This file is indexed.

/usr/share/tcltk/tcllib1.17/math/optimize.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
#----------------------------------------------------------------------
#
# math/optimize.tcl --
#
#	This file contains functions for optimization of a function
#	or expression.
#
# Copyright (c) 2004, by Arjen Markus.
# Copyright (c) 2004, 2005 by Kevin B. Kenny.  All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: optimize.tcl,v 1.12 2011/01/18 07:49:53 arjenmarkus Exp $
#
#----------------------------------------------------------------------

package require Tcl 8.4

# math::optimize --
#    Namespace for the commands
#
namespace eval ::math::optimize {
   namespace export minimum  maximum solveLinearProgram linearProgramMaximum
   namespace export min_bound_1d min_unbound_1d

   # Possible extension: minimumExpr, maximumExpr
}

# minimum --
#    Minimize a given function over a given interval
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    func        Name of the function to be minimized (takes one
#                argument)
#    maxerr      Maximum relative error (defaults to 1.0e-4)
# Return value:
#    Computed value for which the function is minimal
# Notes:
#    The function needs not to be differentiable, but it is supposed
#    to be continuous. There is no provision for sub-intervals where
#    the function is constant (this might happen when the maximum
#    error is very small, < 1.0e-15)
#
# Warning:
#    This procedure is deprecated - use min_bound_1d instead
#
proc ::math::optimize::minimum { begin end func {maxerr 1.0e-4} } {

   set nosteps  [expr {3+int(-log($maxerr)/log(2.0))}]
   set delta    [expr {0.5*($end-$begin)*$maxerr}]

   for { set step 0 } { $step < $nosteps } { incr step } {
      set x1 [expr {($end+$begin)/2.0}]
      set x2 [expr {$x1+$delta}]

      set fx1 [uplevel 1 $func $x1]
      set fx2 [uplevel 1 $func $x2]

      if {$fx1 < $fx2} {
         set end   $x1
      } else {
         set begin $x1
      }
   }
   return $x1
}

# maximum --
#    Maximize a given function over a given interval
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    func        Name of the function to be maximized (takes one
#                argument)
#    maxerr      Maximum relative error (defaults to 1.0e-4)
# Return value:
#    Computed value for which the function is maximal
# Notes:
#    The function needs not to be differentiable, but it is supposed
#    to be continuous. There is no provision for sub-intervals where
#    the function is constant (this might happen when the maximum
#    error is very small, < 1.0e-15)
#
# Warning:
#    This procedure is deprecated - use max_bound_1d instead
#
proc ::math::optimize::maximum { begin end func {maxerr 1.0e-4} } {

   set nosteps  [expr {3+int(-log($maxerr)/log(2.0))}]
   set delta    [expr {0.5*($end-$begin)*$maxerr}]

   for { set step 0 } { $step < $nosteps } { incr step } {
      set x1 [expr {($end+$begin)/2.0}]
      set x2 [expr {$x1+$delta}]

      set fx1 [uplevel 1 $func $x1]
      set fx2 [uplevel 1 $func $x2]

      if {$fx1 > $fx2} {
         set end   $x1
      } else {
         set begin $x1
      }
   }
   return $x1
}

#----------------------------------------------------------------------
#
# min_bound_1d --
#
#       Find a local minimum of a function between two given
#       abscissae. Derivative of f is not required.
#
# Usage:
#       min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
#       f - Function to minimize.  Must be expressed as a Tcl
#           command, to which will be appended the value at which
#           to evaluate the function.
#       x1 - Lower bound of the interval in which to search for a
#            minimum
#       x2 - Upper bound of the interval in which to search for a minimum
#
# Options:
#       -relerror value
#               Gives the tolerance desired for the returned
#               abscissa.  Default is 1.0e-7.  Should never be less
#               than the square root of the machine precision.
#       -maxiter n
#               Constrains minimize_bound_1d to evaluate the function
#               no more than n times.  Default is 100.  If convergence
#               is not achieved after the specified number of iterations,
#               an error is thrown.
#       -guess value
#               Gives a point between x1 and x2 that is an initial guess
#               for the minimum.  f(guess) must be at most f(x1) or
#               f(x2).
#        -fguess value
#                Gives the value of the ordinate at the value of '-guess'
#                if known.  Default is to evaluate the function
#       -abserror value
#               Gives the desired absolute error for the returned
#               abscissa.  Default is 1.0e-10.
#       -trace boolean
#               A true value causes a trace to the standard output
#               of the function evaluations. Default is 0.
#
# Results:
#       Returns a two-element list comprising the abscissa at which
#       the function reaches a local minimum within the interval,
#       and the value of the function at that point.
#
# Side effects:
#       Whatever side effects arise from evaluating the given function.
#
#----------------------------------------------------------------------

proc ::math::optimize::min_bound_1d { f x1 x2 args } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    set phim1 0.6180339887498949
    set twomphi 0.3819660112501051

    array set params {
        -relerror 1.0e-7
        -abserror 1.0e-10
        -maxiter 100
        -trace 0
        -fguess {}
    }
    set params(-guess) [expr { $phim1 * $x1 + $twomphi * $x2 }]

    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list min_bound_1d wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list min_bound_1d badoption $key] \
                "unknown option \"$key\",\
                     should be -abserror,\
                     -fguess, -guess, -initial, -maxiter, -relerror,\
                     or -trace"
        }
	set params($key) $value
    }

    # a and b presumably bracket the minimum of the function.  Make sure
    # they're in ascending order.

    if { $x1 < $x2 } {
        set a $x1; set b $x2
    } else {
        set b $x1; set a $x2
    }

    set x $params(-guess);              # Best abscissa found so far
    set w $x;                           # Second best abscissa found so far
    set v $x;                           # Most recent earlier value of w

    set e 0.0;                          # Distance moved on the step before
					# last.

    # Evaluate the function at the initial guess

    if { $params(-fguess) ne {} } {
        set fx $params(-fguess)
    } else {
        set s $f; lappend s $x; set fx [eval $s]
        if { $params(-trace) } {
            puts stdout "f($x) = $fx (initialisation)"
        }
    }
    set fw $fx
    set fv $fx

    for { set iter 0 } { $iter < $params(-maxiter) } { incr iter } {

        # Find the midpoint of the current interval

        set xm [expr { 0.5 * ( $a + $b ) }]

        # Compute the current tolerance for x, and twice its value

        set tol [expr { $params(-relerror) * abs($x) + $params(-abserror) }]
        set tol2 [expr { $tol + $tol }]
        if { abs( $x - $xm ) <= $tol2 - 0.5 * ($b - $a) } {
            return [list $x $fx]
        }
        set golden 1
        if { abs($e) > $tol } {

            # Use parabolic interpolation to find a minimum determined
            # by the evaluations at x, v, and w.  The size of the step
            # to take will be $p/$q.

            set r [expr { ( $x - $w ) * ( $fx - $fv ) }]
            set q [expr { ( $x - $v ) * ( $fx - $fw ) }]
            set p [expr { ( $x - $v ) * $q - ( $x - $w ) * $r }]
            set q [expr { 2. * ( $q - $r ) }]
            if { $q > 0 } {
                set p [expr { - $p }]
            } else {
                set q [expr { - $q }]
            }
            set olde $e
            set e $d

            # Test if parabolic interpolation results in less than half
            # the movement of the step two steps ago.

            if { abs($p) < abs( .5 * $q * $olde )
                 && $p > $q * ( $a - $x )
                 && $p < $q * ( $b - $x ) } {

                set d [expr { $p / $q }]
                set u [expr { $x + $d }]
                if { ( $u - $a ) < $tol2 || ( $b - $u ) < $tol2 } {
                    if { $xm-$x < 0 } {
                        set d [expr { - $tol }]
                    } else {
                        set d $tol
                    }
                }
                set golden 0
            }
        }

        # If parabolic interpolation didn't come up with an acceptable
        # result, use Golden Section instead.

        if { $golden } {
            if { $x >= $xm } {
                set e [expr { $a - $x }]
            } else {
                set e [expr { $b - $x }]
            }
            set d [expr { $twomphi * $e }]
        }

        # At this point, d is the size of the step to take.  Make sure
        # that it's at least $tol.

        if { abs($d) >= $tol } {
            set u [expr { $x + $d }]
        } elseif { $d < 0 } {
            set u [expr { $x - $tol }]
        } else {
            set u [expr { $x + $tol }]
        }

        # Evaluate the function

        set s $f; lappend s $u; set fu [eval $s]
        if { $params(-trace) } {
            if { $golden } {
                puts stdout "f($u)=$fu (golden section)"
            } else {
                puts stdout "f($u)=$fu (parabolic interpolation)"
            }
        }

        if { $fu <= $fx } {
            # We've the best abscissa so far.

            if { $u >= $x } {
                set a $x
            } else {
                set b $x
            }
            set v $w
            set fv $fw
            set w $x
            set fw $fx
            set x $u
            set fx $fu
        } else {

            if { $u < $x } {
                set a $u
            } else {
                set b $u
            }
            if { $fu <= $fw || $w == $x } {
                # We've the second-best abscissa so far
                set v $w
                set fv $fw
                set w $u
                set fw $fu
            } elseif { $fu <= $fv || $v == $x || $v == $w } {
                # We've the third-best so far
                set v $u
                set fv $fu
            }
        }
    }

    return -code error -errorcode [list min_bound_1d noconverge $iter] \
        "[lindex [info level 0] 0] failed to converge after $iter steps."

}

#----------------------------------------------------------------------
#
# brackmin --
#
#       Find a place along the number line where a given function has
#       a local minimum.
#
# Usage:
#       brackmin f x1 x2 ?trace?
#
# Parameters:
#       f - Function to minimize
#       x1 - Abscissa thought to be near the minimum
#       x2 - Additional abscissa thought to be near the minimum
#	trace - Boolean variable that, if true,
#               causes 'brackmin' to print a trace of its function
#               evaluations to the standard output.  Default is 0.
#
# Results:
#       Returns a three element list {x1 y1 x2 y2 x3 y3} where
#       y1=f(x1), y2=f(x2), y3=f(x3).  x2 lies between x1 and x3, and
#       y1>y2, y3>y2, proving that there is a local minimum somewhere
#       in the interval (x1,x3).
#
# Side effects:
#       Whatever effects the evaluation of f has.
#
#----------------------------------------------------------------------

proc ::math::optimize::brackmin { f x1 x2 {trace 0} } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    set phi 1.6180339887498949
    set epsilon 1.0e-20
    set limit 50.

    # Choose a and b so that f(a) < f(b)

    set cmd $f; lappend cmd $x1; set fx1 [eval $cmd]
    if { $trace } {
        puts "f($x1) = $fx1 (initialisation)"
    }
    set cmd $f; lappend cmd $x2; set fx2 [eval $cmd]
    if { $trace } {
        puts "f($x2) = $fx2 (initialisation)"
    }
    if { $fx1 > $fx2 } {
        set a $x1; set fa $fx1
        set b $x2; set fb $fx2
    } else {
        set a $x2; set fa $fx2
        set b $x1; set fb $fx1
    }

    # Choose a c in the downhill direction

    set c [expr { $b + $phi * ($b - $a) }]
    set cmd $f; lappend cmd $c; set fc [eval $cmd]
    if { $trace } {
        puts "f($c) = $fc (initial dilatation by phi)"
    }

    while { $fb >= $fc } {

        # Try to do parabolic extrapolation to the minimum

        set r [expr { ($b - $a) * ($fb - $fc) }]
        set q [expr { ($b - $c) * ($fb - $fa) }]
        if { abs( $q - $r ) > $epsilon } {
            set denom [expr { $q - $r }]
        } elseif { $q > $r } {
            set denom $epsilon
        } else {
            set denom -$epsilon
        }
        set u [expr { $b - ( (($b - $c) * $q - ($b - $a) * $r)
                             / (2. * $denom) ) }]
        set ulimit [expr { $b + $limit * ( $c - $b ) }]

        # Test the extrapolated abscissa

        if { ($b - $u) * ($u - $c) > 0 } {

            # u lies between b and c.  Try to interpolate

            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic interpolation)"
            }

            if { $fu < $fc } {

                # fb > fu and fc > fu, so there is a minimum between b and c
                # with u as a starting guess.

                return [list $b $fb $u $fu $c $fc]

            }

            if { $fu > $fb } {

                # fb < fu, fb < fa, and u cannot lie between a and b
                # (because it lies between a and c).  There is a minimum
                # somewhere between a and u, with b a starting guess.

                return [list $a $fa $b $fb $u $fu]

            }

            # Parabolic interpolation was useless. Expand the
            # distance by a factor of phi and try again.

            set u [expr { $c + $phi * ($c - $b) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic interpolation failed)"
            }


        } elseif { ( $c - $u ) * ( $u - $ulimit ) > 0 } {

            # u lies between $c and $ulimit.

            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation)"
            }

            if { $fu > $fc } {

                # minimum lies between b and u, with c an initial guess.

                return [list $b $fb $c $fc $u $fu]

            }

            # function is still decreasing fa > fb > fc > fu. Take
            # another factor-of-phi step.

            set b $c; set fb $fc
            set c $u; set fc $fu
            set u [expr { $c + $phi * ( $c - $b ) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation ok)"
            }

        } elseif { ($u - $ulimit) * ( $ulimit - $c ) >= 0 } {

            # u went past ulimit.  Pull in to ulimit and evaluate there.

            set u $ulimit
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (limited step)"
            }

        } else {

            # parabolic extrapolation gave a useless value.

            set u [expr { $c + $phi * ( $c - $b ) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation failed)"
            }

        }

        set a $b; set fa $fb
        set b $c; set fb $fc
        set c $u; set fc $fu
    }

    return [list $a $fa $b $fb $c $fc]
}

#----------------------------------------------------------------------
#
# min_unbound_1d --
#
#	Minimize a function of one variable, unconstrained, derivatives
#	not required.
#
# Usage:
#       min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
#       f - Function to minimize.  Must be expressed as a Tcl
#           command, to which will be appended the value at which
#           to evaluate the function.
#       x1 - Initial guess at the minimum
#       x2 - Second initial guess at the minimum, used to set the
#	     initial length scale for the search.
#
# Options:
#       -relerror value
#               Gives the tolerance desired for the returned
#               abscissa.  Default is 1.0e-7.  Should never be less
#               than the square root of the machine precision.
#       -maxiter n
#               Constrains min_bound_1d to evaluate the function
#               no more than n times.  Default is 100.  If convergence
#               is not achieved after the specified number of iterations,
#               an error is thrown.
#       -abserror value
#               Gives the desired absolute error for the returned
#               abscissa.  Default is 1.0e-10.
#       -trace boolean
#               A true value causes a trace to the standard output
#               of the function evaluations. Default is 0.
#
#----------------------------------------------------------------------

proc ::math::optimize::min_unbound_1d { f x1 x2 args } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    array set params {
	-relerror 1.0e-7
	-abserror 1.0e-10
	-maxiter 100
        -trace 0
    }
    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list min_unbound_1d wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end \
                         f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list min_unbound_1d badoption $key] \
                "unknown option \"$key\",\
                     should be -trace"
        }
        set params($key) $value
    }
    foreach { a fa b fb c fc } [brackmin $f $x1 $x2 $params(-trace)] {
	break
    }
    return [eval [linsert [array get params] 0 \
		      min_bound_1d $f $a $c -guess $b -fguess $fb]]
}

#----------------------------------------------------------------------
#
# nelderMead --
#
#	Attempt to minimize/maximize a function using the downhill
#	simplex method of Nelder and Mead.
#
# Usage:
#	nelderMead f x ?-keyword value?
#
# Parameters:
#	f - The function to minimize.  The function must be an incomplete
#	    Tcl command, to which will be appended N parameters.
#	x - The starting guess for the minimum; a vector of N parameters
#	    to be passed to the function f.
#
# Options:
#	-scale xscale
#		Initial guess as to the problem scale.  If '-scale' is
#		supplied, then the parameters will be varied by the
#	        specified amounts.  The '-scale' parameter must of the
#		same dimension as the 'x' vector, and all elements must
#		be nonzero.  Default is 0.0001 times the 'x' vector,
#		or 0.0001 for zero elements in the 'x' vector.
#
#	-ftol epsilon
#		Requested tolerance in the function value; nelderMead
#		returns if N+1 consecutive iterates all differ by less
#		than the -ftol value.  Default is 1.0e-7
#
#	-maxiter N
#		Maximum number of iterations to attempt.  Default is
#		500.
#
#	-trace flag
#		If '-trace 1' is supplied, nelderMead writes a record
#		of function evaluations to the standard output as it
#		goes.  Default is 0.
#
#----------------------------------------------------------------------

proc ::math::optimize::nelderMead { f startx args } {
    array set params {
	-ftol 1.e-7
	-maxiter 500
	-scale {}
	-trace 0
    }

    # Check arguments

    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list nelderMead wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end \
                         f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list nelderMead badoption $key] \
                "unknown option \"$key\",\
                     should be -ftol, -maxiter, -scale or -trace"
        }
        set params($key) $value
    }

    # Construct the initial simplex

    set vertices [list $startx]
    if { [llength $params(-scale)] == 0 } {
	set i 0
	foreach x0 $startx {
	    if { $x0 == 0 } {
		set x1 0.0001
	    } else {
		set x1 [expr {1.0001 * $x0}]
	    }
	    lappend vertices [lreplace $startx $i $i $x1]
	    incr i
	}
    } elseif { [llength $params(-scale)] != [llength $startx] } {
	return -code error -errorcode [list nelderMead badOption -scale] \
	    "-scale vector must be of same size as starting x vector"
    } else {
	set i 0
	foreach x0 $startx s $params(-scale) {
	    lappend vertices [lreplace $startx $i $i [expr { $x0 + $s }]]
	    incr i
	}
    }

    # Evaluate at the initial points

    set n [llength $startx]
    foreach x $vertices {
	set cmd $f
	foreach xx $x {
	    lappend cmd $xx
	}
	set y [uplevel 1 $cmd]
	if {$params(-trace)} {
	    puts "nelderMead: evaluating initial point: x=[list $x] y=$y"
	}
	lappend yvec $y
    }


    # Loop adjusting the simplex in the 'vertices' array.

    set nIter 0
    while { 1 } {

	# Find the highest, next highest, and lowest value in y,
	# and save the indices.

	set iBot 0
	set yBot [lindex $yvec 0]
	set iTop -1
	set yTop [lindex $yvec 0]
	set iNext -1
	set i 0
	foreach y $yvec {
	    if { $y <= $yBot } {
		set yBot $y
		set iBot $i
	    }
	    if { $iTop < 0 || $y >= $yTop } {
		set iNext $iTop
		set yNext $yTop
		set iTop $i
		set yTop $y
	    } elseif { $iNext < 0 || $y >= $yNext } {
		set iNext $i
		set yNext $y
	    }
	    incr i
	}

	# Return if the relative error is within an acceptable range

	set rerror [expr { 2. * abs( $yTop - $yBot )
			   / ( abs( $yTop ) + abs( $yBot ) + $params(-ftol) ) }]
	if { $rerror < $params(-ftol) } {
	    set status ok
	    break
	}

	# Count iterations

	if { [incr nIter] > $params(-maxiter) } {
	    set status too-many-iterations
	    break
	}
	incr nIter

	# Find the centroid of the face opposite the vertex that
	# maximizes the function value.

	set centroid {}
	for { set i 0 } { $i < $n } { incr i } {
	    lappend centroid 0.0
	}
	set i 0
	foreach v $vertices {
	    if { $i != $iTop } {
		set newCentroid {}
		foreach x0 $centroid x1 $v {
		    lappend newCentroid [expr { $x0 + $x1 }]
		}
		set centroid $newCentroid
	    }
	    incr i
	}
	set newCentroid {}
	foreach x $centroid {
	    lappend newCentroid [expr { $x / $n }]
	}
	set centroid $newCentroid

	# The first trial point is a reflection of the high point
	# around the centroid

	set trial {}
	foreach x0 [lindex $vertices $iTop] x1 $centroid {
	    lappend trial [expr {$x1 + ($x1 - $x0)}]
	}
	set cmd $f
	foreach xx $trial {
	    lappend cmd $xx
	}
	set yTrial [uplevel 1 $cmd]
	if { $params(-trace) } {
	    puts "nelderMead: trying reflection: x=[list $trial] y=$yTrial"
	}

	# If that reflection yields a new minimum, replace the high point,
	# and additionally try dilating in the same direction.

	if { $yTrial < $yBot } {
	    set trial2 {}
	    foreach x0 $centroid x1 $trial {
		lappend trial2 [expr { $x1 + ($x1 - $x0) }]
	    }
	    set cmd $f
	    foreach xx $trial2 {
		lappend cmd $xx
	    }
	    set yTrial2 [uplevel 1 $cmd]
	    if { $params(-trace) } {
		puts "nelderMead: trying dilated reflection:\
                      x=[list $trial2] y=$y"
	    }
	    if { $yTrial2 < $yBot } {

		# Additional dilation yields a new minimum

		lset vertices $iTop $trial2
		lset yvec $iTop $yTrial2
	    } else {

		# Additional dilation failed, but we can still use
		# the first trial point.

		lset vertices $iTop $trial
		lset yvec $iTop $yTrial

	    }
	} elseif { $yTrial < $yNext } {

	    # The reflected point isn't a new minimum, but it's
	    # better than the second-highest.  Replace the old high
	    # point and try again.

	    lset vertices $iTop $trial
	    lset yvec $iTop $yTrial

	} else {

	    # The reflected point is worse than the second-highest point.
	    # If it's better than the highest, keep it... but in any case,
	    # we want to try contracting the simplex, because a further
	    # reflection will simply bring us back to the starting point.

	    if { $yTrial < $yTop } {
		lset vertices $iTop $trial
		lset yvec $iTop $yTrial
		set yTop $yTrial
	    }
	    set trial {}
	    foreach x0 [lindex $vertices $iTop] x1 $centroid {
		lappend trial [expr { ( $x0 + $x1 ) / 2. }]
	    }
	    set cmd $f
	    foreach xx $trial {
		lappend cmd $xx
	    }
	    set yTrial [uplevel 1 $cmd]
	    if { $params(-trace) } {
		puts "nelderMead: contracting from high point:\
                      x=[list $trial] y=$y"
	    }
	    if { $yTrial < $yTop } {

		# Contraction gave an improvement, so continue with
		# the smaller simplex

		lset vertices $iTop $trial
		lset yvec $iTop $yTrial

	    } else {

		# Contraction gave no improvement either; we seem to
		# be in a valley of peculiar topology.  Contract the
		# simplex about the low point and try again.

		set newVertices {}
		set newYvec {}
		set i 0
		foreach v $vertices y $yvec {
		    if { $i == $iBot } {
			lappend newVertices $v
			lappend newYvec $y
		    } else {
			set newv {}
			foreach x0 $v x1 [lindex $vertices $iBot] {
			    lappend newv [expr { ($x0 + $x1) / 2. }]
			}
			lappend newVertices $newv
			set cmd $f
			foreach xx $newv {
			    lappend cmd $xx
			}
			lappend newYvec [uplevel 1 $cmd]
			if { $params(-trace) } {
			    puts "nelderMead: contracting about low point:\
                                  x=[list $newv] y=$y"
			}
		    }
		    incr i
		}
		set vertices $newVertices
		set yvec $newYvec
	    }

	}

    }
    return [list y $yBot x [lindex $vertices $iBot] vertices $vertices yvec $yvec nIter $nIter status $status]

}

# solveLinearProgram
#    Solve a linear program in standard form
#
# Arguments:
#    objective     Vector defining the objective function
#    constraints   Matrix of constraints (as a list of lists)
#
# Return value:
#    Computed values for the coordinates or "unbounded" or "infeasible"
#
proc ::math::optimize::solveLinearProgram { objective constraints } {
    #
    # Check the arguments first and then put them in a more convenient
    # form
    #

    foreach {nconst nvars matrix} \
        [SimplexPrepareMatrix $objective $constraints] {break}

    set solution [SimplexSolve $nconst nvars $matrix]

    if { [llength $solution] > 1 } {
        return [lrange $solution 0 [expr {$nvars-1}]]
    } else {
        return $solution
    }
}

# linearProgramMaximum --
#    Compute the value attained at the optimum
#
# Arguments:
#    objective     The coefficients of the objective function
#    result        The coordinate values as obtained by solving the program
#
# Return value:
#    Value at the maximum point
#
proc ::math::optimize::linearProgramMaximum {objective result} {

    set value    0.0

    foreach coeff $objective coord $result {
        set value [expr {$value+$coeff*$coord}]
    }

    return $value
}

# SimplexPrintMatrix
#    Debugging routine: print the matrix in easy to read form
#
# Arguments:
#    matrix        Matrix to be printed
#
# Return value:
#    None
#
# Note:
#    The tableau should be transposed ...
#
proc ::math::optimize::SimplexPrintMatrix {matrix} {
    puts "\nBasis:\t[join [lindex $matrix 0] \t]"
    foreach col [lrange $matrix 1 end] {
        puts "      \t[join $col \t]"
    }
}

# SimplexPrepareMatrix
#    Prepare the standard tableau from all program data
#
# Arguments:
#    objective     Vector defining the objective function
#    constraints   Matrix of constraints (as a list of lists)
#
# Return value:
#    List of values as a standard tableau and two values
#    for the sizes
#
proc ::math::optimize::SimplexPrepareMatrix {objective constraints} {

    #
    # Check the arguments first
    #
    set nconst [llength $constraints]
    set ncols {}
    foreach row $constraints {
        if { $ncols == {} } {
            set ncols [llength $row]
        } else {
            if { $ncols != [llength $row] } {
                return -code error -errorcode ARGS "Incorrectly formed constraints matrix"
            }
        }
    }

    set nvars [expr {$ncols-1}]

    if { [llength $objective] != $nvars } {
        return -code error -errorcode ARGS "Incorrect length for objective vector"
    }

    #
    # Set up the tableau:
    # Easiest manipulations if we store the columns first
    # So:
    # - First column is the list of variable indices in the basis
    # - Second column is the list of maximum values
    # - "nvars" columns that follow: the coefficients for the actual
    #   variables
    # - last "nconst" columns: the slack variables
    #
    set matrix   [list]
    set lastrow  [concat $objective [list 0.0]]

    set newcol   [list]
    for {set idx 0} {$idx < $nconst} {incr idx} {
        lappend newcol [expr {$nvars+$idx}]
    }
    lappend newcol "?"
    lappend matrix $newcol

    set zvector [list]
    foreach row $constraints {
        lappend zvector [lindex $row end]
    }
    lappend zvector 0.0
    lappend matrix $zvector

    for {set idx 0} {$idx < $nvars} {incr idx} {
        set newcol [list]
        foreach row $constraints {
            lappend newcol [expr {double([lindex $row $idx])}]
        }
        lappend newcol [expr {-double([lindex $lastrow $idx])}]
         lappend matrix $newcol
    }

    #
    # Add the columns for the slack variables
    #
    set zeros {}
    for {set idx 0} {$idx <= $nconst} {incr idx} {
        lappend zeros 0.0
    }
    for {set idx 0} {$idx < $nconst} {incr idx} {
        lappend matrix [lreplace $zeros $idx $idx 1.0]
    }

    return [list $nconst $nvars $matrix]
}

# SimplexSolve --
#    Solve the given linear program using the simplex method
#
# Arguments:
#    nconst        Number of constraints
#    nvars         Number of actual variables
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    List of values for the actual variables
#
proc ::math::optimize::SimplexSolve {nconst nvars tableau} {
    set end 0
    while { !$end } {

        #
        # Find the new variable to put in the basis
        #
        set nextcol [SimplexFindNextColumn $tableau]
        if { $nextcol == -1 } {
            set end 1
            continue
        }

        #
        # Now determine which one should leave
        # TODO: is a lack of a proper row indeed an
        #       indication of the infeasibility?
        #
        set nextrow [SimplexFindNextRow $tableau $nextcol]
        if { $nextrow == -1 } {
            return "unbounded"
        }

        #
        # Make the vector for sweeping through the tableau
        #
        set vector [SimplexMakeVector $tableau $nextcol $nextrow]

        #
        # Sweep through the tableau
        #
        set tableau [SimplexNewTableau $tableau $nextcol $nextrow $vector]
    }

    #
    # Now we can return the result
    #
    SimplexResult $tableau
}

# SimplexResult --
#    Reconstruct the result vector
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    Vector of values representing the maximum point
#
proc ::math::optimize::SimplexResult {tableau} {
    set result {}

    set firstcol  [lindex $tableau 0]
    set secondcol [lindex $tableau 1]
    set result    {}

    set nvars     [expr {[llength $tableau]-2}]
    for {set i 0} {$i < $nvars } { incr i } {
        lappend result 0.0
    }

    set idx 0
    foreach col [lrange $firstcol 0 end-1] {
        set value [lindex $secondcol $idx]
        if { $value >= 0.0 } {
            set result [lreplace $result $col $col [lindex $secondcol $idx]]
            incr idx
        } else {
            # If a negative component, then the problem was not feasible
            return "infeasible"
        }
    }

    return $result
}

# SimplexFindNextColumn --
#    Find the next column - the one with the largest negative
#    coefficient
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    Index of the column
#
proc ::math::optimize::SimplexFindNextColumn {tableau} {
    set idx        0
    set minidx    -1
    set mincoeff   0.0

    foreach col [lrange $tableau 2 end] {
        set coeff [lindex $col end]
        if { $coeff < 0.0 } {
            if { $coeff < $mincoeff } {
                set minidx $idx
               set mincoeff $coeff
            }
        }
        incr idx
    }

    return $minidx
}

# SimplexFindNextRow --
#    Find the next row - the one with the largest negative
#    coefficient
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#
# Return value:
#    Index of the row
#
proc ::math::optimize::SimplexFindNextRow {tableau nextcol} {
    set idx        0
    set minidx    -1
    set mincoeff   {}

    set bvalues [lrange [lindex $tableau 1] 0 end-1]
    set yvalues [lrange [lindex $tableau [expr {2+$nextcol}]] 0 end-1]

    foreach rowcoeff $bvalues divcoeff $yvalues {
        if { $divcoeff > 0.0 } {
            set coeff [expr {$rowcoeff/$divcoeff}]

            if { $mincoeff == {} || $coeff < $mincoeff } {
                set minidx $idx
                set mincoeff $coeff
            }
        }
        incr idx
    }

    return $minidx
}

# SimplexMakeVector --
#    Make the "sweep" vector
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#    nextrow       Index of the variable in the base that will be replaced
#
# Return value:
#    Vector to be used to update the coefficients of the tableau
#
proc ::math::optimize::SimplexMakeVector {tableau nextcol nextrow} {

    set idx      0
    set vector   {}
    set column   [lindex $tableau [expr {2+$nextcol}]]
    set divcoeff [lindex $column $nextrow]

    foreach colcoeff $column {
        if { $idx != $nextrow } {
            set coeff [expr {-$colcoeff/$divcoeff}]
        } else {
            set coeff [expr {1.0/$divcoeff-1.0}]
        }
        lappend vector $coeff
        incr idx
    }

    return $vector
}

# SimplexNewTableau --
#    Sweep through the tableau and create the new one
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#    nextrow       Index of the variable in the base that will be replaced
#    vector        Vector to sweep with
#
# Return value:
#    New tableau
#
proc ::math::optimize::SimplexNewTableau {tableau nextcol nextrow vector} {

    #
    # The first column: replace the nextrow-th element
    # The second column: replace the value at the nextrow-th element
    # For all the others: the same receipe
    #
    set firstcol   [lreplace [lindex $tableau 0] $nextrow $nextrow $nextcol]
    set newtableau [list $firstcol]

    #
    # The rest of the matrix
    #
    foreach column [lrange $tableau 1 end] {
        set yval   [lindex $column $nextrow]
        set newcol {}
        foreach c $column vcoeff $vector {
            set newval [expr {$c+$yval*$vcoeff}]
            lappend newcol $newval
        }
        lappend newtableau $newcol
    }

    return $newtableau
}

# Now we can announce our presence
package provide math::optimize 1.0.1

if { ![info exists ::argv0] || [string compare $::argv0 [info script]] } {
    return
}

namespace import math::optimize::min_bound_1d
namespace import math::optimize::maximum
namespace import math::optimize::nelderMead

proc f {x y} {
    set xx [expr { $x - 3.1415926535897932 / 2. }]
    set v1 [expr { 0.3 * exp( -$xx*$xx / 2. ) }]
    set d [expr { 10. * $y - sin(9. * $x) }]
    set v2 [expr { exp(-10.*$d*$d)}]
    set rv [expr { -$v1 - $v2 }]
    return $rv
}

proc g {a b} {
    set x1 [expr {0.1 - $a + $b}]
    set x2 [expr {$a + $b - 1.}]
    set x3 [expr {3.-8.*$a+8.*$a*$a-8.*$b+8.*$b*$b}]
    set x4 [expr {$a/10. + $b/10. + $x1*$x1/3. + $x2*$x2 - $x2 * exp(1-$x3*$x3)}]
    return $x4
}

set prec $::tcl_precision
if {![package vsatisfies [package provide Tcl] 8.5]} {
    set ::tcl_precision 17
} else {
    set ::tcl_precision 0
}

puts "f"
puts [math::optimize::nelderMead f {1. 0.} -scale {0.1 0.01} -trace 1]
puts "g"
puts [math::optimize::nelderMead g {0. 0.} -scale {1. 1.} -trace 1]

set ::tcl_precision $prec