This file is indexed.

/usr/bin/falcon_qrm is in falconkit 0.1.3+20140820-1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/python

#################################################################################$$
# Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the
# disclaimer below) provided that the following conditions are met:
#
#  * Redistributions of source code must retain the above copyright
#  notice, this list of conditions and the following disclaimer.
#
#  * Redistributions in binary form must reproduce the above
#  copyright notice, this list of conditions and the following
#  disclaimer in the documentation and/or other materials provided
#  with the distribution.
#
#  * Neither the name of Pacific Biosciences nor the names of its
#  contributors may be used to endorse or promote products derived
#  from this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
# GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
# BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#################################################################################$$

from falcon_kit import * 
from pbcore.io import FastaReader
import numpy as np
import collections
import sys
import multiprocessing as mp
from multiprocessing import sharedctypes
from ctypes import *
import math

global sa_ptr, sda_ptr, lk_ptr
global q_seqs,t_seqs, seqs
global n_candidates, max_candidates

seqs = []
RC_MAP = dict( zip("ACGTacgtNn-", "TGCAtgcaNn-") )

all_fivemers = []
cmap = {0:"A", 1:"T", 2:"C", 3:"G"}
for i in range(1024):
    mer = []
    for j in range(5):
        mer.append( cmap[ i >> (2 *j) & 3 ])
    all_fivemers.append("".join(mer))

def fivemer_entropy(seq):
    five_mer_count = {}

    for i in range(len(seq)-5):
        five_mer = seq[i:i+5]
        five_mer_count.setdefault(five_mer, 0)
        five_mer_count[five_mer] += 1
    
    entropy = 0.0
    for five_mer in all_fivemers:
        p = five_mer_count.get(five_mer, 0) + 1.0
        p /= len(seq)
        entropy += - p * math.log(p)

    return entropy

def get_alignment(seq1, seq0):

    K = 8 
    lk_ptr = kup.allocate_kmer_lookup( 1 << (K * 2) )
    sa_ptr = kup.allocate_seq( len(seq0) )
    sda_ptr = kup.allocate_seq_addr( len(seq0) )
    kup.add_sequence( 0, K, seq0, len(seq0), sda_ptr, sa_ptr, lk_ptr)

    kup.mask_k_mer(1 << (K * 2), lk_ptr, 16)
    kmer_match_ptr = kup.find_kmer_pos_for_seq(seq1, len(seq1), K, sda_ptr, lk_ptr)
    kmer_match = kmer_match_ptr[0]
    aln_range_ptr = kup.find_best_aln_range2(kmer_match_ptr, K, K*50, 25)
    #x,y = zip( * [ (kmer_match.query_pos[i], kmer_match.target_pos[i]) for i in range(kmer_match.count )] )
    aln_range = aln_range_ptr[0]
    kup.free_kmer_match(kmer_match_ptr)
    s1, e1, s0, e0, km_score = aln_range.s1, aln_range.e1, aln_range.s2, aln_range.e2, aln_range.score  
    e1 += K + K/2
    e0 += K + K/2
    kup.free_aln_range(aln_range)
    len_1 = len(seq1)
    len_0 = len(seq0)
    if e1 > len_1: 
        e1 = len_1
    if e0 > len_0:
        e0 = len_0

    aln_size = 1
    if e1 - s1 > 500:

        aln_size = max( e1-s1, e0-s0 )
        aln_score = int(km_score * 48)
        aln_q_s = s1
        aln_q_e = e1
        aln_t_s = s0
        aln_t_e = e0
        
    kup.free_seq_addr_array(sda_ptr)
    kup.free_seq_array(sa_ptr)
    kup.free_kmer_lookup(lk_ptr)

    if s1 > 1000 and s0 > 1000:
        return 0, 0, 0, 0, 0, 0, "none"

    if len_1 - e1 > 1000 and len_0 - e0 > 1000:
        return 0, 0, 0, 0, 0, 0, "none"


    if e1 - s1 > 500 and aln_size > 500:
        return s1, s1+aln_q_e-aln_q_s, s0, s0+aln_t_e-aln_t_s, aln_size, aln_score, "aln"
    else:
        return 0, 0, 0, 0, 0, 0, "none"

def get_candidate_aln(hit_input):
    
    global q_seqs, seqs, t_seqs, q_len
    global max_candidates
    global n_candidates
    q_name, hit_index_f, hit_index_r = hit_input
    q_seq = q_seqs[q_name]

    rtn = []
    hit_index = hit_index_f
    c = collections.Counter(hit_index)
    s = [(c[0],c[1]) for c in c.items() if c[1] > 4]
    
    hit_data = {}
    #hit_ids = set()

    for p, hit_count in s:
        hit_id = seqs[p][0]
        hit_data.setdefault(hit_id, [0, 0 ,0])
        hit_data[hit_id][0] += hit_count;
        if hit_count > hit_data[hit_id][1]:
            hit_data[hit_id][1] = hit_count
        hit_data[hit_id][2] += 1

    hit_data = hit_data.items()

    hit_data.sort( key=lambda x:-x[1][0] )

    target_count = {}
    total_hit = 0

    for hit in hit_data[:n_candidates]:
        hit_id = hit[0]
        hit_count = hit[1][0]
        target_count.setdefault(hit_id, 0)
        if target_count[hit_id] > max_candidates:
            continue
        if total_hit > max_candidates:
            continue
        seq1, seq0 = q_seq, t_seqs[hit_id]
        aln_data = get_alignment(seq1, seq0)
        if rtn != None:
             
            s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
            if c_status == "none":
                continue
            target_count[hit_id] += 1
            total_hit += 1
            rtn.append( ( q_name, hit_id, -aln_score, "%0.2f" % (100.0*aln_score/(aln_size+1)), 
                          0, s1, e1, len(seq1), 
                          0, s2, e2, len(seq0), c_status + " %d" % hit_count ) )

    r_q_seq = "".join([RC_MAP[c] for c in q_seq[::-1]])
    
    hit_index = hit_index_r 
    c = collections.Counter(hit_index)
    s = [(c[0],c[1]) for c in c.items() if c[1] > 4]

    hit_data = {}
    #hit_ids = set()

    for p, hit_count in s:
        hit_id = seqs[p][0]
        hit_data.setdefault(hit_id, [0, 0 ,0])
        hit_data[hit_id][0] += hit_count;
        if hit_count > hit_data[hit_id][1]:
            hit_data[hit_id][1] = hit_count
        hit_data[hit_id][2] += 1

    hit_data = hit_data.items()

    hit_data.sort( key=lambda x:-x[1][0] )


    target_count = {}
    total_hit = 0

    for hit in hit_data[:n_candidates]:
        hit_id = hit[0] 
        hit_count = hit[1][0]
        target_count.setdefault(hit_id, 0)
        if target_count[hit_id] > max_candidates:
            continue
        if total_hit > max_candidates:
            continue
        seq1, seq0 = r_q_seq, t_seqs[hit_id]
        aln_data = get_alignment(seq1, seq0)
        if rtn != None:
            s1, e1, s2, e2, aln_size, aln_score, c_status = aln_data
            if c_status == "none":
                continue
            target_count[hit_id] += 1
            total_hit += 1
            rtn.append( ( q_name, hit_id, -aln_score, "%0.2f" % (100.0*aln_score/(aln_size+1)), 
                          0, len(seq1) - e1, len(seq1) - s1, len(seq1), 
                          1, s2, e2, len(seq0), c_status + " %d" % hit_count ) )

    return rtn

def build_look_up(seqs, K):
    global sa_ptr, sda_ptr, lk_ptr

    total_index_base = len(seqs) * 1000
    sa_ptr = sharedctypes.RawArray(base_t, total_index_base)
    c_sa_ptr = cast(sa_ptr, POINTER(base_t))
    kup.init_seq_array(c_sa_ptr, total_index_base)

    sda_ptr = sharedctypes.RawArray(seq_coor_t, total_index_base)
    c_sda_ptr = cast(sda_ptr, POINTER(seq_coor_t))

    lk_ptr = sharedctypes.RawArray(KmerLookup, 1 << (K*2))
    c_lk_ptr = cast(lk_ptr, POINTER(KmerLookup))
    kup.init_kmer_lookup(c_lk_ptr, 1 << (K*2))

    start = 0
    for r_name, seq in seqs:
        kup.add_sequence( start, K, seq, 1000, c_sda_ptr, c_sa_ptr, c_lk_ptr)
        start += 1000

    kup.mask_k_mer(1 << (K * 2), c_lk_ptr, 1024)
    
    #return sda_ptr, sa_ptr, lk_ptr



def get_candidate_hits(q_name):

    global sa_ptr, sda_ptr, lk_ptr
    global q_seqs

    K = 14
    q_seq = q_seqs[q_name]

    rtn = []

    c_sda_ptr = cast(sda_ptr, POINTER(seq_coor_t))
    c_sa_ptr = cast(sa_ptr, POINTER(base_t))
    c_lk_ptr = cast(lk_ptr, POINTER(KmerLookup))

    kmer_match_ptr = kup.find_kmer_pos_for_seq(q_seq, len(q_seq), K, c_sda_ptr, c_lk_ptr)
    kmer_match = kmer_match_ptr[0]
    count = kmer_match.count
    hit_index_f = np.array(kmer_match.target_pos[0:count])/1000
    kup.free_kmer_match(kmer_match_ptr)

    r_q_seq = "".join([RC_MAP[c] for c in q_seq[::-1]])
    
    kmer_match_ptr = kup.find_kmer_pos_for_seq(r_q_seq, len(r_q_seq), K, c_sda_ptr, c_lk_ptr)
    kmer_match = kmer_match_ptr[0]
    count = kmer_match.count
    hit_index_r = np.array(kmer_match.target_pos[0:count])/1000
    kup.free_kmer_match(kmer_match_ptr)
    return  q_name, hit_index_f, hit_index_r


def q_names( q_seqs ):
    for q_name, q_seq in q_seqs.items():
        yield q_name


def lookup_data_iterator( q_seqs, m_pool ):
    for mr in m_pool.imap( get_candidate_hits, q_names(q_seqs)):
        yield mr


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description='a simple multi-processor overlapper for sequence reads')
    parser.add_argument('target_fofn', help='a fasta fofn as the target sequences for overlapping')
    parser.add_argument('query_fofn', help='a fasta fofn  to be overlapped with sequence in target')
    parser.add_argument('--min_len', type=int, default=4000, 
                        help='minimum length of the reads to be considered for overlapping')
    parser.add_argument('--n_core', type=int, default=1,
                        help='number of processes used for detailed overlapping evalution')
    parser.add_argument('--d_core', type=int, default=1, 
                        help='number of processes used for k-mer matching')
    parser.add_argument('--n_candidates', type=int, default=128, 
                        help='number of candidates for read matching')
    parser.add_argument('--max_candidates', type=int, default=64, 
                        help='max number for read matching to output')



    args = parser.parse_args()

    max_candidates = args.max_candidates
    n_candidates = args.n_candidates

    q_seqs = {}
    t_seqs = {}
    if  args.min_len < 1200:
         args.min_len = 1200

    with open(args.target_fofn) as fofn:
        for fn in fofn:
            fn = fn.strip()
            f = FastaReader(fn) # take one commnad line argument of the input fasta file name
            for r in f:
                if len(r.sequence) < args.min_len:
                    continue
                seq = r.sequence.upper()
                for start in range(0, len(seq), 1000):
                    if start+1000 > len(seq):
                        break
                    subseq = seq[start: start+1000]
                    #if fivemer_entropy(subseq) < 4:
                    #    continue
                    seqs.append( (r.name, subseq) )
                subseq = seq[-1000:]
                #if fivemer_entropy(subseq) < 4:
                #    continue
                #seqs.append( (r.name, seq[:1000]) )
                seqs.append( (r.name, subseq) )

                t_seqs[r.name] = seq

    with open(args.query_fofn) as fofn:
        for fn in fofn:
            fn = fn.strip()
            f = FastaReader(fn) # take one commnad line argument of the input fasta file name
            for r in f:
                seq = r.sequence.upper()
                #if fivemer_entropy(seq) < 4:
                #    continue
                q_seqs[r.name] = seq


    pool = mp.Pool(args.n_core)
    K = 14
    build_look_up(seqs, K)
    m_pool = mp.Pool(args.d_core)

    
    #for r in pool.imap(get_candidate_aln, lookup_data_iterator( q_seqs)):
    for r in pool.imap(get_candidate_aln, lookup_data_iterator(q_seqs, m_pool)):
        for h in r:
            print " ".join([str(x) for x in h])