This file is indexed.

/usr/share/genius/gel/functions/elementary.gel is in genius-common 1.0.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# The elementary functions are:
# polynomial operations, nth roots,
# exp, log, and everything you can get from these
# In particular, it contains the trig functions and the hyperbolic functions


# These are most relevant here.
SetHelp("rad2deg","functions","Convert radians to degrees");
function rad2deg(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,rad2deg)
	else if(not IsValue(x)) then
		(error("rad2deg: argument not a value");bailout);
	(x*180)/pi
);

SetHelp("deg2rad", "functions", "Convert degrees to radians");
function deg2rad(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,deg2rad)
	else if(not IsValue(x)) then
		(error("deg2rad: argument not a value");bailout);
	(x*pi)/180
);

#FIXME: these may not deal well with zero values.

SetHelp("asin","trigonometry","The arcsin (inverse sin) function");
function asin(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,asin)
	else if(not IsValue(x)) then
		(error("asin: argument not a value");bailout);
	if (x==1) then pi/2 else if (x==-1) then -pi/2
            else atan(x/sqrt(1-x^2))
);
arcsin = asin
SetHelpAlias ("asin", "arcsin");

SetHelp("asinh","trigonometry","The arcsinh (inverse sinh) function");
function asinh(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,asinh)
	else if(not IsValue(x)) then
		(error("asinh: argument not a value");bailout);
	ln(x+sqrt((x^2)+1))
);
arcsinh = asinh
SetHelpAlias ("asinh", "arcsinh");

SetHelp("acos","trigonometry","The arccos (inverse cos) function");
function acos(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acos)
	else if(not IsValue(x)) then
		(error("acos: argument not a value");bailout);
        if (x==0) then pi/2 
           else atan(sqrt(1-x^2)/x)+(if x>0 then 0 else pi)
);
arccos = acos
SetHelpAlias ("acos", "arccos");

SetHelp("acosh","trigonometry","The arccosh (inverse cosh) function");
function acosh(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acosh)
	else if(not IsValue(x)) then
		(error("acosh: argument not a value");bailout);
	ln(x+sqrt((x^2)-1))
);
arccosh = acosh
SetHelpAlias ("acosh", "arccosh");

SetHelp("cot","trigonometry","The cotangent function");
function cot(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,cot)
	else if(not IsValue(x)) then
		(error("cot: argument not a value");bailout);
	1/tan(x)
);

SetHelp("coth","trigonometry","The hyperbolic cotangent function");
function coth(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,coth)
	else if(not IsValue(x)) then
		(error("coth: argument not a value");bailout);
	1/tanh(x)
);

SetHelp("acot","trigonometry","The arccot (inverse cot) function");
function acot(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acot)
	else if(not IsValue(x)) then
		(error("acot: argument not a value");bailout);
	atan(1/x)
);
arccot = acot
SetHelpAlias ("acot", "arccot");

SetHelp("acoth","trigonometry","The arccoth (inverse coth) function");
function acoth(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acoth)
	else if(not IsValue(x)) then
		(error("acoth: argument not a value");bailout);
	atanh(1/x)
);
arccoth = acoth
SetHelpAlias ("acoth", "arccoth");

SetHelp("tanh","trigonometry","The hyperbolic tangent function");
function tanh(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,tanh)
	else if(not IsValue(x)) then
		(error("tanh: argument not a value");bailout);
	sinh(x)/cosh(x)
);

SetHelp("atanh","trigonometry","The arctanh (inverse tanh) function");
function atanh(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,atanh)
	else if(not IsValue(x)) then
		(error("atanh: argument not a value");bailout);
	ln((1+x)/(1-x))/2
);
arctanh = atanh
SetHelpAlias ("atanh", "arctanh");

SetHelp("csc","trigonometry","The cosecant function");
function csc(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,csc)
	else if(not IsValue(x)) then
		(error("csc: argument not a value");bailout);
	1/sin(x)
);

SetHelp("csch","trigonometry","The hyperbolic cosecant function");
function csch(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,csch)
	else if(not IsValue(x)) then
		(error("csch: argument not a value");bailout);
	1/sinh(x)
);

SetHelp("acsc","trigonometry","The inverse cosecant function");
function acsc(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acsc)
	else if(not IsValue(x)) then
		(error("acsch: argument not a value");bailout);
	asin(1/x)
);
arccsc = acsc
SetHelpAlias ("acsc", "arccsc");

SetHelp("acsch","trigonometry","The inverse hyperbolic cosecant function");
function acsch(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,acsch)
	else if(not IsValue(x)) then
		(error("acsc: argument not a value");bailout);
	asinh(1/x)
);
arccsch = acsch
SetHelpAlias ("acsch", "arccsch");

SetHelp("sec","trigonometry","The secant function");
function sec(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,sec)
	else if(not IsValue(x)) then
		(error("sec: argument not a value");bailout);
	1/cos(x)
);

SetHelp("sech","trigonometry","The hyperbolic secant function");
function sech(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,sech)
	else if(not IsValue(x)) then
		(error("sech: argument not a value");bailout);
	1/cosh(x)
);

SetHelp("asec","trigonometry","The inverse secant function");
function asec(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,asec)
	else if(not IsValue(x)) then
		(error("asec: argument not a value");bailout);
	acos(1/x)
);
arcsec = asec
SetHelpAlias ("asec", "arcsec");

SetHelp("asech","trigonometry","The inverse hyperbolic secant function");
function asech(x) = (
	if(IsMatrix(x)) then
		return ApplyOverMatrix(x,asech)
	else if(not IsValue(x)) then
		(error("asech: argument not a value");bailout);
	acosh(1/x)
);
arcsech = asech
SetHelpAlias ("asech", "arcsech");

SetHelp("log","numeric","Logarithm of any base (calls DiscreteLog if in modulo mode), if base is not given, e is used");
function log(x,b...) = (
	m = GetCurrentModulo ();
	if not IsNull (m) then (
		if IsNull (b) or elements(b) > 1 then
			(error("log (discrete): wrong number of arguments");bailout);
		return DiscreteLog (x, b@(1), m)
	);

	if IsNull (b) then
		return ln(x)
	else if elements(b) > 1 then
		(error("log: too many arguments");bailout);
	base = b@(1);

	if IsMatrix(x) or IsMatrix(base) then
		return ApplyOverMatrix2(x,base,log)
	else if(not IsValue(x) or not IsValue(base)) then
		(error("log: arguments not values");bailout);
	ln(x)/ln(base)
);

# This is still used for complex values in the hacky computation in funclib.c
# although for real values we use MPFR
parameter ErrorFunctionTolerance = 10.0^(-10);
SetHelp ("ErrorFunctionTolerance", "parameters", "Tolerance of the ErrorFunction (used for complex values only)")

# This is actually done for complex values inside funclib.c
# This should as some point be replaced by a proper version of erf
#SetHelp("ErrorFunction","functions","The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt")
#function ErrorFunction (x) = (
#	if IsMatrix (x) then
#		return ApplyOverMatrix (x, ErrorFunction)
#	else if not IsValue (x) then
#		(error("ErrorFunction: argument not a value");bailout);
#	twosqrtpi = 2/sqrt(pi);
#	a = 1;
#	s = 0;
#	n = 0;
#	f = 1;
#	xx = x;
#	xsq = x^2;
#	do (
#		t = xx * a * twosqrtpi;
#		s = s + t;
#		increment n;
#		f = f * n;
#		a = ((-1)^n) / (((2*n)+1) * f);
#		xx = xx * xsq
#	) while (|t| > ErrorFunctionTolerance);
#	s
#);
#erf = ErrorFunction
#SetHelpAlias ("ErrorFunction", "erf");

#FIXME: Should probably be in a separate source file
SetHelp("NewtonsMethodPoly","polynomial","Attempt to find a root of a polynomial using Newton's method, returning after two successive values are within epsilon or after maxn tries (then returns null)")
function NewtonsMethodPoly(poly,guess,epsilon,maxn) = (
	pf := PolyToFunction (poly);
	pdf := PolyToFunction (PolyDerivative (poly));
	guess := float(guess);
	for n=1 to maxn do (
		pdfg := pdf(guess);
		if pdfg == 0.0 then (
			error ("NewtonsMethodPoly: division by zero");
			bailout
		);
		guessn := guess - pf(guess)/pdfg;
		if |guessn-guess| <= epsilon then
			return guessn;
		guess := guessn
	);
	null
)