This file is indexed.

/usr/share/tcltk/tcllib1.17/math/polynomials.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# polynomials.tcl --
#    Implement procedures to deal with polynomial functions
#
namespace eval ::math::polynomials {
    variable count 0  ;# Count the number of specific commands
    namespace eval v {}

    namespace export polynomial polynCmd evalPolyn \
                     degreePolyn coeffPolyn allCoeffsPolyn \
                     derivPolyn  primitivePolyn \
                     addPolyn    subPolyn multPolyn \
                     divPolyn    remainderPolyn
}


# polynomial --
#    Return a polynomial definition
#
# Arguments:
#    coeffs       The coefficients of the polynomial
# Result:
#    Polynomial definition
#
proc ::math::polynomials::polynomial {coeffs} {

    set rev_coeffs {}
    set degree     -1
    set index       0
    foreach coeff $coeffs {
        if { ! [string is double -strict $coeff] } {
            return -code error "Coefficients must be real numbers"
        }
        set rev_coeffs [concat $coeff $rev_coeffs]
        if { $coeff != 0.0 } {
            set degree $index
        }
        incr index
    }

    #
    # The leading coefficient must be non-zero
    #
    return [list POLYNOMIAL [lrange $rev_coeffs end-$degree end]]
}

# polynCmd --
#    Return a procedure that implements a polynomial evaluation
#
# Arguments:
#    coeffs       The coefficients of the polynomial (or a definition)
# Result:
#    New procedure
#
proc ::math::polynomials::polynCmd {coeffs} {
    variable count

    if { [lindex $coeffs 0] == "POLYNOMIAL" } {
        set coeffs [allCoeffsPolyn $coeffs]
    }

    set degree [expr {[llength $coeffs]-1}]
    set body "expr \{[join $coeffs +\$x*(][string repeat ) $degree]\}"

    incr count
    set name "::math::polynomials::v::POLYN$count"
    proc $name {x} $body
    return $name
}

# evalPolyn --
#    Evaluate a polynomial at a given coordinate
#
# Arguments:
#    polyn        Polynomial definition
#    x            Coordinate
# Result:
#    Value at x
#
proc ::math::polynomials::evalPolyn {polyn x} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    if { ! [string is double $x] } {
        return -code error "Coordinate must be a real number"
    }

    set result 0.0
    foreach c [lindex $polyn 1] {
        set result [expr {$result*$x+$c}]
    }
    return $result
}

# degreePolyn --
#    Return the degree of the polynomial
#
# Arguments:
#    polyn        Polynomial definition
# Result:
#    The degree
#
proc ::math::polynomials::degreePolyn {polyn} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    return [expr {[llength [lindex $polyn 1]]-1}]
}

# coeffPolyn --
#    Return the coefficient of the index'th degree of the polynomial
#
# Arguments:
#    polyn        Polynomial definition
#    index        Degree for which to return the coefficient
# Result:
#    The coefficient of degree "index"
#
proc ::math::polynomials::coeffPolyn {polyn index} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    set coeffs [lindex $polyn 1]
    if { $index < 0 || $index > [llength $coeffs] } {
        return -code error "Index must be between 0 and [llength $coeffs]"
    }
    return [lindex $coeffs end-$index]
}

# allCoeffsPolyn --
#    Return the coefficients of the polynomial
#
# Arguments:
#    polyn        Polynomial definition
# Result:
#    The coefficients in ascending order
#
proc ::math::polynomials::allCoeffsPolyn {polyn} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    set rev_coeffs [lindex $polyn 1]
    set coeffs {}
    foreach c $rev_coeffs {
        set coeffs [concat $c $coeffs]
    }
    return $coeffs
}

# derivPolyn --
#    Return the derivative of the polynomial
#
# Arguments:
#    polyn        Polynomial definition
# Result:
#    The new polynomial
#
proc ::math::polynomials::derivPolyn {polyn} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    set coeffs [lindex $polyn 1]
    set new_coeffs {}
    set idx        [degreePolyn $polyn]
    foreach c [lrange $coeffs 0 end-1] {
        lappend new_coeffs [expr {$idx*$c}]
        incr idx -1
    }
    return [list POLYNOMIAL $new_coeffs]
}

# primitivePolyn --
#    Return the primitive of the polynomial
#
# Arguments:
#    polyn        Polynomial definition
# Result:
#    The new polynomial
#
proc ::math::polynomials::primitivePolyn {polyn} {
    if { [lindex $polyn 0] != "POLYNOMIAL" } {
        return -code error "Not a polynomial"
    }
    set coeffs [lindex $polyn 1]
    set new_coeffs {}
    set idx        [llength $coeffs]
    foreach c [lrange $coeffs 0 end] {
        lappend new_coeffs [expr {$c/double($idx)}]
        incr idx -1
    }
    return [list POLYNOMIAL [concat $new_coeffs 0.0]]
}

# addPolyn --
#    Add two polynomials and return the result
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The sum of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::addPolyn {polyn1 polyn2} {
    if { [llength $polyn1] == 1 && [string is double -strict $polyn1] } {
        set polyn1 [polynomial $polyn1]
    }
    if { [llength $polyn2] == 1 && [string is double -strict $polyn2] } {
        set polyn2 [polynomial $polyn2]
    }
    if { [lindex $polyn1 0] != "POLYNOMIAL" ||
         [lindex $polyn2 0] != "POLYNOMIAL"    } {
        return -code error "Both arguments must be polynomials or a real number"
    }
    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    set extra1  [expr {[llength $coeffs2]-[llength $coeffs1]}]
    while { $extra1 > 0 } {
        set coeffs1 [concat 0.0 $coeffs1]
        incr extra1 -1
    }

    set extra2  [expr {[llength $coeffs1]-[llength $coeffs2]}]
    while { $extra2 > 0 } {
        set coeffs2 [concat 0.0 $coeffs2]
        incr extra2 -1
    }

    set new_coeffs {}
    foreach c1 $coeffs1 c2 $coeffs2 {
        lappend new_coeffs [expr {$c1+$c2}]
    }
    while { [lindex $new_coeffs 0] == 0.0 } {
        set new_coeffs [lrange $new_coeffs 1 end]
    }
    return [list POLYNOMIAL $new_coeffs]
}

# subPolyn --
#    Subtract two polynomials and return the result
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The difference of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::subPolyn {polyn1 polyn2} {
    if { [llength $polyn1] == 1 && [string is double -strict $polyn1] } {
        set polyn1 [polynomial $polyn1]
    }
    if { [llength $polyn2] == 1 && [string is double -strict $polyn2] } {
        set polyn2 [polynomial $polyn2]
    }
    if { [lindex $polyn1 0] != "POLYNOMIAL" ||
         [lindex $polyn2 0] != "POLYNOMIAL"    } {
        return -code error "Both arguments must be polynomials or a real number"
    }
    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    set extra1  [expr {[llength $coeffs2]-[llength $coeffs1]}]
    while { $extra1 > 0 } {
        set coeffs1 [concat 0.0 $coeffs1]
        incr extra1 -1
    }

    set extra2  [expr {[llength $coeffs1]-[llength $coeffs2]}]
    while { $extra2 > 0 } {
        set coeffs2 [concat 0.0 $coeffs2]
        incr extra2 -1
    }

    set new_coeffs {}
    foreach c1 $coeffs1 c2 $coeffs2 {
        lappend new_coeffs [expr {$c1-$c2}]
    }
    while { [lindex $new_coeffs 0] == 0.0 } {
        set new_coeffs [lrange $new_coeffs 1 end]
    }
    return [list POLYNOMIAL $new_coeffs]
}

# multPolyn --
#    Multiply two polynomials and return the result
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The difference of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::multPolyn {polyn1 polyn2} {
    if { [llength $polyn1] == 1 && [string is double -strict $polyn1] } {
        set polyn1 [polynomial $polyn1]
    }
    if { [llength $polyn2] == 1 && [string is double -strict $polyn2] } {
        set polyn2 [polynomial $polyn2]
    }
    if { [lindex $polyn1 0] != "POLYNOMIAL" ||
         [lindex $polyn2 0] != "POLYNOMIAL"    } {
        return -code error "Both arguments must be polynomials or a real number"
    }

    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    #
    # Take care of the null polynomial
    #
    if { $coeffs1 == {} || $coeffs2 == {} } {
        return [polynomial {}]
    }

    set zeros {}
    foreach c $coeffs1 {
        lappend zeros 0.0
    }

    set new_coeffs [lrange $zeros 1 end]
    foreach c $coeffs2 {
        lappend new_coeffs 0.0
    }

    set idx        0
    foreach c $coeffs1 {
        set term_coeffs {}
        foreach c2 $coeffs2 {
            lappend term_coeffs [expr {$c*$c2}]
        }
        set term_coeffs [concat [lrange $zeros 0 [expr {$idx-1}]] \
                                $term_coeffs \
                                [lrange $zeros [expr {$idx+1}] end]]

        set sum_coeffs {}
        foreach t $term_coeffs n $new_coeffs {
            lappend sum_coeffs [expr {$t+$n}]
        }
        set new_coeffs $sum_coeffs
        incr idx
    }

    return [list POLYNOMIAL $new_coeffs]
}

# divPolyn --
#    Divide two polynomials and return the quotient
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The difference of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::divPolyn {polyn1 polyn2} {
    if { [llength $polyn1] == 1 && [string is double -strict $polyn1] } {
        set polyn1 [polynomial $polyn1]
    }
    if { [llength $polyn2] == 1 && [string is double -strict $polyn2] } {
        set polyn2 [polynomial $polyn2]
    }
    if { [lindex $polyn1 0] != "POLYNOMIAL" ||
         [lindex $polyn2 0] != "POLYNOMIAL"    } {
        return -code error "Both arguments must be polynomials or a real number"
    }

    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    #
    # Take care of the null polynomial
    #
    if { $coeffs1 == {} } {
        return [polynomial {}]
    }
    if { $coeffs2 == {} } {
        return -code error "Denominator can not be zero"
    }

    foreach {quotient remainder} [DivRemPolyn $polyn1 $polyn2] {break}
    return $quotient
}

# remainderPolyn --
#    Divide two polynomials and return the remainder
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The difference of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::remainderPolyn {polyn1 polyn2} {
    if { [llength $polyn1] == 1 && [string is double -strict $polyn1] } {
        set polyn1 [polynomial $polyn1]
    }
    if { [llength $polyn2] == 1 && [string is double -strict $polyn2] } {
        set polyn2 [polynomial $polyn2]
    }
    if { [lindex $polyn1 0] != "POLYNOMIAL" ||
         [lindex $polyn2 0] != "POLYNOMIAL"    } {
        return -code error "Both arguments must be polynomials or a real number"
    }

    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    #
    # Take care of the null polynomial
    #
    if { $coeffs1 == {} } {
        return [polynomial {}]
    }
    if { $coeffs2 == {} } {
        return -code error "Denominator can not be zero"
    }

    foreach {quotient remainder} [DivRemPolyn $polyn1 $polyn2] {break}
    return $remainder
}

# DivRemPolyn --
#    Divide two polynomials and return the quotient and remainder
#
# Arguments:
#    polyn1       First polynomial or a scalar
#    polyn2       Second polynomial or a scalar
# Result:
#    The difference of the two polynomials
# Note:
#    Make sure that the first coefficient is not zero
#
proc ::math::polynomials::DivRemPolyn {polyn1 polyn2} {

    set coeffs1 [lindex $polyn1 1]
    set coeffs2 [lindex $polyn2 1]

    set steps [expr { [degreePolyn $polyn1] - [degreePolyn $polyn2] + 1 }]

    #
    # Special case: polynomial 1 has lower degree than polynomial 2
    #
    if { $steps <= 0 } {
        return [list [polynomial 0.0] $polyn1]
    } else {
        set extra_coeffs {}
        for { set i 1 } { $i < $steps } { incr i } {
            lappend extra_coeffs 0.0
        }
        lappend extra_coeffs 1.0
    }

    set c2 [lindex $coeffs2 0]
    set quot_coeffs {}

    for { set i 0 } { $i < $steps } { incr i } {
        set c1     [lindex $coeffs1 0]
        set factor [expr {$c1/$c2}]

        set fpolyn [multPolyn $polyn2 \
                              [polynomial [lrange $extra_coeffs $i end]]]

        set newpol [subPolyn $polyn1 [multPolyn $fpolyn $factor]]

        #
        # Due to rounding errors, a very small, parasitical
        # term may still exist. Remove it
        #
        if { [degreePolyn $newpol] == [degreePolyn $polyn1] } {
            set new_coeffs [lrange [allCoeffsPolyn $newpol] 0 end-1]
            set newpol     [polynomial $new_coeffs]
        }
        set polyn1 $newpol
        set coeffs1 [lindex $polyn1 1]
        set quot_coeffs [concat $factor $quot_coeffs]
    }
    set quotient [polynomial $quot_coeffs]

    return [list $quotient $polyn1]
}

#
# Announce our presence
#
package provide math::polynomials 1.0.1

# some tests --
#
if { 0 } {
set prec $::tcl_precision
if {![package vsatisfies [package provide Tcl] 8.5]} {
    set ::tcl_precision 17
} else {
    set ::tcl_precision 0
}

set f1    [::math::polynomials::polynomial {1 2 3}]
set f2    [::math::polynomials::polynomial {1 2 3 0}]
set f3    [::math::polynomials::polynomial {0 0 0 0}]
set f4    [::math::polynomials::polynomial {5 7}]
set cmdf1 [::math::polynomials::polynCmd {1 2 3}]

foreach x {0 1 2 3 4 5} {
    puts "[::math::polynomials::evalPolyn $f1 $x] -- \
[expr {1.0+2.0*$x+3.0*$x*$x}] -- \
[$cmdf1 $x] -- [::math::polynomials::evalPolyn $f3 $x]"
}

puts "Degree: [::math::polynomials::degreePolyn $f1] (expected: 2)"
puts "Degree: [::math::polynomials::degreePolyn $f2] (expected: 2)"
foreach d {0 1 2} {
    puts "Coefficient $d = [::math::polynomials::coeffPolyn $f2 $d]"
}
puts "All coefficients = [::math::polynomials::allCoeffsPolyn $f2]"

puts "Derivative = [::math::polynomials::derivPolyn $f1]"
puts "Primitive  = [::math::polynomials::primitivePolyn $f1]"

puts "Add:       [::math::polynomials::addPolyn $f1 $f4]"
puts "Add:       [::math::polynomials::addPolyn $f4 $f1]"
puts "Subtract:  [::math::polynomials::subPolyn $f1 $f4]"
puts "Multiply:  [::math::polynomials::multPolyn $f1 $f4]"

set f1    [::math::polynomials::polynomial {1 2 3}]
set f2    [::math::polynomials::polynomial {0 1}]

puts "Divide:    [::math::polynomials::divPolyn $f1 $f2]"
puts "Remainder: [::math::polynomials::remainderPolyn $f1 $f2]"

set f1    [::math::polynomials::polynomial {1 2 3}]
set f2    [::math::polynomials::polynomial {1 1}]

puts "Divide:    [::math::polynomials::divPolyn $f1 $f2]"
puts "Remainder: [::math::polynomials::remainderPolyn $f1 $f2]"

set f1 [::math::polynomials::polynomial {1 2 3}]
set f2 [::math::polynomials::polynomial {0 1}]
set f3 [::math::polynomials::divPolyn $f2 $f1]
set coeffs [::math::polynomials::allCoeffsPolyn $f3]
puts "Coefficients: $coeffs"
set f3 [::math::polynomials::divPolyn $f1 $f2]
set coeffs [::math::polynomials::allCoeffsPolyn $f3]
puts "Coefficients: $coeffs"
set f1 [::math::polynomials::polynomial {1 2 3}]
set f2 [::math::polynomials::polynomial {0}]
set f3 [::math::polynomials::divPolyn $f2 $f1]
set coeffs [::math::polynomials::allCoeffsPolyn $f3]
puts "Coefficients: $coeffs"

set ::tcl_precision $prec
}