in swf7-
    ///
    /// @param swfVersion
    ///    SWF version to use.
    ///
    void
    expandBounds(SWFRect& r, unsigned int thickness, int swfVersion) const
    {
        const Path&    p = *this;
        size_t nedges = m_edges.size();
        
        if ( ! nedges ) return; // this path adds nothing

        if (thickness)
        {
            // NOTE: Half of thickness would be enough (and correct) for
            // radius, but that would not match how Flash calculates the
            // bounds using the drawing API.                                                
            unsigned int radius = swfVersion < 8 ? thickness : thickness/2;

            r.expand_to_circle(ap.x, ap.y, radius);
            for (unsigned int j = 0; j<nedges; j++)
            {
                r.expand_to_circle(m_edges[j].ap.x, m_edges[j].ap.y, radius);
                r.expand_to_circle(m_edges[j].cp.x, m_edges[j].cp.y, radius);
            }
        }
        else
        {
            r.expand_to_point(ap.x, ap.y);
            for (unsigned int j = 0; j<nedges; j++)
            {
                r.expand_to_point(m_edges[j].ap.x, p.m_edges[j].ap.y);
                r.expand_to_point(m_edges[j].cp.x, p.m_edges[j].cp.y);
            }
        }
    }

    /// @{ Primitives for the Drawing API
    ///
    /// Name of these functions track Ming interface
    ///

    /// Draw a straight line.
    //
    /// Point coordinates are relative to path origin
    /// and expressed in TWIPS.
    ///
    /// @param x
    ///    X coordinate in TWIPS
    ///
    /// @param y
    ///    Y coordinate in TWIPS
    ///
    void 
    drawLineTo(std::int32_t dx, std::int32_t dy)
    {
        m_edges.emplace_back(dx, dy, dx, dy);
    }

    /// Draw a curve.
    //
    /// Offset values are relative to path origin and
    /// expressed in TWIPS.
    ///
    /// @param cx
    ///    Control point's X coordinate.
    ///
    /// @param cy
    ///    Control point's Y coordinate.
    ///
    /// @param ax
    ///    Anchor point's X ordinate.
    ///
    /// @param ay
    ///    Anchor point's Y ordinate.
    ///
    void 
    drawCurveTo(std::int32_t cdx, std::int32_t cdy, std::int32_t adx, std::int32_t ady)
    {
        m_edges.emplace_back(cdx, cdy, adx, ady);
    }

    /// Remove all edges and reset style infomation 
    void clear()
    {
        m_edges.resize(0);
        m_fill0 = m_fill1 = m_line = 0;
    }

    /// @} Primitives for the Drawing API


    /// Returns true if the last and the first point of the path match
    bool isClosed() const 
    {
        if (m_edges.empty()) return true;
        return m_edges.back().ap == ap; 
    }

    /// Close this path with a straight line, if not already closed
    void close()
    {
        if ( m_edges.empty() ) return;

        // Close it with a straight edge if needed
        const Edge& lastedge = m_edges.back();
        if ( lastedge.ap != ap )
        {
            m_edges.emplace_back(ap, ap);
        }
    }

    /// \brief
    /// Return true if the given point is within the given squared distance
    /// from this path edges.
    //
    /// NOTE: if the path is empty, false is returned.
    ///
    bool
    withinSquareDistance(const point& p, double dist) const
    {
        size_t nedges = m_edges.size();

        if ( ! nedges ) return false;

        point px(ap);
        for (size_t i=0; i<nedges; ++i)
        {
            const Edge& e = m_edges[i];
            point np(e.ap);

            if (e.straight())
            {
                double d = Edge::squareDistancePtSeg(p, px, np);
                if ( d <= dist ) return true;
            }
            else
            {

                const point& A = px;
                const point& C = e.cp;
                const point& B = e.ap;

                // Approximate the curve to segCount segments
                // and compute distance of query point from each
                // segment.
                //
                // TODO: find an apprpriate value for segCount based
                //             on rendering scale ?
                //
                int segCount = 10; 
                point p0(A.x, A.y);
                for (int i=1; i<=segCount; ++i)
                {
                    float t1 = static_cast<float>(i) / segCount;
                    point p1 = Edge::pointOnCurve(A, C, B, t1);

                    // distance from point and segment being an approximation 
                    // of the curve 
                    double d = Edge::squareDistancePtSeg(p, p0, p1);
                    if ( d <= dist ) return true;

                    p0.setTo(p1.x, p1.y);
                }
            }
            px = np;
        }

        return false;
    }

    /// Transform all path coordinates according to the given SWFMatrix.
    void transform(const SWFMatrix& mat)
    {
        mat.transform(ap);
        std::vector<Edge>::iterator it = m_edges.begin(), ie = m_edges.end();
        for(; it != ie; ++it)
        {
            (*it).transform(mat);
        }
    }

    /// Return true if this path contains no edges
    bool empty() const
    {
        return m_edges.empty();
    }

    /// Set the fill to use on the left side
    //
    /// @param f
    ///    The fill index (1-based).
    ///    When this path is added to a DefineShapeTag,
    ///    the index (decremented by 1) will reference an element
    ///    in the FillStyle vector defined for that shape.
    ///    If zero, no fill will be active.
    ///
    void setLeftFill(unsigned f)
    {
        m_fill0 = f;
    }

    unsigned getLeftFill() const
    {
        return m_fill0;
    }

    /// Set the fill to use on the left side
    //
    /// @param f
    ///    The fill index (1-based).
    ///    When this path is added to a DefineShapeTag,
    ///    the index (decremented by 1) will reference an element
    ///    in the FillStyle vector defined for that shape.
    ///    If zero, no fill will be active.
    ///
    void setRightFill(unsigned f)
    {
        m_fill1 = f;
    }

    unsigned getRightFill() const
    {
        return m_fill1;
    }

    /// Set the line style to use for this path
    //
    /// @param f
    ///    The LineStyle index (1-based).
    ///    When this path is added to a DefineShapeTag,
    ///    the index (decremented by 1) will reference an element
    ///    in the LineStyle vector defined for that shape.
    ///    If zero, no fill will be active.
    ///
    void setLineStyle(unsigned i)
    {
        m_line = i;
    }

    unsigned getLineStyle() const
    {
        return m_line;
    }

    /// Return the number of edges in this path
    size_t size() const
    {
        return m_edges.size();
    }

    /// Return a reference to the Nth edge 
    Edge& operator[] (size_t n)
    {
        return m_edges[n];
    }

    /// Return a const reference to the Nth edge 
    const Edge& operator[] (size_t n) const
    {
        return m_edges[n];
    }
}; // end of class Path

namespace geometry
{

bool pointTest(const std::vector<Path>& paths,
    const std::vector<LineStyle>& lineStyles, std::int32_t x,
    std::int32_t y, const SWFMatrix& wm);

} // namespace geometry


} // namespace gnash

#endif // GNASH_GEOMETRY_H


// Local Variables:
// mode: C++
// c-basic-offset: 8 
// tab-width: 8
// indent-tabs-mode: t
// End: