/usr/share/tcltk/tcllib1.17/math/optimize.tcl is in tcllib 1.17-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 | #----------------------------------------------------------------------
#
# math/optimize.tcl --
#
# This file contains functions for optimization of a function
# or expression.
#
# Copyright (c) 2004, by Arjen Markus.
# Copyright (c) 2004, 2005 by Kevin B. Kenny. All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: optimize.tcl,v 1.12 2011/01/18 07:49:53 arjenmarkus Exp $
#
#----------------------------------------------------------------------
package require Tcl 8.4
# math::optimize --
# Namespace for the commands
#
namespace eval ::math::optimize {
namespace export minimum maximum solveLinearProgram linearProgramMaximum
namespace export min_bound_1d min_unbound_1d
# Possible extension: minimumExpr, maximumExpr
}
# minimum --
# Minimize a given function over a given interval
#
# Arguments:
# begin Start of the interval
# end End of the interval
# func Name of the function to be minimized (takes one
# argument)
# maxerr Maximum relative error (defaults to 1.0e-4)
# Return value:
# Computed value for which the function is minimal
# Notes:
# The function needs not to be differentiable, but it is supposed
# to be continuous. There is no provision for sub-intervals where
# the function is constant (this might happen when the maximum
# error is very small, < 1.0e-15)
#
# Warning:
# This procedure is deprecated - use min_bound_1d instead
#
proc ::math::optimize::minimum { begin end func {maxerr 1.0e-4} } {
set nosteps [expr {3+int(-log($maxerr)/log(2.0))}]
set delta [expr {0.5*($end-$begin)*$maxerr}]
for { set step 0 } { $step < $nosteps } { incr step } {
set x1 [expr {($end+$begin)/2.0}]
set x2 [expr {$x1+$delta}]
set fx1 [uplevel 1 $func $x1]
set fx2 [uplevel 1 $func $x2]
if {$fx1 < $fx2} {
set end $x1
} else {
set begin $x1
}
}
return $x1
}
# maximum --
# Maximize a given function over a given interval
#
# Arguments:
# begin Start of the interval
# end End of the interval
# func Name of the function to be maximized (takes one
# argument)
# maxerr Maximum relative error (defaults to 1.0e-4)
# Return value:
# Computed value for which the function is maximal
# Notes:
# The function needs not to be differentiable, but it is supposed
# to be continuous. There is no provision for sub-intervals where
# the function is constant (this might happen when the maximum
# error is very small, < 1.0e-15)
#
# Warning:
# This procedure is deprecated - use max_bound_1d instead
#
proc ::math::optimize::maximum { begin end func {maxerr 1.0e-4} } {
set nosteps [expr {3+int(-log($maxerr)/log(2.0))}]
set delta [expr {0.5*($end-$begin)*$maxerr}]
for { set step 0 } { $step < $nosteps } { incr step } {
set x1 [expr {($end+$begin)/2.0}]
set x2 [expr {$x1+$delta}]
set fx1 [uplevel 1 $func $x1]
set fx2 [uplevel 1 $func $x2]
if {$fx1 > $fx2} {
set end $x1
} else {
set begin $x1
}
}
return $x1
}
#----------------------------------------------------------------------
#
# min_bound_1d --
#
# Find a local minimum of a function between two given
# abscissae. Derivative of f is not required.
#
# Usage:
# min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
# f - Function to minimize. Must be expressed as a Tcl
# command, to which will be appended the value at which
# to evaluate the function.
# x1 - Lower bound of the interval in which to search for a
# minimum
# x2 - Upper bound of the interval in which to search for a minimum
#
# Options:
# -relerror value
# Gives the tolerance desired for the returned
# abscissa. Default is 1.0e-7. Should never be less
# than the square root of the machine precision.
# -maxiter n
# Constrains minimize_bound_1d to evaluate the function
# no more than n times. Default is 100. If convergence
# is not achieved after the specified number of iterations,
# an error is thrown.
# -guess value
# Gives a point between x1 and x2 that is an initial guess
# for the minimum. f(guess) must be at most f(x1) or
# f(x2).
# -fguess value
# Gives the value of the ordinate at the value of '-guess'
# if known. Default is to evaluate the function
# -abserror value
# Gives the desired absolute error for the returned
# abscissa. Default is 1.0e-10.
# -trace boolean
# A true value causes a trace to the standard output
# of the function evaluations. Default is 0.
#
# Results:
# Returns a two-element list comprising the abscissa at which
# the function reaches a local minimum within the interval,
# and the value of the function at that point.
#
# Side effects:
# Whatever side effects arise from evaluating the given function.
#
#----------------------------------------------------------------------
proc ::math::optimize::min_bound_1d { f x1 x2 args } {
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set phim1 0.6180339887498949
set twomphi 0.3819660112501051
array set params {
-relerror 1.0e-7
-abserror 1.0e-10
-maxiter 100
-trace 0
-fguess {}
}
set params(-guess) [expr { $phim1 * $x1 + $twomphi * $x2 }]
if { ( [llength $args] % 2 ) != 0 } {
return -code error -errorcode [list min_bound_1d wrongNumArgs] \
"wrong \# args, should be\
\"[lreplace [info level 0] 1 end f x1 x2 ?-option value?...]\""
}
foreach { key value } $args {
if { ![info exists params($key)] } {
return -code error -errorcode [list min_bound_1d badoption $key] \
"unknown option \"$key\",\
should be -abserror,\
-fguess, -guess, -initial, -maxiter, -relerror,\
or -trace"
}
set params($key) $value
}
# a and b presumably bracket the minimum of the function. Make sure
# they're in ascending order.
if { $x1 < $x2 } {
set a $x1; set b $x2
} else {
set b $x1; set a $x2
}
set x $params(-guess); # Best abscissa found so far
set w $x; # Second best abscissa found so far
set v $x; # Most recent earlier value of w
set e 0.0; # Distance moved on the step before
# last.
# Evaluate the function at the initial guess
if { $params(-fguess) ne {} } {
set fx $params(-fguess)
} else {
set s $f; lappend s $x; set fx [eval $s]
if { $params(-trace) } {
puts stdout "f($x) = $fx (initialisation)"
}
}
set fw $fx
set fv $fx
for { set iter 0 } { $iter < $params(-maxiter) } { incr iter } {
# Find the midpoint of the current interval
set xm [expr { 0.5 * ( $a + $b ) }]
# Compute the current tolerance for x, and twice its value
set tol [expr { $params(-relerror) * abs($x) + $params(-abserror) }]
set tol2 [expr { $tol + $tol }]
if { abs( $x - $xm ) <= $tol2 - 0.5 * ($b - $a) } {
return [list $x $fx]
}
set golden 1
if { abs($e) > $tol } {
# Use parabolic interpolation to find a minimum determined
# by the evaluations at x, v, and w. The size of the step
# to take will be $p/$q.
set r [expr { ( $x - $w ) * ( $fx - $fv ) }]
set q [expr { ( $x - $v ) * ( $fx - $fw ) }]
set p [expr { ( $x - $v ) * $q - ( $x - $w ) * $r }]
set q [expr { 2. * ( $q - $r ) }]
if { $q > 0 } {
set p [expr { - $p }]
} else {
set q [expr { - $q }]
}
set olde $e
set e $d
# Test if parabolic interpolation results in less than half
# the movement of the step two steps ago.
if { abs($p) < abs( .5 * $q * $olde )
&& $p > $q * ( $a - $x )
&& $p < $q * ( $b - $x ) } {
set d [expr { $p / $q }]
set u [expr { $x + $d }]
if { ( $u - $a ) < $tol2 || ( $b - $u ) < $tol2 } {
if { $xm-$x < 0 } {
set d [expr { - $tol }]
} else {
set d $tol
}
}
set golden 0
}
}
# If parabolic interpolation didn't come up with an acceptable
# result, use Golden Section instead.
if { $golden } {
if { $x >= $xm } {
set e [expr { $a - $x }]
} else {
set e [expr { $b - $x }]
}
set d [expr { $twomphi * $e }]
}
# At this point, d is the size of the step to take. Make sure
# that it's at least $tol.
if { abs($d) >= $tol } {
set u [expr { $x + $d }]
} elseif { $d < 0 } {
set u [expr { $x - $tol }]
} else {
set u [expr { $x + $tol }]
}
# Evaluate the function
set s $f; lappend s $u; set fu [eval $s]
if { $params(-trace) } {
if { $golden } {
puts stdout "f($u)=$fu (golden section)"
} else {
puts stdout "f($u)=$fu (parabolic interpolation)"
}
}
if { $fu <= $fx } {
# We've the best abscissa so far.
if { $u >= $x } {
set a $x
} else {
set b $x
}
set v $w
set fv $fw
set w $x
set fw $fx
set x $u
set fx $fu
} else {
if { $u < $x } {
set a $u
} else {
set b $u
}
if { $fu <= $fw || $w == $x } {
# We've the second-best abscissa so far
set v $w
set fv $fw
set w $u
set fw $fu
} elseif { $fu <= $fv || $v == $x || $v == $w } {
# We've the third-best so far
set v $u
set fv $fu
}
}
}
return -code error -errorcode [list min_bound_1d noconverge $iter] \
"[lindex [info level 0] 0] failed to converge after $iter steps."
}
#----------------------------------------------------------------------
#
# brackmin --
#
# Find a place along the number line where a given function has
# a local minimum.
#
# Usage:
# brackmin f x1 x2 ?trace?
#
# Parameters:
# f - Function to minimize
# x1 - Abscissa thought to be near the minimum
# x2 - Additional abscissa thought to be near the minimum
# trace - Boolean variable that, if true,
# causes 'brackmin' to print a trace of its function
# evaluations to the standard output. Default is 0.
#
# Results:
# Returns a three element list {x1 y1 x2 y2 x3 y3} where
# y1=f(x1), y2=f(x2), y3=f(x3). x2 lies between x1 and x3, and
# y1>y2, y3>y2, proving that there is a local minimum somewhere
# in the interval (x1,x3).
#
# Side effects:
# Whatever effects the evaluation of f has.
#
#----------------------------------------------------------------------
proc ::math::optimize::brackmin { f x1 x2 {trace 0} } {
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set phi 1.6180339887498949
set epsilon 1.0e-20
set limit 50.
# Choose a and b so that f(a) < f(b)
set cmd $f; lappend cmd $x1; set fx1 [eval $cmd]
if { $trace } {
puts "f($x1) = $fx1 (initialisation)"
}
set cmd $f; lappend cmd $x2; set fx2 [eval $cmd]
if { $trace } {
puts "f($x2) = $fx2 (initialisation)"
}
if { $fx1 > $fx2 } {
set a $x1; set fa $fx1
set b $x2; set fb $fx2
} else {
set a $x2; set fa $fx2
set b $x1; set fb $fx1
}
# Choose a c in the downhill direction
set c [expr { $b + $phi * ($b - $a) }]
set cmd $f; lappend cmd $c; set fc [eval $cmd]
if { $trace } {
puts "f($c) = $fc (initial dilatation by phi)"
}
while { $fb >= $fc } {
# Try to do parabolic extrapolation to the minimum
set r [expr { ($b - $a) * ($fb - $fc) }]
set q [expr { ($b - $c) * ($fb - $fa) }]
if { abs( $q - $r ) > $epsilon } {
set denom [expr { $q - $r }]
} elseif { $q > $r } {
set denom $epsilon
} else {
set denom -$epsilon
}
set u [expr { $b - ( (($b - $c) * $q - ($b - $a) * $r)
/ (2. * $denom) ) }]
set ulimit [expr { $b + $limit * ( $c - $b ) }]
# Test the extrapolated abscissa
if { ($b - $u) * ($u - $c) > 0 } {
# u lies between b and c. Try to interpolate
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (parabolic interpolation)"
}
if { $fu < $fc } {
# fb > fu and fc > fu, so there is a minimum between b and c
# with u as a starting guess.
return [list $b $fb $u $fu $c $fc]
}
if { $fu > $fb } {
# fb < fu, fb < fa, and u cannot lie between a and b
# (because it lies between a and c). There is a minimum
# somewhere between a and u, with b a starting guess.
return [list $a $fa $b $fb $u $fu]
}
# Parabolic interpolation was useless. Expand the
# distance by a factor of phi and try again.
set u [expr { $c + $phi * ($c - $b) }]
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (parabolic interpolation failed)"
}
} elseif { ( $c - $u ) * ( $u - $ulimit ) > 0 } {
# u lies between $c and $ulimit.
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (parabolic extrapolation)"
}
if { $fu > $fc } {
# minimum lies between b and u, with c an initial guess.
return [list $b $fb $c $fc $u $fu]
}
# function is still decreasing fa > fb > fc > fu. Take
# another factor-of-phi step.
set b $c; set fb $fc
set c $u; set fc $fu
set u [expr { $c + $phi * ( $c - $b ) }]
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (parabolic extrapolation ok)"
}
} elseif { ($u - $ulimit) * ( $ulimit - $c ) >= 0 } {
# u went past ulimit. Pull in to ulimit and evaluate there.
set u $ulimit
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (limited step)"
}
} else {
# parabolic extrapolation gave a useless value.
set u [expr { $c + $phi * ( $c - $b ) }]
set cmd $f; lappend cmd $u; set fu [eval $cmd]
if { $trace } {
puts "f($u) = $fu (parabolic extrapolation failed)"
}
}
set a $b; set fa $fb
set b $c; set fb $fc
set c $u; set fc $fu
}
return [list $a $fa $b $fb $c $fc]
}
#----------------------------------------------------------------------
#
# min_unbound_1d --
#
# Minimize a function of one variable, unconstrained, derivatives
# not required.
#
# Usage:
# min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
# f - Function to minimize. Must be expressed as a Tcl
# command, to which will be appended the value at which
# to evaluate the function.
# x1 - Initial guess at the minimum
# x2 - Second initial guess at the minimum, used to set the
# initial length scale for the search.
#
# Options:
# -relerror value
# Gives the tolerance desired for the returned
# abscissa. Default is 1.0e-7. Should never be less
# than the square root of the machine precision.
# -maxiter n
# Constrains min_bound_1d to evaluate the function
# no more than n times. Default is 100. If convergence
# is not achieved after the specified number of iterations,
# an error is thrown.
# -abserror value
# Gives the desired absolute error for the returned
# abscissa. Default is 1.0e-10.
# -trace boolean
# A true value causes a trace to the standard output
# of the function evaluations. Default is 0.
#
#----------------------------------------------------------------------
proc ::math::optimize::min_unbound_1d { f x1 x2 args } {
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
array set params {
-relerror 1.0e-7
-abserror 1.0e-10
-maxiter 100
-trace 0
}
if { ( [llength $args] % 2 ) != 0 } {
return -code error -errorcode [list min_unbound_1d wrongNumArgs] \
"wrong \# args, should be\
\"[lreplace [info level 0] 1 end \
f x1 x2 ?-option value?...]\""
}
foreach { key value } $args {
if { ![info exists params($key)] } {
return -code error -errorcode [list min_unbound_1d badoption $key] \
"unknown option \"$key\",\
should be -trace"
}
set params($key) $value
}
foreach { a fa b fb c fc } [brackmin $f $x1 $x2 $params(-trace)] {
break
}
return [eval [linsert [array get params] 0 \
min_bound_1d $f $a $c -guess $b -fguess $fb]]
}
#----------------------------------------------------------------------
#
# nelderMead --
#
# Attempt to minimize/maximize a function using the downhill
# simplex method of Nelder and Mead.
#
# Usage:
# nelderMead f x ?-keyword value?
#
# Parameters:
# f - The function to minimize. The function must be an incomplete
# Tcl command, to which will be appended N parameters.
# x - The starting guess for the minimum; a vector of N parameters
# to be passed to the function f.
#
# Options:
# -scale xscale
# Initial guess as to the problem scale. If '-scale' is
# supplied, then the parameters will be varied by the
# specified amounts. The '-scale' parameter must of the
# same dimension as the 'x' vector, and all elements must
# be nonzero. Default is 0.0001 times the 'x' vector,
# or 0.0001 for zero elements in the 'x' vector.
#
# -ftol epsilon
# Requested tolerance in the function value; nelderMead
# returns if N+1 consecutive iterates all differ by less
# than the -ftol value. Default is 1.0e-7
#
# -maxiter N
# Maximum number of iterations to attempt. Default is
# 500.
#
# -trace flag
# If '-trace 1' is supplied, nelderMead writes a record
# of function evaluations to the standard output as it
# goes. Default is 0.
#
#----------------------------------------------------------------------
proc ::math::optimize::nelderMead { f startx args } {
array set params {
-ftol 1.e-7
-maxiter 500
-scale {}
-trace 0
}
# Check arguments
if { ( [llength $args] % 2 ) != 0 } {
return -code error -errorcode [list nelderMead wrongNumArgs] \
"wrong \# args, should be\
\"[lreplace [info level 0] 1 end \
f x1 x2 ?-option value?...]\""
}
foreach { key value } $args {
if { ![info exists params($key)] } {
return -code error -errorcode [list nelderMead badoption $key] \
"unknown option \"$key\",\
should be -ftol, -maxiter, -scale or -trace"
}
set params($key) $value
}
# Construct the initial simplex
set vertices [list $startx]
if { [llength $params(-scale)] == 0 } {
set i 0
foreach x0 $startx {
if { $x0 == 0 } {
set x1 0.0001
} else {
set x1 [expr {1.0001 * $x0}]
}
lappend vertices [lreplace $startx $i $i $x1]
incr i
}
} elseif { [llength $params(-scale)] != [llength $startx] } {
return -code error -errorcode [list nelderMead badOption -scale] \
"-scale vector must be of same size as starting x vector"
} else {
set i 0
foreach x0 $startx s $params(-scale) {
lappend vertices [lreplace $startx $i $i [expr { $x0 + $s }]]
incr i
}
}
# Evaluate at the initial points
set n [llength $startx]
foreach x $vertices {
set cmd $f
foreach xx $x {
lappend cmd $xx
}
set y [uplevel 1 $cmd]
if {$params(-trace)} {
puts "nelderMead: evaluating initial point: x=[list $x] y=$y"
}
lappend yvec $y
}
# Loop adjusting the simplex in the 'vertices' array.
set nIter 0
while { 1 } {
# Find the highest, next highest, and lowest value in y,
# and save the indices.
set iBot 0
set yBot [lindex $yvec 0]
set iTop -1
set yTop [lindex $yvec 0]
set iNext -1
set i 0
foreach y $yvec {
if { $y <= $yBot } {
set yBot $y
set iBot $i
}
if { $iTop < 0 || $y >= $yTop } {
set iNext $iTop
set yNext $yTop
set iTop $i
set yTop $y
} elseif { $iNext < 0 || $y >= $yNext } {
set iNext $i
set yNext $y
}
incr i
}
# Return if the relative error is within an acceptable range
set rerror [expr { 2. * abs( $yTop - $yBot )
/ ( abs( $yTop ) + abs( $yBot ) + $params(-ftol) ) }]
if { $rerror < $params(-ftol) } {
set status ok
break
}
# Count iterations
if { [incr nIter] > $params(-maxiter) } {
set status too-many-iterations
break
}
incr nIter
# Find the centroid of the face opposite the vertex that
# maximizes the function value.
set centroid {}
for { set i 0 } { $i < $n } { incr i } {
lappend centroid 0.0
}
set i 0
foreach v $vertices {
if { $i != $iTop } {
set newCentroid {}
foreach x0 $centroid x1 $v {
lappend newCentroid [expr { $x0 + $x1 }]
}
set centroid $newCentroid
}
incr i
}
set newCentroid {}
foreach x $centroid {
lappend newCentroid [expr { $x / $n }]
}
set centroid $newCentroid
# The first trial point is a reflection of the high point
# around the centroid
set trial {}
foreach x0 [lindex $vertices $iTop] x1 $centroid {
lappend trial [expr {$x1 + ($x1 - $x0)}]
}
set cmd $f
foreach xx $trial {
lappend cmd $xx
}
set yTrial [uplevel 1 $cmd]
if { $params(-trace) } {
puts "nelderMead: trying reflection: x=[list $trial] y=$yTrial"
}
# If that reflection yields a new minimum, replace the high point,
# and additionally try dilating in the same direction.
if { $yTrial < $yBot } {
set trial2 {}
foreach x0 $centroid x1 $trial {
lappend trial2 [expr { $x1 + ($x1 - $x0) }]
}
set cmd $f
foreach xx $trial2 {
lappend cmd $xx
}
set yTrial2 [uplevel 1 $cmd]
if { $params(-trace) } {
puts "nelderMead: trying dilated reflection:\
x=[list $trial2] y=$y"
}
if { $yTrial2 < $yBot } {
# Additional dilation yields a new minimum
lset vertices $iTop $trial2
lset yvec $iTop $yTrial2
} else {
# Additional dilation failed, but we can still use
# the first trial point.
lset vertices $iTop $trial
lset yvec $iTop $yTrial
}
} elseif { $yTrial < $yNext } {
# The reflected point isn't a new minimum, but it's
# better than the second-highest. Replace the old high
# point and try again.
lset vertices $iTop $trial
lset yvec $iTop $yTrial
} else {
# The reflected point is worse than the second-highest point.
# If it's better than the highest, keep it... but in any case,
# we want to try contracting the simplex, because a further
# reflection will simply bring us back to the starting point.
if { $yTrial < $yTop } {
lset vertices $iTop $trial
lset yvec $iTop $yTrial
set yTop $yTrial
}
set trial {}
foreach x0 [lindex $vertices $iTop] x1 $centroid {
lappend trial [expr { ( $x0 + $x1 ) / 2. }]
}
set cmd $f
foreach xx $trial {
lappend cmd $xx
}
set yTrial [uplevel 1 $cmd]
if { $params(-trace) } {
puts "nelderMead: contracting from high point:\
x=[list $trial] y=$y"
}
if { $yTrial < $yTop } {
# Contraction gave an improvement, so continue with
# the smaller simplex
lset vertices $iTop $trial
lset yvec $iTop $yTrial
} else {
# Contraction gave no improvement either; we seem to
# be in a valley of peculiar topology. Contract the
# simplex about the low point and try again.
set newVertices {}
set newYvec {}
set i 0
foreach v $vertices y $yvec {
if { $i == $iBot } {
lappend newVertices $v
lappend newYvec $y
} else {
set newv {}
foreach x0 $v x1 [lindex $vertices $iBot] {
lappend newv [expr { ($x0 + $x1) / 2. }]
}
lappend newVertices $newv
set cmd $f
foreach xx $newv {
lappend cmd $xx
}
lappend newYvec [uplevel 1 $cmd]
if { $params(-trace) } {
puts "nelderMead: contracting about low point:\
x=[list $newv] y=$y"
}
}
incr i
}
set vertices $newVertices
set yvec $newYvec
}
}
}
return [list y $yBot x [lindex $vertices $iBot] vertices $vertices yvec $yvec nIter $nIter status $status]
}
# solveLinearProgram
# Solve a linear program in standard form
#
# Arguments:
# objective Vector defining the objective function
# constraints Matrix of constraints (as a list of lists)
#
# Return value:
# Computed values for the coordinates or "unbounded" or "infeasible"
#
proc ::math::optimize::solveLinearProgram { objective constraints } {
#
# Check the arguments first and then put them in a more convenient
# form
#
foreach {nconst nvars matrix} \
[SimplexPrepareMatrix $objective $constraints] {break}
set solution [SimplexSolve $nconst nvars $matrix]
if { [llength $solution] > 1 } {
return [lrange $solution 0 [expr {$nvars-1}]]
} else {
return $solution
}
}
# linearProgramMaximum --
# Compute the value attained at the optimum
#
# Arguments:
# objective The coefficients of the objective function
# result The coordinate values as obtained by solving the program
#
# Return value:
# Value at the maximum point
#
proc ::math::optimize::linearProgramMaximum {objective result} {
set value 0.0
foreach coeff $objective coord $result {
set value [expr {$value+$coeff*$coord}]
}
return $value
}
# SimplexPrintMatrix
# Debugging routine: print the matrix in easy to read form
#
# Arguments:
# matrix Matrix to be printed
#
# Return value:
# None
#
# Note:
# The tableau should be transposed ...
#
proc ::math::optimize::SimplexPrintMatrix {matrix} {
puts "\nBasis:\t[join [lindex $matrix 0] \t]"
foreach col [lrange $matrix 1 end] {
puts " \t[join $col \t]"
}
}
# SimplexPrepareMatrix
# Prepare the standard tableau from all program data
#
# Arguments:
# objective Vector defining the objective function
# constraints Matrix of constraints (as a list of lists)
#
# Return value:
# List of values as a standard tableau and two values
# for the sizes
#
proc ::math::optimize::SimplexPrepareMatrix {objective constraints} {
#
# Check the arguments first
#
set nconst [llength $constraints]
set ncols {}
foreach row $constraints {
if { $ncols == {} } {
set ncols [llength $row]
} else {
if { $ncols != [llength $row] } {
return -code error -errorcode ARGS "Incorrectly formed constraints matrix"
}
}
}
set nvars [expr {$ncols-1}]
if { [llength $objective] != $nvars } {
return -code error -errorcode ARGS "Incorrect length for objective vector"
}
#
# Set up the tableau:
# Easiest manipulations if we store the columns first
# So:
# - First column is the list of variable indices in the basis
# - Second column is the list of maximum values
# - "nvars" columns that follow: the coefficients for the actual
# variables
# - last "nconst" columns: the slack variables
#
set matrix [list]
set lastrow [concat $objective [list 0.0]]
set newcol [list]
for {set idx 0} {$idx < $nconst} {incr idx} {
lappend newcol [expr {$nvars+$idx}]
}
lappend newcol "?"
lappend matrix $newcol
set zvector [list]
foreach row $constraints {
lappend zvector [lindex $row end]
}
lappend zvector 0.0
lappend matrix $zvector
for {set idx 0} {$idx < $nvars} {incr idx} {
set newcol [list]
foreach row $constraints {
lappend newcol [expr {double([lindex $row $idx])}]
}
lappend newcol [expr {-double([lindex $lastrow $idx])}]
lappend matrix $newcol
}
#
# Add the columns for the slack variables
#
set zeros {}
for {set idx 0} {$idx <= $nconst} {incr idx} {
lappend zeros 0.0
}
for {set idx 0} {$idx < $nconst} {incr idx} {
lappend matrix [lreplace $zeros $idx $idx 1.0]
}
return [list $nconst $nvars $matrix]
}
# SimplexSolve --
# Solve the given linear program using the simplex method
#
# Arguments:
# nconst Number of constraints
# nvars Number of actual variables
# tableau Standard tableau (as a list of columns)
#
# Return value:
# List of values for the actual variables
#
proc ::math::optimize::SimplexSolve {nconst nvars tableau} {
set end 0
while { !$end } {
#
# Find the new variable to put in the basis
#
set nextcol [SimplexFindNextColumn $tableau]
if { $nextcol == -1 } {
set end 1
continue
}
#
# Now determine which one should leave
# TODO: is a lack of a proper row indeed an
# indication of the infeasibility?
#
set nextrow [SimplexFindNextRow $tableau $nextcol]
if { $nextrow == -1 } {
return "unbounded"
}
#
# Make the vector for sweeping through the tableau
#
set vector [SimplexMakeVector $tableau $nextcol $nextrow]
#
# Sweep through the tableau
#
set tableau [SimplexNewTableau $tableau $nextcol $nextrow $vector]
}
#
# Now we can return the result
#
SimplexResult $tableau
}
# SimplexResult --
# Reconstruct the result vector
#
# Arguments:
# tableau Standard tableau (as a list of columns)
#
# Return value:
# Vector of values representing the maximum point
#
proc ::math::optimize::SimplexResult {tableau} {
set result {}
set firstcol [lindex $tableau 0]
set secondcol [lindex $tableau 1]
set result {}
set nvars [expr {[llength $tableau]-2}]
for {set i 0} {$i < $nvars } { incr i } {
lappend result 0.0
}
set idx 0
foreach col [lrange $firstcol 0 end-1] {
set value [lindex $secondcol $idx]
if { $value >= 0.0 } {
set result [lreplace $result $col $col [lindex $secondcol $idx]]
incr idx
} else {
# If a negative component, then the problem was not feasible
return "infeasible"
}
}
return $result
}
# SimplexFindNextColumn --
# Find the next column - the one with the largest negative
# coefficient
#
# Arguments:
# tableau Standard tableau (as a list of columns)
#
# Return value:
# Index of the column
#
proc ::math::optimize::SimplexFindNextColumn {tableau} {
set idx 0
set minidx -1
set mincoeff 0.0
foreach col [lrange $tableau 2 end] {
set coeff [lindex $col end]
if { $coeff < 0.0 } {
if { $coeff < $mincoeff } {
set minidx $idx
set mincoeff $coeff
}
}
incr idx
}
return $minidx
}
# SimplexFindNextRow --
# Find the next row - the one with the largest negative
# coefficient
#
# Arguments:
# tableau Standard tableau (as a list of columns)
# nextcol Index of the variable that will replace this one
#
# Return value:
# Index of the row
#
proc ::math::optimize::SimplexFindNextRow {tableau nextcol} {
set idx 0
set minidx -1
set mincoeff {}
set bvalues [lrange [lindex $tableau 1] 0 end-1]
set yvalues [lrange [lindex $tableau [expr {2+$nextcol}]] 0 end-1]
foreach rowcoeff $bvalues divcoeff $yvalues {
if { $divcoeff > 0.0 } {
set coeff [expr {$rowcoeff/$divcoeff}]
if { $mincoeff == {} || $coeff < $mincoeff } {
set minidx $idx
set mincoeff $coeff
}
}
incr idx
}
return $minidx
}
# SimplexMakeVector --
# Make the "sweep" vector
#
# Arguments:
# tableau Standard tableau (as a list of columns)
# nextcol Index of the variable that will replace this one
# nextrow Index of the variable in the base that will be replaced
#
# Return value:
# Vector to be used to update the coefficients of the tableau
#
proc ::math::optimize::SimplexMakeVector {tableau nextcol nextrow} {
set idx 0
set vector {}
set column [lindex $tableau [expr {2+$nextcol}]]
set divcoeff [lindex $column $nextrow]
foreach colcoeff $column {
if { $idx != $nextrow } {
set coeff [expr {-$colcoeff/$divcoeff}]
} else {
set coeff [expr {1.0/$divcoeff-1.0}]
}
lappend vector $coeff
incr idx
}
return $vector
}
# SimplexNewTableau --
# Sweep through the tableau and create the new one
#
# Arguments:
# tableau Standard tableau (as a list of columns)
# nextcol Index of the variable that will replace this one
# nextrow Index of the variable in the base that will be replaced
# vector Vector to sweep with
#
# Return value:
# New tableau
#
proc ::math::optimize::SimplexNewTableau {tableau nextcol nextrow vector} {
#
# The first column: replace the nextrow-th element
# The second column: replace the value at the nextrow-th element
# For all the others: the same receipe
#
set firstcol [lreplace [lindex $tableau 0] $nextrow $nextrow $nextcol]
set newtableau [list $firstcol]
#
# The rest of the matrix
#
foreach column [lrange $tableau 1 end] {
set yval [lindex $column $nextrow]
set newcol {}
foreach c $column vcoeff $vector {
set newval [expr {$c+$yval*$vcoeff}]
lappend newcol $newval
}
lappend newtableau $newcol
}
return $newtableau
}
# Now we can announce our presence
package provide math::optimize 1.0.1
if { ![info exists ::argv0] || [string compare $::argv0 [info script]] } {
return
}
namespace import math::optimize::min_bound_1d
namespace import math::optimize::maximum
namespace import math::optimize::nelderMead
proc f {x y} {
set xx [expr { $x - 3.1415926535897932 / 2. }]
set v1 [expr { 0.3 * exp( -$xx*$xx / 2. ) }]
set d [expr { 10. * $y - sin(9. * $x) }]
set v2 [expr { exp(-10.*$d*$d)}]
set rv [expr { -$v1 - $v2 }]
return $rv
}
proc g {a b} {
set x1 [expr {0.1 - $a + $b}]
set x2 [expr {$a + $b - 1.}]
set x3 [expr {3.-8.*$a+8.*$a*$a-8.*$b+8.*$b*$b}]
set x4 [expr {$a/10. + $b/10. + $x1*$x1/3. + $x2*$x2 - $x2 * exp(1-$x3*$x3)}]
return $x4
}
set prec $::tcl_precision
if {![package vsatisfies [package provide Tcl] 8.5]} {
set ::tcl_precision 17
} else {
set ::tcl_precision 0
}
puts "f"
puts [math::optimize::nelderMead f {1. 0.} -scale {0.1 0.01} -trace 1]
puts "g"
puts [math::optimize::nelderMead g {0. 0.} -scale {1. 1.} -trace 1]
set ::tcl_precision $prec
|