/usr/lib/python2.7/dist-packages/Globs/statistics.py is in globs 0.2.0~svn50-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | ## statistics.py
##
## GL O.B.S.: GL Open Benchmark Suite
## Copyright (C) 2006-2007 Angelo Theodorou <encelo@users.sourceforge.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##
import array as a
try:
import numpy as n
except ImportError:
with_numpy = False # NumPy is not installed!
else:
with_numpy = True
class Statistics_Numpy:
"""Statistics class, Numpy version"""
def __init__(self, names):
self.chunk = 100 # Preallocation chunk size
self.__arrays = {}
self.__sizes = {}
self.__max = {}
self.__min = {}
for name in names:
self.__arrays[name] = n.array(n.zeros(self.chunk))
self.__sizes[name] = 0
self.__max[name] = None
self.__min[name] = None
def __getitem__(self, key):
"""Return the results array of the selected benchmark"""
try:
size = self.__sizes[key]
array = self.__arrays[key][:size]
return array
except KeyError:
return None
def __len__(self):
"""Return the number of available benchmarks arrays"""
return len(self.__arrays)
def append(self, value, name):
"""Append a value in the selected array"""
if name not in self.__arrays:
print(name + " " + _("doesn't exist!"))
return None
size = self.__sizes[name]
array = self.__arrays[name]
if size == len(array):
self.__arrays[name] = n.concatenate([array, n.zeros(self.chunk)])
self.__arrays[name][size] = value
self.__sizes[name] += 1
if value > self.__max[name] or self.__max[name] == None:
self.__max[name] = value
if value < self.__min[name] or self.__min[name] == None:
self.__min[name] = value
def clear(self, name):
"""Erase the selected array"""
try:
self.__arrays[name] = n.array(n.zeros(self.chunk))
self.__sizes[name] = 0
self.__max[name] = None
self.__min[name] = None
except KeyError:
print(name + " " + _("doesn't exist!"))
def get_array(self, name, tail=0):
"""Return the selected array, optionally just a tail of it"""
if name not in self.__arrays:
return None
size = self.__sizes[name]
array = self.__arrays[name][:size]
if slice == 0:
return array
else:
return array[-tail:]
def get_last(self, name):
"""Return the last value in the selected array
It is similar (but not the same!) to get_array(name, slice=1)"""
if name not in self.__arrays:
return None
size = self.__sizes[name]
array = self.__arrays[name][:size]
if size == 0: # Empty array
return None
else:
return array[len(array)-1]
def get_min(self, name):
"""Return the minimum value in the selected array"""
try:
return self.__min[name]
except KeyError:
return None
def get_max(self, name):
"""Return the maximum value in the selected array"""
try:
return self.__max[name]
except KeyError:
return None
def get_avg(self, name):
"""Return the average value in the selected array"""
try:
size = self.__sizes[name]
array = self.__arrays[name][:size]
return n.sum(array)/size
except ZeroDivisionError:
return 0
except KeyError:
return None
class Statistics_Array:
"""Statistics class, built-in array module version"""
def __init__(self, names):
self.__arrays = {}
self.__min = {}
self.__max = {}
for name in names:
self.__arrays[name] = a.array('f')
self.__max[name] = None
self.__min[name] = None
def __getitem__(self, key):
"""Return the results array of the selected benchmark"""
try:
return self.__arrays[key].tolist()
except KeyError:
return None
def __len__(self):
"""Return the number of available benchmarks arrays"""
return len(self.__arrays)
def append(self, value, name):
"""Append a value in the selected array"""
try:
self.__arrays[name].append(value)
if value > self.__max[name] or self.__max[name] == None:
self.__max[name] = value
if value < self.__min[name] or self.__min[name] == None:
self.__min[name] = value
except KeyError:
print(name + " " + _("doesn't exist!"))
return None
def clear(self, name):
"""Erase the selected array"""
try:
del self.__arrays[name][:]
self.__max[name] = None
self.__min[name] = None
except KeyError:
print(name + " " + _("doesn't exist!"))
def get_array(self, name, tail=0):
"""Return the selected array, optionally just a tail of it"""
if name not in self.__arrays:
return None
array = self.__arrays[name]
if tail == 0:
return array.tolist()
else:
return array[-tail:].tolist()
def get_last(self, name):
"""Return the last value in the selected array
It is similar (but not the same!) to get_array(name, slice=1)"""
if name not in self.__arrays:
return None
array = self.__arrays[name]
try:
return array[len(array)-1]
except IndexError: # Empty array
return None
def get_min(self, name):
"""Return the minimum value in the selected array"""
try:
return self.__min[name]
except KeyError:
return None
def get_max(self, name):
"""Return the maximum value in the selected array"""
try:
return self.__max[name]
except KeyError:
return None
def get_avg(self, name):
"""Return the average value in the selected array"""
if name not in self.__arrays:
return None
array = self.__arrays[name]
try:
avg = sum(array) / len(array)
except ZeroDivisionError:
avg = 0
return avg
if with_numpy == True:
Statistics = Statistics_Numpy
else:
Statistics = Statistics_Array
|