This file is indexed.

/usr/share/tcltk/tcllib1.17/math/fourier.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# fourier.tcl --
#    Package for discrete (ordinary) and fast fourier transforms
#
# Author: Lars Hellstrom (...)
#
# The two top-level procedures defined are
#
#          dft data-list
#          inverse_dft data-list
#
# which take a list of complex numbers and apply a Discrete Fourier
# Transform (DFT) or its inverse respectively to these lists of numbers.
# A "complex number" in this case is either (i) a pair (two element
# list) of numbers, interpreted as the real and imaginary parts of the
# complex number, or (ii) a single number, interpreted as the real
# part of a complex number whose imaginary part is zero. The return
# value is always in the first format. (The DFT generally produces
# complex results even if the input is purely real.) Applying first
# one and then the other of these procedures to a list of complex
# numbers will (modulo rounding errors due to floating point
# arithmetic) return the original list of numbers.
#
# If the input length N is a power of two then these procedures will
# utilize the O(N log N) Fast Fourier Transform algorithm. If input
# length is not a power of two then the DFT will instead be computed
# using a the naive quadratic algorithm.
#
# Some examples:
#
#   % dft {1 2 3 4}
#   {10 0.0} {-2.0 2.0} {-2 0.0} {-2.0 -2.0}
#   % inverse_dft {{10 0.0} {-2.0 2.0} {-2 0.0} {-2.0 -2.0}}
#   {1.0 0.0} {2.0 0.0} {3.0 0.0} {4.0 0.0}
#   % dft {1 2 3 4 5}
#   {15.0 0.0} {-2.5 3.44095480118} {-2.5 0.812299240582} {-2.5 -0.812299240582} {-2.5 -3.44095480118}
#   % inverse_dft {{15.0 0.0} {-2.5 3.44095480118} {-2.5 0.812299240582} {-2.5 -0.812299240582} {-2.5 -3.44095480118}}
#   {1.0 0.0} {2.0 8.881784197e-17} {3.0 4.4408920985e-17} {4.0 4.4408920985e-17} {5.0 -8.881784197e-17}
                                   #
# In the last case, the imaginary parts <1e-16 would have been zero in
# exact arithmetic, but aren't here due to rounding errors.
#
# Internally, the procedures use a flat list format where every even
# index element of a list is a real part and every odd index element is
# an imaginary part. This is reflected in the variable names by Re_ and
# Im_ prefixes.
#

namespace eval ::math::fourier {
   #::math::constants pi

   namespace export dft inverse_dft lowpass highpass
}

# dft --
#     Return the discrete fourier transform as a list of complex numbers
#
# Arguments:
#     in_data     List of data (either real or complex)
# Returns:
#     List of complex amplitudes for the Fourier components
# Note:
#     The procedure uses an ordinary DFT if the number of data is
#     not a power of 2, otherwise it uses FFT.
#
proc ::math::fourier::dft {in_data} {
    # First convert to internal format
    set dataL [list]
    set n 0
    foreach datum $in_data {
        if {[llength $datum] == 1} then {
            lappend dataL $datum 0.0
        } else {
            lappend dataL [lindex $datum 0] [lindex $datum 1]
        }
        incr n
    }

    # Then compute a list of n'th roots of unity (explanation below)
    set rootL [DFT_make_roots $n -1]

    # Check if the input length is a power of two.
    set p 1
    while {$p < $n} {set p [expr {$p << 1}]}
    # By construction, $p is a power of two. If $n==$p then $n is too.

    # Finally compute the transform using Fast_DFT or Slow_DFT,
    # and convert back to the input format.
    set res [list]
    foreach {Re Im} [
        if {$p == $n} then {
            Fast_DFT $dataL $rootL
        } else {
            Slow_DFT $dataL $rootL
        }
    ] {
        lappend res [list $Re $Im]
    }
    return $res
}

# inverse_dft --
#     Invert the discrete fourier transform and return the restored data
#     as complex numbers
#
# Arguments:
#     in_data     List of fourier coefficients (either real or complex)
# Returns:
#     List of complex amplitudes for the Fourier components
# Note:
#     The procedure uses an ordinary DFT if the number of data is
#     not a power of 2, otherwise it uses FFT.
#
proc ::math::fourier::inverse_dft {in_data} {
    # First convert to internal format
    set dataL [list]
    set n 0
    foreach datum $in_data {
        if {[llength $datum] == 1} then {
            lappend dataL $datum 0.0
        } else {
            lappend dataL [lindex $datum 0] [lindex $datum 1]
        }
        incr n
    }

    # Then compute a list of n'th roots of unity (explanation below)
    set rootL [DFT_make_roots $n 1]

    # Check if the input length is a power of two.
    set p 1
    while {$p < $n} {set p [expr {$p << 1}]}
    # By construction, $p is a power of two. If $n==$p then $n is too.

    # Finally compute the transform using Fast_DFT or Slow_DFT,
    # divide by input data length to correct the amplitudes,
    # and convert back to the input format.
    set res [list]
    foreach {Re Im} [
        # $p is power of two. If $n==$p then $n is too.
        if {$p == $n} then {
            Fast_DFT $dataL $rootL
        } else {
            Slow_DFT $dataL $rootL
        }
    ] {
        lappend res [list [expr {$Re/$n}] [expr {$Im/$n}]]
    }
    return $res
}

# DFT_make_roots --
#     Return a list of the complex roots of unity or of -1
#
# Arguments:
#     n           Order of the roots
#     sign        Whether to use 1 or -1 (for inverse transform)
# Returns:
#     List of complex roots of unity or -1
#
proc ::math::fourier::DFT_make_roots {n sign} {
    set res [list]
    for {set k 0} {2*$k < $n} {incr k} {
        set alpha [expr {2*3.1415926535897931*$sign*$k/$n}]
        lappend res [expr {cos($alpha)}] [expr {sin($alpha)}]
    }
    return $res
}

# Fast_DFT --
#     Perform the fast Fourier transform
#
# Arguments:
#     dataL       List of data
#     rootL       Roots of unity or -1 to use in the transform
# Returns:
#     List of complex numbers
#
proc ::math::fourier::Fast_DFT {dataL rootL} {
    if {[llength $dataL] == 8} then {
        foreach {Re_z0 Im_z0 Re_z1 Im_z1 Re_z2 Im_z2 Re_z3 Im_z3} $dataL {break}
        if {[lindex $rootL 3] > 0} then {
            return [list\
              [expr {$Re_z0 + $Re_z1 + $Re_z2 + $Re_z3}] [expr {$Im_z0 + $Im_z1 + $Im_z2 + $Im_z3}]\
              [expr {$Re_z0 - $Im_z1 - $Re_z2 + $Im_z3}] [expr {$Im_z0 + $Re_z1 - $Im_z2 - $Re_z3}]\
              [expr {$Re_z0 - $Re_z1 + $Re_z2 - $Re_z3}] [expr {$Im_z0 - $Im_z1 + $Im_z2 - $Im_z3}]\
              [expr {$Re_z0 + $Im_z1 - $Re_z2 - $Im_z3}] [expr {$Im_z0 - $Re_z1 - $Im_z2 + $Re_z3}]]
        } else {
            return [list\
              [expr {$Re_z0 + $Re_z1 + $Re_z2 + $Re_z3}] [expr {$Im_z0 + $Im_z1 + $Im_z2 + $Im_z3}]\
              [expr {$Re_z0 + $Im_z1 - $Re_z2 - $Im_z3}] [expr {$Im_z0 - $Re_z1 - $Im_z2 + $Re_z3}]\
              [expr {$Re_z0 - $Re_z1 + $Re_z2 - $Re_z3}] [expr {$Im_z0 - $Im_z1 + $Im_z2 - $Im_z3}]\
              [expr {$Re_z0 - $Im_z1 - $Re_z2 + $Im_z3}] [expr {$Im_z0 + $Re_z1 - $Im_z2 - $Re_z3}]]
        }
    } elseif {[llength $dataL] > 8} then {
        set evenL [list]
        set oddL [list]
        foreach {Re_z0 Im_z0 Re_z1 Im_z1} $dataL {
            lappend evenL $Re_z0 $Im_z0
            lappend oddL $Re_z1 $Im_z1
        }
        set squarerootL [list]
        foreach {Re_omega0 Im_omega0 Re_omega1 Im_omega1} $rootL {
            lappend squarerootL $Re_omega0 $Im_omega0
        }
        set lowL [list]
        set highL [list]
        foreach\
          {Re_y0 Im_y0}       [Fast_DFT $evenL $squarerootL]\
          {Re_y1 Im_y1}       [Fast_DFT $oddL $squarerootL]\
          {Re_omega Im_omega} $rootL {
            set Re_y1t [expr {$Re_y1 * $Re_omega - $Im_y1 * $Im_omega}]
            set Im_y1t [expr {$Im_y1 * $Re_omega + $Re_y1 * $Im_omega}]
            lappend lowL  [expr {$Re_y0 + $Re_y1t}] [expr {$Im_y0 + $Im_y1t}]
            lappend highL [expr {$Re_y0 - $Re_y1t}] [expr {$Im_y0 - $Im_y1t}]
        }
        return [concat $lowL $highL]
    } elseif {[llength $dataL] == 4} then {
        foreach {Re_z0 Im_z0 Re_z1 Im_z1} $dataL {break}
        return [list\
          [expr {$Re_z0 + $Re_z1}] [expr {$Im_z0 + $Im_z1}]\
          [expr {$Re_z0 - $Re_z1}] [expr {$Im_z0 - $Im_z1}]]
    } else {
        return $dataL
    }
}

# Slow_DFT --
#     Perform the ordinary discrete (slow) Fourier transform
#
# Arguments:
#     dataL       List of data
#     rootL       Roots of unity or -1 to use in the transform
# Returns:
#     List of complex numbers
#
proc ::math::fourier::Slow_DFT {dataL rootL} {
    set n [expr {[llength $dataL] / 2}]

    # The missing roots are computed by complex conjugating the given
    # roots. If $n is even then -1 is also needed; it is inserted explicitly.
    set k [llength $rootL]
    if {$n % 2 == 0} then {
        lappend rootL -1.0 0.0
    }
    for {incr k -2} {$k > 0} {incr k -2} {
        lappend rootL [lindex $rootL $k]\
          [expr {-[lindex $rootL [expr {$k+1}]]}]
    }

    # This is strictly following the naive formula.
    # The product jk is kept as a separate counter variable.
    set res [list]
    for {set k 0} {$k < $n} {incr k} {
        set Re_sum 0.0
        set Im_sum 0.0
        set jk 0
        foreach {Re_z Im_z} $dataL {
            set Re_omega [lindex $rootL [expr {2*$jk}]]
            set Im_omega [lindex $rootL [expr {2*$jk+1}]]
            set Re_sum [expr {$Re_sum +
              $Re_z * $Re_omega - $Im_z * $Im_omega}]
            set Im_sum [expr {$Im_sum +
              $Im_z * $Re_omega + $Re_z * $Im_omega}]
            incr jk $k
            if {$jk >= $n} then {set jk [expr {$jk - $n}]}
        }
        lappend res $Re_sum $Im_sum
    }
    return $res
}

# lowpass --
#     Apply a low-pass filter to the Fourier transform
#
# Arguments:
#     cutoff      Cut-off frequency
#     in_data     Input transform (complex data)
# Returns:
#     Filtered transform
#
proc ::math::fourier::lowpass {cutoff in_data} {
    package require math::complexnumbers

    set res    [list]
    set cutoff [list $cutoff 0.0]
    set f      0.0
    foreach a $in_data {
       set an [::math::complexnumbers::/ $a \
                  [::math::complexnumbers::+ {1.0 0.0} \
                      [::math::complexnumbers::/ [list 0.0 $f] $cutoff]]]
       lappend res $an
       set f [expr {$f+1.0}]
    }

    return $res
}

# highpass --
#     Apply a high-pass filter to the Fourier transform
#
# Arguments:
#     cutoff      Cut-off frequency
#     in_data     Input transform (complex data)
# Returns:
#     Filtered transform (high-pass)
#
proc ::math::fourier::highpass {cutoff in_data} {
    package require math::complexnumbers

    set res    [list]
    set cutoff [list $cutoff 0.0]
    set f      0.0
    foreach a $in_data {
       set ff [::math::complexnumbers::/ [list 0.0 $f] $cutoff]
       set an [::math::complexnumbers::/ $ff \
                  [::math::complexnumbers::+ {1.0 0.0} $ff]]
       lappend res $an
       set f [expr {$f+1.0}]
    }

    return $res
}

#
# Announce the package
#
package provide math::fourier 1.0.2

# test --
#
proc test_dft {points {real 0} {iterations 20}} {
    set in_dataL [list]
    for {set k 0} {$k < $points} {incr k} {
        if {$real} then {
            lappend in_dataL [expr {2*rand()-1}]
        } else {
            lappend in_dataL [list [expr {2*rand()-1}] [expr {2*rand()-1}]]
        }
    }
    set time1 [time {
        set conv_dataL [::math::fourier::dft $in_dataL]
    } $iterations]
    set time2 [time {
        set out_dataL [::math::fourier::inverse_dft $conv_dataL]
    } $iterations]
    set err 0.0
    foreach iz $in_dataL oz $out_dataL {
        if {$real} then {
            foreach {o1 o2} $oz {break}
            set err [expr {$err + ($i-$o1)*($i-$o1) + $o2*$o2}]
        } else {
            foreach i $iz o $oz {
                set err [expr {$err + ($i-$o)*($i-$o)}]
            }
        }
    }
    return [format "Forward: %s\nInverse: %s\nAverage error: %g"\
      $time1 $time2 [expr {sqrt($err/$points)}]]
}

# Note:
# Add simple filters

if { 0 } {
puts [::math::fourier::dft {1 2 3 4}]
puts [::math::fourier::inverse_dft {{10 0.0} {-2.0 2.0} {-2 0.0} {-2.0 -2.0}}]
puts [::math::fourier::dft {1 2 3 4 5}]
puts [::math::fourier::inverse_dft {{15.0 0.0} {-2.5 3.44095480118} {-2.5 0.812299240582} {-2.5 -0.812299240582} {-2.5 -3.44095480118}}]
puts [test_dft 10]
puts [test_dft 16]
puts [test_dft 100]
puts [test_dft 128]

puts [::math::fourier::dft {1 2 3 4}]
puts [::math::fourier::lowpass 1.5 [::math::fourier::dft {1 2 3 4}]]
}