This file is indexed.

/usr/share/genius/examples/vibrating-drumhead-modes.gel is in genius-common 1.0.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Category: Differential Equations
# Name: Vibrating circular drumhead (wave equation)
#
# Make an animation of the various modes of a vibrating circular drumhead.
# The equation is u_{tt} = \nabla^2 u in polar coordinates and the
# drum is of radius 1.  The varius modes n,m are of the form
# BesselJn(n,k*r)*cos(n*theta)*sin(k*t)
# where k is the mth zero of the BesselJn(n,x)
# The superposition is a superposition of 3 different modes,
# with some shifts also applied in the theta direction for
# added complexity

the_answer = AskButtons("Which mode?  n-m where n is the Bessel J_n to use",
                        "0-1", # 1
                        "0-2", # 2
                        "0-3", # 3
                        "1-1", # 4
                        "1-2", # 5
                        "1-3", # 6
                        "2-1", # 7
                        "2-2", # 8
                        "2-3", # 9
                        "Superposition" # 10
                        );

# the zeros of the Bessel functions
knm = [2.4048, 5.5201, 8.6537
       3.8317, 7.0156, 10.1735
       5.1356, 8.4172, 11.6198];

if the_answer == 1 then (
  n = 0;
  k = knm@(n+1,1);
) else if the_answer == 2 then (
  n = 0;
  k = knm@(n+1,2);
) else if the_answer == 3 then (
  n = 0;
  k = knm@(n+1,3);
) else if the_answer == 4 then (
  n = 1;
  k = knm@(n+1,1);
) else if the_answer == 5 then (
  n = 1;
  k = knm@(n+1,2);
) else if the_answer == 6 then (
  n = 1;
  k = knm@(n+1,3);
) else if the_answer == 7 then (
  n = 2;
  k = knm@(n+1,1);
) else if the_answer == 8 then (
  n = 2;
  k = knm@(n+1,2);
) else if the_answer == 9 then (
  n = 2;
  k = knm@(n+1,3);
) else (
  # Superposition
  n = -1; # signals superposition

  # Two put together
  coeff1 = 0.5;
  shift1 = 0.0;
  n1 = 1;
  k1 = knm@(n1+1,2);

  coeff2 = 0.3;
  shift2 = 0.5;
  n2 = 0;
  k2 = knm@(n2+1,3);

  coeff3 = 0.3;
  shift3 = 2;
  n3 = 2;
  k3 = knm@(n3+1,1);
);

SurfacePlotDrawLegends = false; # don't draw the legend
PlotWindowPresent(); # Make sure the window is raised

#One mode
if n >= 0 then (
  for t=0.0 to 10.0 by 0.01 do (
    data = null;
    for r=0 to 1.0 by 1/10.0 do (
      for theta=0 to 2*pi by pi/15 do (
        x = r*cos(theta);
        y = r*sin(theta);
        data = [data;[x,y,BesselJn(n,k*r)*cos(n*theta)*sin(k*t)]]
      )
    );

    # Plot the data
    SurfacePlotData(data,[-1,1,-1,1,-1,1])
  )
) else (
  for t=0.0 to 10.0 by 0.01 do (
    data = null;
    for r=0 to 1.0 by 1/10.0 do (
      for theta=0 to 2*pi by pi/15 do (
        x = r*cos(theta);
        y = r*sin(theta);
        val = coeff1*BesselJn(n1,k1*r)*cos(n1*theta+shift1)*sin(k1*t) +
              coeff2*BesselJn(n2,k2*r)*cos(n2*theta+shift2)*sin(k2*t) +
              coeff3*BesselJn(n3,k3*r)*cos(n3*theta+shift3)*sin(k3*t);
        data = [data;[x,y,val]]
      )
    );

    # Plot the data
    SurfacePlotData(data,[-1,1,-1,1,-1,1])
  )
);