This file is indexed.

/usr/share/tcltk/tcllib1.17/math/qcomplex.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# qcomplex.tcl --
#    Small module for dealing with complex numbers
#    The design goal was to make the operations as fast
#    as possible, not to offer a nice interface. So:
#    - complex numbers are represented as lists of two elements
#    - there is hardly any error checking, all arguments are assumed
#      to be complex numbers already (with a few obvious exceptions)
#    Missing:
#    the inverse trigonometric functions and the hyperbolic functions
#

namespace eval ::math::complexnumbers {
    namespace export + - / * conj exp sin cos tan real imag mod arg log pow sqrt tostring
}

# complex --
#    Create a new complex number
# Arguments:
#    real      The real part
#    imag      The imaginary part
# Result:
#    New complex number
#
proc ::math::complexnumbers::complex {real imag} {
    return [list $real $imag]
}

# binary operations --
#    Implement the basic binary operations
# Arguments:
#    z1        First argument
#    z2        Second argument
# Result:
#    New complex number
#
proc ::math::complexnumbers::+ {z1 z2} {
    set result {}
    foreach c $z1 d $z2 {
        lappend result [expr {$c+$d}]
    }
    return $result
}
proc ::math::complexnumbers::- {z1 {z2 {}}} {
    if { $z2 == {} } {
        set z2 $z1
        set z1 {0.0 0.0}
    }
    set result {}
    foreach c $z1 d $z2 {
        lappend result [expr {$c-$d}]
    }
    return $result
}
proc ::math::complexnumbers::* {z1 z2} {
    set result {}
    foreach {c1 d1} $z1 {break}
    foreach {c2 d2} $z2 {break}

    return [list [expr {$c1*$c2-$d1*$d2}] [expr {$c1*$d2+$c2*$d1}]]
}
proc ::math::complexnumbers::/ {z1 z2} {
    set result {}
    foreach {c1 d1} $z1 {break}
    foreach {c2 d2} $z2 {break}

    set denom [expr {$c2*$c2+$d2*$d2}]
    return [list [expr {($c1*$c2+$d1*$d2)/$denom}] \
                 [expr {(-$c1*$d2+$c2*$d1)/$denom}]]
}

# unary operations --
#    Implement the basic unary operations
# Arguments:
#    z1        Argument
# Result:
#    New complex number
#
proc ::math::complexnumbers::conj {z1} {
    foreach {c d} $z1 {break}
    return [list $c [expr {-$d}]]
}
proc ::math::complexnumbers::real {z1} {
    foreach {c d} $z1 {break}
    return $c
}
proc ::math::complexnumbers::imag {z1} {
    foreach {c d} $z1 {break}
    return $d
}
proc ::math::complexnumbers::mod {z1} {
    foreach {c d} $z1 {break}
    return [expr {hypot($c,$d)}]
}
proc ::math::complexnumbers::arg {z1} {
    foreach {c d} $z1 {break}
    if { $c != 0.0 || $d != 0.0 } {
        return [expr {atan2($d,$c)}]
    } else {
        return 0.0
    }
}

# elementary functions --
#    Implement the elementary functions
# Arguments:
#    z1        Argument
#    z2        Second argument (if any)
# Result:
#    New complex number
#
proc ::math::complexnumbers::exp {z1} {
    foreach {c d} $z1 {break}
    return [list [expr {exp($c)*cos($d)}] [expr {exp($c)*sin($d)}]]
}
proc ::math::complexnumbers::cos {z1} {
    foreach {c d} $z1 {break}
    return [list [expr {cos($c)*cosh($d)}] [expr {-sin($c)*sinh($d)}]]
}
proc ::math::complexnumbers::sin {z1} {
    foreach {c d} $z1 {break}
    return [list [expr {sin($c)*cosh($d)}] [expr {cos($c)*sinh($d)}]]
}
proc ::math::complexnumbers::tan {z1} {
    return [/ [sin $z1] [cos $z1]]
}
proc ::math::complexnumbers::log {z1} {
    return [list [expr {log([mod $z1])}] [arg $z1]]
}
proc ::math::complexnumbers::sqrt {z1} {
    set argz [expr {0.5*[arg $z1]}]
    set modz [expr {sqrt([mod $z1])}]
    return [list [expr {$modz*cos($argz)}] [expr {$modz*sin($argz)}]]
}
proc ::math::complexnumbers::pow {z1 z2} {
    return [exp [* [log $z1] $z2]]
}
# transformational functions --
#    Implement transformational functions
# Arguments:
#    z1        Argument
# Result:
#    String like 1+i
#
proc ::math::complexnumbers::tostring {z1} {
    foreach {c d} $z1 {break}
    if { $d == 0.0 } {
        return "$c"
    } else {
        if { $c == 0.0 } {
            if { $d == 1.0 } {
                return "i"
            } elseif { $d == -1.0 } {
                return "-i"
            } else {
                return "${d}i"
            }
        } else {
            if { $d > 0.0 } {
                if { $d == 1.0 } {
                    return "$c+i"
                } else {
                    return "$c+${d}i"
                }
            } else {
                if { $d == -1.0 } {
                    return "$c-i"
                } else {
                    return "$c${d}i"
                }
            }
        }
    }
}

#
# Announce our presence
#
package provide math::complexnumbers 1.0.2