This file is indexed.

/usr/bin/falcon_sense is in falconkit 0.1.3+20140820-1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/python

#################################################################################$$
# Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the
# disclaimer below) provided that the following conditions are met:
#
#  * Redistributions of source code must retain the above copyright
#  notice, this list of conditions and the following disclaimer.
#
#  * Redistributions in binary form must reproduce the above
#  copyright notice, this list of conditions and the following
#  disclaimer in the documentation and/or other materials provided
#  with the distribution.
#
#  * Neither the name of Pacific Biosciences nor the names of its
#  contributors may be used to endorse or promote products derived
#  from this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
# GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
# BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#################################################################################$$

from ctypes import *
import sys
from multiprocessing import Pool
import os
import sysconfig
import falcon_kit

module_path = falcon_kit.__path__[0]

falcon = CDLL(
    module_path+os.path.sep+"falcon."+sysconfig.get_config_var('MULTIARCH')+".so")

falcon.generate_consensus.argtypes = [ POINTER(c_char_p), c_uint, c_uint, c_uint, c_uint, c_uint, c_double ]
falcon.generate_consensus.restype = POINTER(falcon_kit.ConsensusData)
falcon.free_consensus_data.argtypes = [ POINTER(falcon_kit.ConsensusData) ]


def get_alignment(seq1, seq0, edge_tolerance = 1000):

    kup = falcon_kit.kup
    K = 8 
    lk_ptr = kup.allocate_kmer_lookup( 1 << (K * 2) )
    sa_ptr = kup.allocate_seq( len(seq0) )
    sda_ptr = kup.allocate_seq_addr( len(seq0) )
    kup.add_sequence( 0, K, seq0, len(seq0), sda_ptr, sa_ptr, lk_ptr)

    kup.mask_k_mer(1 << (K * 2), lk_ptr, 16)
    kmer_match_ptr = kup.find_kmer_pos_for_seq(seq1, len(seq1), K, sda_ptr, lk_ptr)
    kmer_match = kmer_match_ptr[0]
    aln_range_ptr = kup.find_best_aln_range2(kmer_match_ptr, K, K*50, 25)
    #x,y = zip( * [ (kmer_match.query_pos[i], kmer_match.target_pos[i]) for i in range(kmer_match.count )] )
    aln_range = aln_range_ptr[0]
    kup.free_kmer_match(kmer_match_ptr)
    s1, e1, s0, e0, km_score = aln_range.s1, aln_range.e1, aln_range.s2, aln_range.e2, aln_range.score  
    e1 += K + K/2
    e0 += K + K/2
    kup.free_aln_range(aln_range)
    len_1 = len(seq1)
    len_0 = len(seq0)
    if e1 > len_1: 
        e1 = len_1
    if e0 > len_0:
        e0 = len_0

    aln_size = 1
    if e1 - s1 > 500:

        aln_size = max( e1-s1, e0-s0 )
        aln_score = int(km_score * 48)
        aln_q_s = s1
        aln_q_e = e1
        aln_t_s = s0
        aln_t_e = e0
        
    kup.free_seq_addr_array(sda_ptr)
    kup.free_seq_array(sa_ptr)
    kup.free_kmer_lookup(lk_ptr)

    if s1 > edge_tolerance and s0 > edge_tolerance:
        return 0, 0, 0, 0, 0, 0, "none"

    if len_1 - e1 > edge_tolerance and len_0 - e0 > edge_tolerance:
        return 0, 0, 0, 0, 0, 0, "none"


    if e1 - s1 > 500 and aln_size > 500:
        return s1, s1+aln_q_e-aln_q_s, s0, s0+aln_t_e-aln_t_s, aln_size, aln_score, "aln"
    else:
        return 0, 0, 0, 0, 0, 0, "none"

def get_consensus_without_trim( c_input ):
    seqs, seed_id, config = c_input
    min_cov, K, local_match_count_window, local_match_count_threshold, max_n_read, min_idt, edge_tolerance, trim_size = config
    if len(seqs) > max_n_read:
        seqs = seqs[:max_n_read]
    seqs_ptr = (c_char_p * len(seqs))()
    seqs_ptr[:] = seqs
    consensus_data_ptr = falcon.generate_consensus( seqs_ptr, len(seqs), min_cov, K, 
                                                    local_match_count_window, local_match_count_threshold, min_idt )

    consensus = string_at(consensus_data_ptr[0].sequence)[:]
    eff_cov = consensus_data_ptr[0].eff_cov[:len(consensus)]
    falcon.free_consensus_data( consensus_data_ptr )
    del seqs_ptr
    return consensus, seed_id

def get_consensus_with_trim( c_input ):
    seqs, seed_id, config = c_input
    min_cov, K, local_match_count_window, local_match_count_threshold, max_n_read, min_idt, edge_tolerance, trim_size = config
    trim_seqs = []
    seed = seqs[0]
    for seq in seqs[1:]:
        aln_data = get_alignment(seq, seed, edge_tolerance)
        s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
        if c_status == "none":
            continue
        if aln_score > 1000 and e1 - s1 > 500:
            e1 -= trim_size
            s1 += trim_size
            trim_seqs.append( (e1-s1, seq[s1:e1]) )
    trim_seqs.sort(key = lambda x:-x[0]) #use longest alignment first
    trim_seqs = [x[1] for x in trim_seqs]
        
    if len(trim_seqs) > max_n_read:
        trim_seqs = trim_seqs[:max_n_read]

    trim_seqs = [seed] + trim_seqs


    seqs_ptr = (c_char_p * len(trim_seqs))()
    seqs_ptr[:] = trim_seqs
    consensus_data_ptr = falcon.generate_consensus( seqs_ptr, len(trim_seqs), min_cov, K, 
                                               local_match_count_window, local_match_count_threshold, min_idt )
    consensus = string_at(consensus_data_ptr[0].sequence)[:]
    eff_cov = consensus_data_ptr[0].eff_cov[:len(consensus)]
    falcon.free_consensus_data( consensus_data_ptr )
    del seqs_ptr
    return consensus, seed_id


def get_seq_data(config):
    seqs = []
    seed_id = None
    seqs_data = []
    with sys.stdin as f:
        for l in f:
            l = l.strip().split()
            if len(l) != 2:
                continue
            if l[0] not in ("+", "-"):
                if len(l[1]) > 100:
                    if len(seqs) == 0:
                        seqs.append(l[1]) #the "seed"
                        seed_id = l[0]
                    seqs.append(l[1])
            elif l[0] == "+":
                if len(seqs) > 10:
                    yield (seqs, seed_id, config) 
                #seqs_data.append( (seqs, seed_id) ) 
                seqs = []
                seed_id = None
            elif l[0] == "-":
                #yield (seqs, seed_id)
                #seqs_data.append( (seqs, seed_id) )
                break

if __name__ == "__main__":
    import argparse
    import re
    parser = argparse.ArgumentParser(description='a simple multi-processor consensus sequence generator')
    parser.add_argument('--n_core', type=int, default=24,
                        help='number of processes used for generating consensus')
    parser.add_argument('--local_match_count_window', type=int, default=12,
                        help='local match window size')
    parser.add_argument('--local_match_count_threshold', type=int, default=6,
                        help='local match count threshold')
    parser.add_argument('--min_cov', type=int, default=6,
                        help='minimum coverage to break the consensus')
    parser.add_argument('--max_n_read', type=int, default=500,
                        help='minimum number of reads used in generating the consensus')
    parser.add_argument('--trim', action="store_true", default=False,
                        help='trim the input sequence with k-mer spare dynamic programming to find the mapped range')
    parser.add_argument('--output_full', action="store_true", default=False,
                        help='output uncorrected regions too')
    parser.add_argument('--output_multi', action="store_true", default=False,
                        help='output multi correct regions')
    parser.add_argument('--min_idt', type=float, default=0.70,
                        help='minimum identity of the alignments used for correction')
    parser.add_argument('--edge_tolerance', type=int, default=1000,
                        help='for trimming, the there is unaligned edge leng > edge_tolerance, ignore the read')
    parser.add_argument('--trim_size', type=int, default=50,
                        help='the size for triming both ends from initial sparse aligned region')
    good_region = re.compile("[ACGT]+")
    args = parser.parse_args()
    exe_pool = Pool(args.n_core)
    if args.trim:
        get_consensus = get_consensus_with_trim
    else:
        get_consensus = get_consensus_without_trim

    K = 8
    config = args.min_cov, K, args.local_match_count_window, args.local_match_count_threshold,\
             args.max_n_read, args.min_idt, args.edge_tolerance, args.trim_size
    for res in exe_pool.imap(get_consensus, get_seq_data(config)):  
        cns, seed_id = res
        if args.output_full == True:
            if len(cns) > 500:
                print ">"+seed_id+"_f"
                print cns
        else:
            cns = good_region.findall(cns)
            if len(cns) == 0:
                continue
            if args.output_multi == True:
                seq_i = 0
                for cns_seq in cns:
                    if len(cns_seq) > 500:
                        print ">"+seed_id+"_%d" % seq_i
                        print cns_seq
                    seq_i += 1
            else:
                cns.sort(key = lambda x: len(x))
                if len(cns[-1]) > 500:
                    print ">"+seed_id
                    print cns[-1]