/usr/bin/falcon_fixasm is in falconkit 0.1.3+20140820-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | #!/usr/bin/python
#################################################################################$$
# Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the
# disclaimer below) provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of Pacific Biosciences nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
# GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
# BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#################################################################################$$
import networkx as nx
from pbcore.io import FastaReader
def neighbor_bound(G, v, w, radius):
g1 = nx.ego_graph(G, v, radius=radius, undirected=False)
g2 = nx.ego_graph(G, w, radius=radius, undirected=False)
if len(g1) < radius or len(g2) < radius:
return True
print v, len(g1), w, len(g2), radius
if len(set(g1.edges()) & set(g2.edges())) > 0:
return True
else:
return False
def is_branch_node(G, n):
out_edges = G.out_edges([n])
n2 = [ e[1] for e in out_edges ]
is_branch = False
for i in range(len(n2)):
for j in range(i+1, len(n2)):
v = n2[i]
w = n2[j]
if neighbor_bound(G, v, w, 20) == False:
is_branch = True
break
if is_branch == True:
break
return is_branch
def get_r_path(r_edges, u_path):
tiling_path = []
pos = 0
for i in range( len(u_path) - 1):
v, w = u_path[i:i+2]
r_edge_label, overlap = r_edges[ (v, w) ]
r_edge_seq_id, range_ = r_edge_label.split(":")
range_ = range_.split("-")
s, e = int(range_[0]), int(range_[1])
pos += abs(e-s)
tiling_path.append( (pos, w, s, e) )
return tiling_path
def get_seq(u_edges, r_edges, path):
subseqs = []
pos = []
cur_pos = 0
full_tiling_path = []
for i in range( len(path) - 1):
v, w = path[i:i+2]
pos.append( (v, cur_pos) )
uedges = u_edges[ (v, w) ]
uedges.sort( key= lambda x: len(x[0]) )
subseqs.append( uedges[-1][1] )
r_path = get_r_path( r_edges, uedges[-1][0].split("-") )
r_path = [ ( x[0] + cur_pos, x[1], x[2], x[3]) for x in r_path ]
full_tiling_path.extend( r_path )
cur_pos += len( uedges[-1][1] )
pos.append( (w, cur_pos) )
return "".join(subseqs), pos, full_tiling_path
u_edges = {}
with open("unit_edges.dat") as f:
for l in f:
v, w, path, seq = l.strip().split()
u_edges.setdefault( (v, w), [] )
u_edges[ (v, w) ].append( (path, seq) )
len(u_edges)
r_edges = {}
with open("edges_list") as f:
for l in f:
v, w, edge_label, overlap = l.strip().split()
r_edges[ (v, w) ] = (edge_label, int(overlap) )
primary_tigs_path = {}
primary_path_graph = nx.DiGraph()
begin_nodes = {}
end_nodes ={}
with open("primary_tigs_paths") as f:
for l in f:
l = l.strip().split()
name = l[0][1:]
path = l[1:]
primary_tigs_path[name] = path
if len(path) < 3:
continue
for i in range(len(path)-1):
n1 = path[i].split(":")[0]
n2 = path[i+1].split(":")[0]
primary_path_graph.add_edge( n1, n2)
begin_nodes.setdefault(path[0], [])
begin_nodes[path[0]].append( name )
end_nodes.setdefault(path[-1], [])
end_nodes[path[-1]].append( name )
path_names = primary_tigs_path.keys()
path_names.sort()
primary_path_graph_r = primary_path_graph.reverse()
path_f = open("primary_tigs_paths_c","w")
pos_f = open("primary_tigs_node_pos_c", "w")
tiling_path_f = open("all_tiling_path_c", "w")
with open("primary_tigs_c.fa","w") as out_f:
for name in path_names:
sub_idx = 0
c_path = [ primary_tigs_path[name][0] ]
for v in primary_tigs_path[name][1:]:
break_path = False
vn = v.split(":")[0]
if primary_path_graph.out_degree(vn) > 1:
break_path = is_branch_node(primary_path_graph, vn)
if primary_path_graph.in_degree(vn) > 1:
break_path = is_branch_node(primary_path_graph_r, vn)
if break_path:
c_path.append(v)
seq, pos, full_tiling_path = get_seq(u_edges, r_edges, c_path)
for p, w, s, e in full_tiling_path:
print >> tiling_path_f, "%s_%02d" % (name, sub_idx), p, w, s, e
if len(full_tiling_path) <= 5:
continue
print >>out_f, ">%s_%02d" % (name, sub_idx)
print >>out_f, seq
print >>path_f, ">%s_%02d" % (name, sub_idx), " ".join(c_path)
#print c_path
for node, p in pos:
print >> pos_f, "%s_%02d %s %d" % (name, sub_idx, node, p)
c_path = [v]
sub_idx += 1
else:
c_path.append(v)
if len(c_path) > 1:
seq, pos, full_tiling_path = get_seq(u_edges, r_edges, c_path)
for p, w, s, e in full_tiling_path:
print >> tiling_path_f, "%s_%02d" % (name, sub_idx), p, w, s, e
if len(full_tiling_path) <= 5:
continue
print >>out_f, ">%s_%02d" % (name, sub_idx)
print >>out_f, seq
print >>path_f, ">%s_%02d" % (name, sub_idx), " ".join(c_path)
for node, p in pos:
print >> pos_f, "%s_%02d %s %d" % (name, sub_idx, node, p)
with open("all_tigs_paths") as f:
for l in f:
l = l.strip().split()
name = l[0][1:]
name = name.split("-")
if name[1] == "0000":
continue
if len(name) == 2:
path = l[1:]
seq, pos, full_tiling_path = get_seq(u_edges, r_edges, path)
for p, w, s, e in full_tiling_path:
print >> tiling_path_f, "%s" % ("-".join(name)), p, w, s, e
else:
path = l[1:]
full_tiling_path = get_r_path(r_edges, path)
for p, w, s, e in full_tiling_path:
print >> tiling_path_f, "%s" % ("-".join(name)), p, w, s, e
path_f.close()
tiling_path_f.close()
pos_f.close()
|