/usr/bin/falcon_qrm is in falconkit 0.1.3+20140820-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | #!/usr/bin/python
#################################################################################$$
# Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the
# disclaimer below) provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of Pacific Biosciences nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
# GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
# BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#################################################################################$$
from falcon_kit import *
from pbcore.io import FastaReader
import numpy as np
import collections
import sys
import multiprocessing as mp
from multiprocessing import sharedctypes
from ctypes import *
import math
global sa_ptr, sda_ptr, lk_ptr
global q_seqs,t_seqs, seqs
global n_candidates, max_candidates
seqs = []
RC_MAP = dict( zip("ACGTacgtNn-", "TGCAtgcaNn-") )
all_fivemers = []
cmap = {0:"A", 1:"T", 2:"C", 3:"G"}
for i in range(1024):
mer = []
for j in range(5):
mer.append( cmap[ i >> (2 *j) & 3 ])
all_fivemers.append("".join(mer))
def fivemer_entropy(seq):
five_mer_count = {}
for i in range(len(seq)-5):
five_mer = seq[i:i+5]
five_mer_count.setdefault(five_mer, 0)
five_mer_count[five_mer] += 1
entropy = 0.0
for five_mer in all_fivemers:
p = five_mer_count.get(five_mer, 0) + 1.0
p /= len(seq)
entropy += - p * math.log(p)
return entropy
def get_alignment(seq1, seq0):
K = 8
lk_ptr = kup.allocate_kmer_lookup( 1 << (K * 2) )
sa_ptr = kup.allocate_seq( len(seq0) )
sda_ptr = kup.allocate_seq_addr( len(seq0) )
kup.add_sequence( 0, K, seq0, len(seq0), sda_ptr, sa_ptr, lk_ptr)
kup.mask_k_mer(1 << (K * 2), lk_ptr, 16)
kmer_match_ptr = kup.find_kmer_pos_for_seq(seq1, len(seq1), K, sda_ptr, lk_ptr)
kmer_match = kmer_match_ptr[0]
aln_range_ptr = kup.find_best_aln_range2(kmer_match_ptr, K, K*50, 25)
#x,y = zip( * [ (kmer_match.query_pos[i], kmer_match.target_pos[i]) for i in range(kmer_match.count )] )
aln_range = aln_range_ptr[0]
kup.free_kmer_match(kmer_match_ptr)
s1, e1, s0, e0, km_score = aln_range.s1, aln_range.e1, aln_range.s2, aln_range.e2, aln_range.score
e1 += K + K/2
e0 += K + K/2
kup.free_aln_range(aln_range)
len_1 = len(seq1)
len_0 = len(seq0)
if e1 > len_1:
e1 = len_1
if e0 > len_0:
e0 = len_0
aln_size = 1
if e1 - s1 > 500:
aln_size = max( e1-s1, e0-s0 )
aln_score = int(km_score * 48)
aln_q_s = s1
aln_q_e = e1
aln_t_s = s0
aln_t_e = e0
kup.free_seq_addr_array(sda_ptr)
kup.free_seq_array(sa_ptr)
kup.free_kmer_lookup(lk_ptr)
if s1 > 1000 and s0 > 1000:
return 0, 0, 0, 0, 0, 0, "none"
if len_1 - e1 > 1000 and len_0 - e0 > 1000:
return 0, 0, 0, 0, 0, 0, "none"
if e1 - s1 > 500 and aln_size > 500:
return s1, s1+aln_q_e-aln_q_s, s0, s0+aln_t_e-aln_t_s, aln_size, aln_score, "aln"
else:
return 0, 0, 0, 0, 0, 0, "none"
def get_candidate_aln(hit_input):
global q_seqs, seqs, t_seqs, q_len
global max_candidates
global n_candidates
q_name, hit_index_f, hit_index_r = hit_input
q_seq = q_seqs[q_name]
rtn = []
hit_index = hit_index_f
c = collections.Counter(hit_index)
s = [(c[0],c[1]) for c in c.items() if c[1] > 4]
hit_data = {}
#hit_ids = set()
for p, hit_count in s:
hit_id = seqs[p][0]
hit_data.setdefault(hit_id, [0, 0 ,0])
hit_data[hit_id][0] += hit_count;
if hit_count > hit_data[hit_id][1]:
hit_data[hit_id][1] = hit_count
hit_data[hit_id][2] += 1
hit_data = hit_data.items()
hit_data.sort( key=lambda x:-x[1][0] )
target_count = {}
total_hit = 0
for hit in hit_data[:n_candidates]:
hit_id = hit[0]
hit_count = hit[1][0]
target_count.setdefault(hit_id, 0)
if target_count[hit_id] > max_candidates:
continue
if total_hit > max_candidates:
continue
seq1, seq0 = q_seq, t_seqs[hit_id]
aln_data = get_alignment(seq1, seq0)
if rtn != None:
s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
if c_status == "none":
continue
target_count[hit_id] += 1
total_hit += 1
rtn.append( ( q_name, hit_id, -aln_score, "%0.2f" % (100.0*aln_score/(aln_size+1)),
0, s1, e1, len(seq1),
0, s2, e2, len(seq0), c_status + " %d" % hit_count ) )
r_q_seq = "".join([RC_MAP[c] for c in q_seq[::-1]])
hit_index = hit_index_r
c = collections.Counter(hit_index)
s = [(c[0],c[1]) for c in c.items() if c[1] > 4]
hit_data = {}
#hit_ids = set()
for p, hit_count in s:
hit_id = seqs[p][0]
hit_data.setdefault(hit_id, [0, 0 ,0])
hit_data[hit_id][0] += hit_count;
if hit_count > hit_data[hit_id][1]:
hit_data[hit_id][1] = hit_count
hit_data[hit_id][2] += 1
hit_data = hit_data.items()
hit_data.sort( key=lambda x:-x[1][0] )
target_count = {}
total_hit = 0
for hit in hit_data[:n_candidates]:
hit_id = hit[0]
hit_count = hit[1][0]
target_count.setdefault(hit_id, 0)
if target_count[hit_id] > max_candidates:
continue
if total_hit > max_candidates:
continue
seq1, seq0 = r_q_seq, t_seqs[hit_id]
aln_data = get_alignment(seq1, seq0)
if rtn != None:
s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
if c_status == "none":
continue
target_count[hit_id] += 1
total_hit += 1
rtn.append( ( q_name, hit_id, -aln_score, "%0.2f" % (100.0*aln_score/(aln_size+1)),
0, len(seq1) - e1, len(seq1) - s1, len(seq1),
1, s2, e2, len(seq0), c_status + " %d" % hit_count ) )
return rtn
def build_look_up(seqs, K):
global sa_ptr, sda_ptr, lk_ptr
total_index_base = len(seqs) * 1000
sa_ptr = sharedctypes.RawArray(base_t, total_index_base)
c_sa_ptr = cast(sa_ptr, POINTER(base_t))
kup.init_seq_array(c_sa_ptr, total_index_base)
sda_ptr = sharedctypes.RawArray(seq_coor_t, total_index_base)
c_sda_ptr = cast(sda_ptr, POINTER(seq_coor_t))
lk_ptr = sharedctypes.RawArray(KmerLookup, 1 << (K*2))
c_lk_ptr = cast(lk_ptr, POINTER(KmerLookup))
kup.init_kmer_lookup(c_lk_ptr, 1 << (K*2))
start = 0
for r_name, seq in seqs:
kup.add_sequence( start, K, seq, 1000, c_sda_ptr, c_sa_ptr, c_lk_ptr)
start += 1000
kup.mask_k_mer(1 << (K * 2), c_lk_ptr, 1024)
#return sda_ptr, sa_ptr, lk_ptr
def get_candidate_hits(q_name):
global sa_ptr, sda_ptr, lk_ptr
global q_seqs
K = 14
q_seq = q_seqs[q_name]
rtn = []
c_sda_ptr = cast(sda_ptr, POINTER(seq_coor_t))
c_sa_ptr = cast(sa_ptr, POINTER(base_t))
c_lk_ptr = cast(lk_ptr, POINTER(KmerLookup))
kmer_match_ptr = kup.find_kmer_pos_for_seq(q_seq, len(q_seq), K, c_sda_ptr, c_lk_ptr)
kmer_match = kmer_match_ptr[0]
count = kmer_match.count
hit_index_f = np.array(kmer_match.target_pos[0:count])/1000
kup.free_kmer_match(kmer_match_ptr)
r_q_seq = "".join([RC_MAP[c] for c in q_seq[::-1]])
kmer_match_ptr = kup.find_kmer_pos_for_seq(r_q_seq, len(r_q_seq), K, c_sda_ptr, c_lk_ptr)
kmer_match = kmer_match_ptr[0]
count = kmer_match.count
hit_index_r = np.array(kmer_match.target_pos[0:count])/1000
kup.free_kmer_match(kmer_match_ptr)
return q_name, hit_index_f, hit_index_r
def q_names( q_seqs ):
for q_name, q_seq in q_seqs.items():
yield q_name
def lookup_data_iterator( q_seqs, m_pool ):
for mr in m_pool.imap( get_candidate_hits, q_names(q_seqs)):
yield mr
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='a simple multi-processor overlapper for sequence reads')
parser.add_argument('target_fofn', help='a fasta fofn as the target sequences for overlapping')
parser.add_argument('query_fofn', help='a fasta fofn to be overlapped with sequence in target')
parser.add_argument('--min_len', type=int, default=4000,
help='minimum length of the reads to be considered for overlapping')
parser.add_argument('--n_core', type=int, default=1,
help='number of processes used for detailed overlapping evalution')
parser.add_argument('--d_core', type=int, default=1,
help='number of processes used for k-mer matching')
parser.add_argument('--n_candidates', type=int, default=128,
help='number of candidates for read matching')
parser.add_argument('--max_candidates', type=int, default=64,
help='max number for read matching to output')
args = parser.parse_args()
max_candidates = args.max_candidates
n_candidates = args.n_candidates
q_seqs = {}
t_seqs = {}
if args.min_len < 1200:
args.min_len = 1200
with open(args.target_fofn) as fofn:
for fn in fofn:
fn = fn.strip()
f = FastaReader(fn) # take one commnad line argument of the input fasta file name
for r in f:
if len(r.sequence) < args.min_len:
continue
seq = r.sequence.upper()
for start in range(0, len(seq), 1000):
if start+1000 > len(seq):
break
subseq = seq[start: start+1000]
#if fivemer_entropy(subseq) < 4:
# continue
seqs.append( (r.name, subseq) )
subseq = seq[-1000:]
#if fivemer_entropy(subseq) < 4:
# continue
#seqs.append( (r.name, seq[:1000]) )
seqs.append( (r.name, subseq) )
t_seqs[r.name] = seq
with open(args.query_fofn) as fofn:
for fn in fofn:
fn = fn.strip()
f = FastaReader(fn) # take one commnad line argument of the input fasta file name
for r in f:
seq = r.sequence.upper()
#if fivemer_entropy(seq) < 4:
# continue
q_seqs[r.name] = seq
pool = mp.Pool(args.n_core)
K = 14
build_look_up(seqs, K)
m_pool = mp.Pool(args.d_core)
#for r in pool.imap(get_candidate_aln, lookup_data_iterator( q_seqs)):
for r in pool.imap(get_candidate_aln, lookup_data_iterator(q_seqs, m_pool)):
for h in r:
print " ".join([str(x) for x in h])
|