/usr/bin/falcon_sense is in falconkit 0.1.3+20140820-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | #!/usr/bin/python
#################################################################################$$
# Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the
# disclaimer below) provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of Pacific Biosciences nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
# GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
# BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#################################################################################$$
from ctypes import *
import sys
from multiprocessing import Pool
import os
import sysconfig
import falcon_kit
module_path = falcon_kit.__path__[0]
falcon = CDLL(
module_path+os.path.sep+"falcon."+sysconfig.get_config_var('MULTIARCH')+".so")
falcon.generate_consensus.argtypes = [ POINTER(c_char_p), c_uint, c_uint, c_uint, c_uint, c_uint, c_double ]
falcon.generate_consensus.restype = POINTER(falcon_kit.ConsensusData)
falcon.free_consensus_data.argtypes = [ POINTER(falcon_kit.ConsensusData) ]
def get_alignment(seq1, seq0, edge_tolerance = 1000):
kup = falcon_kit.kup
K = 8
lk_ptr = kup.allocate_kmer_lookup( 1 << (K * 2) )
sa_ptr = kup.allocate_seq( len(seq0) )
sda_ptr = kup.allocate_seq_addr( len(seq0) )
kup.add_sequence( 0, K, seq0, len(seq0), sda_ptr, sa_ptr, lk_ptr)
kup.mask_k_mer(1 << (K * 2), lk_ptr, 16)
kmer_match_ptr = kup.find_kmer_pos_for_seq(seq1, len(seq1), K, sda_ptr, lk_ptr)
kmer_match = kmer_match_ptr[0]
aln_range_ptr = kup.find_best_aln_range2(kmer_match_ptr, K, K*50, 25)
#x,y = zip( * [ (kmer_match.query_pos[i], kmer_match.target_pos[i]) for i in range(kmer_match.count )] )
aln_range = aln_range_ptr[0]
kup.free_kmer_match(kmer_match_ptr)
s1, e1, s0, e0, km_score = aln_range.s1, aln_range.e1, aln_range.s2, aln_range.e2, aln_range.score
e1 += K + K/2
e0 += K + K/2
kup.free_aln_range(aln_range)
len_1 = len(seq1)
len_0 = len(seq0)
if e1 > len_1:
e1 = len_1
if e0 > len_0:
e0 = len_0
aln_size = 1
if e1 - s1 > 500:
aln_size = max( e1-s1, e0-s0 )
aln_score = int(km_score * 48)
aln_q_s = s1
aln_q_e = e1
aln_t_s = s0
aln_t_e = e0
kup.free_seq_addr_array(sda_ptr)
kup.free_seq_array(sa_ptr)
kup.free_kmer_lookup(lk_ptr)
if s1 > edge_tolerance and s0 > edge_tolerance:
return 0, 0, 0, 0, 0, 0, "none"
if len_1 - e1 > edge_tolerance and len_0 - e0 > edge_tolerance:
return 0, 0, 0, 0, 0, 0, "none"
if e1 - s1 > 500 and aln_size > 500:
return s1, s1+aln_q_e-aln_q_s, s0, s0+aln_t_e-aln_t_s, aln_size, aln_score, "aln"
else:
return 0, 0, 0, 0, 0, 0, "none"
def get_consensus_without_trim( c_input ):
seqs, seed_id, config = c_input
min_cov, K, local_match_count_window, local_match_count_threshold, max_n_read, min_idt, edge_tolerance, trim_size = config
if len(seqs) > max_n_read:
seqs = seqs[:max_n_read]
seqs_ptr = (c_char_p * len(seqs))()
seqs_ptr[:] = seqs
consensus_data_ptr = falcon.generate_consensus( seqs_ptr, len(seqs), min_cov, K,
local_match_count_window, local_match_count_threshold, min_idt )
consensus = string_at(consensus_data_ptr[0].sequence)[:]
eff_cov = consensus_data_ptr[0].eff_cov[:len(consensus)]
falcon.free_consensus_data( consensus_data_ptr )
del seqs_ptr
return consensus, seed_id
def get_consensus_with_trim( c_input ):
seqs, seed_id, config = c_input
min_cov, K, local_match_count_window, local_match_count_threshold, max_n_read, min_idt, edge_tolerance, trim_size = config
trim_seqs = []
seed = seqs[0]
for seq in seqs[1:]:
aln_data = get_alignment(seq, seed, edge_tolerance)
s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
if c_status == "none":
continue
if aln_score > 1000 and e1 - s1 > 500:
e1 -= trim_size
s1 += trim_size
trim_seqs.append( (e1-s1, seq[s1:e1]) )
trim_seqs.sort(key = lambda x:-x[0]) #use longest alignment first
trim_seqs = [x[1] for x in trim_seqs]
if len(trim_seqs) > max_n_read:
trim_seqs = trim_seqs[:max_n_read]
trim_seqs = [seed] + trim_seqs
seqs_ptr = (c_char_p * len(trim_seqs))()
seqs_ptr[:] = trim_seqs
consensus_data_ptr = falcon.generate_consensus( seqs_ptr, len(trim_seqs), min_cov, K,
local_match_count_window, local_match_count_threshold, min_idt )
consensus = string_at(consensus_data_ptr[0].sequence)[:]
eff_cov = consensus_data_ptr[0].eff_cov[:len(consensus)]
falcon.free_consensus_data( consensus_data_ptr )
del seqs_ptr
return consensus, seed_id
def get_seq_data(config):
seqs = []
seed_id = None
seqs_data = []
with sys.stdin as f:
for l in f:
l = l.strip().split()
if len(l) != 2:
continue
if l[0] not in ("+", "-"):
if len(l[1]) > 100:
if len(seqs) == 0:
seqs.append(l[1]) #the "seed"
seed_id = l[0]
seqs.append(l[1])
elif l[0] == "+":
if len(seqs) > 10:
yield (seqs, seed_id, config)
#seqs_data.append( (seqs, seed_id) )
seqs = []
seed_id = None
elif l[0] == "-":
#yield (seqs, seed_id)
#seqs_data.append( (seqs, seed_id) )
break
if __name__ == "__main__":
import argparse
import re
parser = argparse.ArgumentParser(description='a simple multi-processor consensus sequence generator')
parser.add_argument('--n_core', type=int, default=24,
help='number of processes used for generating consensus')
parser.add_argument('--local_match_count_window', type=int, default=12,
help='local match window size')
parser.add_argument('--local_match_count_threshold', type=int, default=6,
help='local match count threshold')
parser.add_argument('--min_cov', type=int, default=6,
help='minimum coverage to break the consensus')
parser.add_argument('--max_n_read', type=int, default=500,
help='minimum number of reads used in generating the consensus')
parser.add_argument('--trim', action="store_true", default=False,
help='trim the input sequence with k-mer spare dynamic programming to find the mapped range')
parser.add_argument('--output_full', action="store_true", default=False,
help='output uncorrected regions too')
parser.add_argument('--output_multi', action="store_true", default=False,
help='output multi correct regions')
parser.add_argument('--min_idt', type=float, default=0.70,
help='minimum identity of the alignments used for correction')
parser.add_argument('--edge_tolerance', type=int, default=1000,
help='for trimming, the there is unaligned edge leng > edge_tolerance, ignore the read')
parser.add_argument('--trim_size', type=int, default=50,
help='the size for triming both ends from initial sparse aligned region')
good_region = re.compile("[ACGT]+")
args = parser.parse_args()
exe_pool = Pool(args.n_core)
if args.trim:
get_consensus = get_consensus_with_trim
else:
get_consensus = get_consensus_without_trim
K = 8
config = args.min_cov, K, args.local_match_count_window, args.local_match_count_threshold,\
args.max_n_read, args.min_idt, args.edge_tolerance, args.trim_size
for res in exe_pool.imap(get_consensus, get_seq_data(config)):
cns, seed_id = res
if args.output_full == True:
if len(cns) > 500:
print ">"+seed_id+"_f"
print cns
else:
cns = good_region.findall(cns)
if len(cns) == 0:
continue
if args.output_multi == True:
seq_i = 0
for cns_seq in cns:
if len(cns_seq) > 500:
print ">"+seed_id+"_%d" % seq_i
print cns_seq
seq_i += 1
else:
cns.sort(key = lambda x: len(x))
if len(cns[-1]) > 500:
print ">"+seed_id
print cns[-1]
|