/usr/share/tcltk/tcllib1.17/math/mvlinreg.tcl is in tcllib 1.17-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | # mvreglin.tcl --
# Addition to the statistics package
# Copyright 2007 Eric Kemp-Benedict
# Released under the BSD license under any terms
# that allow it to be compatible with tcllib
package require math::linearalgebra 1.0
# ::math::statistics --
# This file adds:
# mvlinreg = Multivariate Linear Regression
#
namespace eval ::math::statistics {
variable epsilon 1.0e-7
namespace export tstat mv-wls mv-ols
namespace import -force \
::math::linearalgebra::mkMatrix \
::math::linearalgebra::mkVector \
::math::linearalgebra::mkIdentity \
::math::linearalgebra::mkDiagonal \
::math::linearalgebra::getrow \
::math::linearalgebra::setrow \
::math::linearalgebra::getcol \
::math::linearalgebra::setcol \
::math::linearalgebra::getelem \
::math::linearalgebra::setelem \
::math::linearalgebra::dotproduct \
::math::linearalgebra::matmul \
::math::linearalgebra::add \
::math::linearalgebra::sub \
::math::linearalgebra::solveGauss \
::math::linearalgebra::transpose
}
# tstats --
# Returns inverse of the single-tailed t distribution
# given number of degrees of freedom & confidence
#
# Arguments:
# n Number of degrees of freedom
# alpha Confidence level (defaults to 0.05)
#
# Result:
# Inverse of the t-distribution
#
# Note:
# Iterates until result is within epsilon of the target.
# It is possible that the iteration does not converge
#
proc ::math::statistics::tstat {n {alpha 0.05}} {
variable epsilon
variable tvals
if [info exists tvals($n:$alpha)] {
return $tvals($n:$alpha)
}
set deltat [expr {100 * $epsilon}]
# For one-tailed distribution,
set ptarg [expr {1.000 - $alpha/2.0}]
set maxiter 100
# Initial value for t
set t 2.0
set niter 0
while {abs([::math::statistics::cdf-students-t $n $t] - $ptarg) > $epsilon} {
set pstar [::math::statistics::cdf-students-t $n $t]
set pl [::math::statistics::cdf-students-t $n [expr {$t - $deltat}]]
set ph [::math::statistics::cdf-students-t $n [expr {$t + $deltat}]]
set t [expr {$t + 2.0 * $deltat * ($ptarg - $pstar)/($ph - $pl)}]
incr niter
if {$niter == $maxiter} {
return -code error "::math::statistics::tstat: Did not converge after $niter iterations"
}
}
# Cache the result to shorten the call in future
set tvals($n:$alpha) $t
return $t
}
# mv-wls --
# Weighted Least Squares
#
# Arguments:
# data Alternating list of weights and observations
#
# Result:
# List containing:
# * R-squared
# * Adjusted R-squared
# * Coefficients of x's in fit
# * Standard errors of the coefficients
# * 95% confidence bounds for coefficients
#
# Note:
# The observations are lists starting with the dependent variable y
# and then the values of the independent variables (x1, x2, ...):
#
# mv-wls [list w [list y x's] w [list y x's] ...]
#
proc ::math::statistics::mv-wls {data} {
# Fill the matrices of x & y values, and weights
# For n points, k coefficients
# The number of points is equal to half the arguments (n weights, n points)
set n [expr {[llength $data]/2}]
set firstloop true
# Sum up all y values to take an average
set ysum 0
# Add up the weights
set wtsum 0
# Count over rows (points) as you go
set point 0
foreach {wt pt} $data {
# Check inputs
if {[string is double $wt] == 0} {
return -code error "::math::statistics::mv-wls: Weight \"$wt\" is not a number"
return {}
}
## -- Check dimensions, initialize
if $firstloop {
# k = num of vals in pt = 1 + number of x's (because of constant)
set k [llength $pt]
if {$n <= [expr {$k + 1}]} {
return -code error "::math::statistics::mv-wls: Too few degrees of freedom: $k variables but only $n points"
return {}
}
set X [mkMatrix $n $k]
set y [mkVector $n]
set I_x [mkIdentity $k]
set I_y [mkIdentity $n]
set firstloop false
} else {
# Have to have same number of x's for all points
if {$k != [llength $pt]} {
return -code error "::math::statistics::mv-wls: Point \"$pt\" has wrong number of values (expected $k)"
# Clean up
return {}
}
}
## -- Extract values from set of points
# Make a list of y values
set yval [expr {double([lindex $pt 0])}]
setelem y $point $yval
set ysum [expr {$ysum + $wt * $yval}]
set wtsum [expr {$wtsum + $wt}]
# Add x-values to the x-matrix
set xrow [lrange $pt 1 end]
# Add the constant (value = 1.0)
lappend xrow 1.0
setrow X $point $xrow
# Create list of weights & square root of weights
lappend w [expr {double($wt)}]
lappend sqrtw [expr {sqrt(double($wt))}]
incr point
}
set ymean [expr {double($ysum)/$wtsum}]
set W [mkDiagonal $w]
set sqrtW [mkDiagonal $sqrtw]
# Calculate sum os square differences for x's
for {set r 0} {$r < $k} {incr r} {
set xsqrsum 0.0
set xmeansum 0.0
# Calculate sum of squared differences as: sum(x^2) - (sum x)^2/n
for {set t 0} {$t < $n} {incr t} {
set xval [getelem $X $t $r]
set xmeansum [expr {$xmeansum + double($xval)}]
set xsqrsum [expr {$xsqrsum + double($xval * $xval)}]
}
lappend xsqr [expr {$xsqrsum - $xmeansum * $xmeansum/$n}]
}
## -- Set up the X'WX matrix
set XtW [matmul [::math::linearalgebra::transpose $X] $W]
set XtWX [matmul $XtW $X]
# Invert
set M [solveGauss $XtWX $I_x]
set beta [matmul $M [matmul $XtW $y]]
### -- Residuals & R-squared
# 1) Generate list of diagonals of the hat matrix
set H [matmul $X [matmul $M $XtW]]
for {set i 0} {$i < $n} {incr i} {
lappend h_ii [getelem $H $i $i]
}
set R [matmul $sqrtW [matmul [sub $I_y $H] $y]]
set yhat [matmul $H $y]
# 2) Generate list of residuals, sum of squared residuals, r-squared
set sstot 0.0
set ssreg 0.0
# Note: Relying on representation of Vector as a list for y, yhat
foreach yval $y wt $w yhatval $yhat {
set sstot [expr {$sstot + $wt * ($yval - $ymean) * ($yval - $ymean)}]
set ssreg [expr {$ssreg + $wt * ($yhatval - $ymean) * ($yhatval - $ymean)}]
}
set r2 [expr {double($ssreg)/$sstot}]
set adjr2 [expr {1.0 - (1.0 - $r2) * ($n - 1)/($n - $k)}]
set sumsqresid [dotproduct $R $R]
set s2 [expr {double($sumsqresid) / double($n - $k)}]
### -- Confidence intervals for coefficients
set tvalue [tstat [expr {$n - $k}]]
for {set i 0} {$i < $k} {incr i} {
set stderr [expr {sqrt($s2 * [getelem $M $i $i])}]
set mid [lindex $beta $i]
lappend stderrs $stderr
lappend confinterval [list [expr {$mid - $tvalue * $stderr}] [expr {$mid + $tvalue * $stderr}]]
}
return [list $r2 $adjr2 $beta $stderrs $confinterval]
}
# mv-ols --
# Ordinary Least Squares
#
# Arguments:
# data List of observations, list of lists
#
# Result:
# List containing:
# * R-squared
# * Adjusted R-squared
# * Coefficients of x's in fit
# * Standard errors of the coefficients
# * 95% confidence bounds for coefficients
#
# Note:
# The observations are lists starting with the dependent variable y
# and then the values of the independent variables (x1, x2, ...):
#
# mv-ols [list y x's] [list y x's] ...
#
proc ::math::statistics::mv-ols {data} {
set newdata {}
foreach pt $data {
lappend newdata 1 $pt
}
return [mv-wls $newdata]
}
|