This file is indexed.

/usr/share/tcltk/tcllib1.17/math/calculus.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
# calculus.tcl --
#    Package that implements several basic numerical methods, such
#    as the integration of a one-dimensional function and the
#    solution of a system of first-order differential equations.
#
# Copyright (c) 2002, 2003, 2004, 2006 by Arjen Markus.
# Copyright (c) 2004 by Kevin B. Kenny.  All rights reserved.
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: calculus.tcl,v 1.15 2008/10/08 03:30:48 andreas_kupries Exp $

package require Tcl 8.4
package require math::interpolate
package provide math::calculus 0.8.1

# math::calculus --
#    Namespace for the commands

namespace eval ::math::calculus {

    namespace import ::math::interpolate::neville

    namespace import ::math::expectDouble ::math::expectInteger

    namespace export \
	integral integralExpr integral2D integral3D \
	qk15 qk15_detailed \
	eulerStep heunStep rungeKuttaStep           \
	boundaryValueSecondOrder solveTriDiagonal   \
	newtonRaphson newtonRaphsonParameters
    namespace export \
        integral2D_2accurate integral3D_accurate

    namespace export romberg romberg_infinity
    namespace export romberg_sqrtSingLower romberg_sqrtSingUpper
    namespace export romberg_powerLawLower romberg_powerLawUpper
    namespace export romberg_expLower romberg_expUpper

    namespace export regula_falsi

    variable nr_maxiter    20
    variable nr_tolerance   0.001

}

# integral --
#    Integrate a function over a given interval using the Simpson rule
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    nosteps     Number of steps in which to divide the interval
#    func        Name of the function to be integrated (takes one
#                argument)
# Return value:
#    Computed integral
#
proc ::math::calculus::integral { begin end nosteps func } {

   set delta    [expr {($end-$begin)/double($nosteps)}]
   set hdelta   [expr {$delta/2.0}]
   set result   0.0
   set xval     $begin
   set func_end [uplevel 1 $func $xval]
   for { set i 1 } { $i <= $nosteps } { incr i } {
      set func_begin  $func_end
      set func_middle [uplevel 1 $func [expr {$xval+$hdelta}]]
      set func_end    [uplevel 1 $func [expr {$xval+$delta}]]
      set result      [expr  {$result+$func_begin+4.0*$func_middle+$func_end}]

      set xval        [expr {$begin+double($i)*$delta}]
   }

   return [expr {$result*$delta/6.0}]
}

# integralExpr --
#    Integrate an expression with "x" as the integrate according to the
#    Simpson rule
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    nosteps     Number of steps in which to divide the interval
#    expression  Expression with "x" as the integrate
# Return value:
#    Computed integral
#
proc ::math::calculus::integralExpr { begin end nosteps expression } {

   set delta    [expr {($end-$begin)/double($nosteps)}]
   set hdelta   [expr {$delta/2.0}]
   set result   0.0
   set x        $begin
   # FRINK: nocheck
   set func_end [expr $expression]
   for { set i 1 } { $i <= $nosteps } { incr i } {
      set func_begin  $func_end
      set x           [expr {$x+$hdelta}]
       # FRINK: nocheck
      set func_middle [expr $expression]
      set x           [expr {$x+$hdelta}]
       # FRINK: nocheck
      set func_end    [expr $expression]
      set result      [expr {$result+$func_begin+4.0*$func_middle+$func_end}]

      set x           [expr {$begin+double($i)*$delta}]
   }

   return [expr {$result*$delta/6.0}]
}

# integral2D --
#    Integrate a given fucntion of two variables over a block,
#    using bilinear interpolation (for this moment: block function)
#
# Arguments:
#    xinterval   Start, stop and number of steps of the "x" interval
#    yinterval   Start, stop and number of steps of the "y" interval
#    func        Function of the two variables to be integrated
# Return value:
#    Computed integral
#
proc ::math::calculus::integral2D { xinterval yinterval func } {

   foreach { xbegin xend xnumber } $xinterval { break }
   foreach { ybegin yend ynumber } $yinterval { break }

   set xdelta    [expr {($xend-$xbegin)/double($xnumber)}]
   set ydelta    [expr {($yend-$ybegin)/double($ynumber)}]
   set hxdelta   [expr {$xdelta/2.0}]
   set hydelta   [expr {$ydelta/2.0}]
   set result   0.0
   set dxdy      [expr {$xdelta*$ydelta}]
   for { set j 0 } { $j < $ynumber } { incr j } {
      set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
      for { set i 0 } { $i < $xnumber } { incr i } {
         set x           [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
         set func_value  [uplevel 1 $func $x $y]
         set result      [expr {$result+$func_value}]
      }
   }

   return [expr {$result*$dxdy}]
}

# integral3D --
#    Integrate a given fucntion of two variables over a block,
#    using trilinear interpolation (for this moment: block function)
#
# Arguments:
#    xinterval   Start, stop and number of steps of the "x" interval
#    yinterval   Start, stop and number of steps of the "y" interval
#    zinterval   Start, stop and number of steps of the "z" interval
#    func        Function of the three variables to be integrated
# Return value:
#    Computed integral
#
proc ::math::calculus::integral3D { xinterval yinterval zinterval func } {

   foreach { xbegin xend xnumber } $xinterval { break }
   foreach { ybegin yend ynumber } $yinterval { break }
   foreach { zbegin zend znumber } $zinterval { break }

   set xdelta    [expr {($xend-$xbegin)/double($xnumber)}]
   set ydelta    [expr {($yend-$ybegin)/double($ynumber)}]
   set zdelta    [expr {($zend-$zbegin)/double($znumber)}]
   set hxdelta   [expr {$xdelta/2.0}]
   set hydelta   [expr {$ydelta/2.0}]
   set hzdelta   [expr {$zdelta/2.0}]
   set result   0.0
   set dxdydz    [expr {$xdelta*$ydelta*$zdelta}]
   for { set k 0 } { $k < $znumber } { incr k } {
      set z [expr {$zbegin+$hzdelta+double($k)*$zdelta}]
      for { set j 0 } { $j < $ynumber } { incr j } {
         set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
         for { set i 0 } { $i < $xnumber } { incr i } {
            set x           [expr {$xbegin+$hxdelta+double($i)*$xdelta}]
            set func_value  [uplevel 1 $func $x $y $z]
            set result      [expr {$result+$func_value}]
         }
      }
   }

   return [expr {$result*$dxdydz}]
}

# integral2D_accurate --
#    Integrate a given function of two variables over a block,
#    using a four-point quadrature formula
#
# Arguments:
#    xinterval   Start, stop and number of steps of the "x" interval
#    yinterval   Start, stop and number of steps of the "y" interval
#    func        Function of the two variables to be integrated
# Return value:
#    Computed integral
#
proc ::math::calculus::integral2D_accurate { xinterval yinterval func } {

    foreach { xbegin xend xnumber } $xinterval { break }
    foreach { ybegin yend ynumber } $yinterval { break }

    set alpha     [expr {sqrt(2.0/3.0)}]
    set minalpha  [expr {-$alpha}]
    set dpoints   [list $alpha 0.0 $minalpha 0.0 0.0 $alpha 0.0 $minalpha]

    set xdelta    [expr {($xend-$xbegin)/double($xnumber)}]
    set ydelta    [expr {($yend-$ybegin)/double($ynumber)}]
    set hxdelta   [expr {$xdelta/2.0}]
    set hydelta   [expr {$ydelta/2.0}]
    set result   0.0
    set dxdy      [expr {0.25*$xdelta*$ydelta}]

    for { set j 0 } { $j < $ynumber } { incr j } {
        set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
        for { set i 0 } { $i < $xnumber } { incr i } {
            set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]

            foreach {dx dy} $dpoints {
                set x1          [expr {$x+$dx}]
                set y1          [expr {$y+$dy}]
                set func_value  [uplevel 1 $func $x1 $y1]
                set result      [expr {$result+$func_value}]
            }
        }
    }

    return [expr {$result*$dxdy}]
}

# integral3D_accurate --
#    Integrate a given function of three variables over a block,
#    using an 8-point quadrature formula
#
# Arguments:
#    xinterval   Start, stop and number of steps of the "x" interval
#    yinterval   Start, stop and number of steps of the "y" interval
#    zinterval   Start, stop and number of steps of the "z" interval
#    func        Function of the three variables to be integrated
# Return value:
#    Computed integral
#
proc ::math::calculus::integral3D_accurate { xinterval yinterval zinterval func } {

    foreach { xbegin xend xnumber } $xinterval { break }
    foreach { ybegin yend ynumber } $yinterval { break }
    foreach { zbegin zend znumber } $zinterval { break }

    set alpha     [expr {sqrt(1.0/3.0)}]
    set minalpha  [expr {-$alpha}]

    set dpoints   [list $alpha    $alpha    $alpha    \
                        $alpha    $alpha    $minalpha \
                        $alpha    $minalpha $alpha    \
                        $alpha    $minalpha $minalpha \
                        $minalpha $alpha    $alpha    \
                        $minalpha $alpha    $minalpha \
                        $minalpha $minalpha $alpha    \
                        $minalpha $minalpha $minalpha ]

    set xdelta    [expr {($xend-$xbegin)/double($xnumber)}]
    set ydelta    [expr {($yend-$ybegin)/double($ynumber)}]
    set zdelta    [expr {($zend-$zbegin)/double($znumber)}]
    set hxdelta   [expr {$xdelta/2.0}]
    set hydelta   [expr {$ydelta/2.0}]
    set hzdelta   [expr {$zdelta/2.0}]
    set result    0.0
    set dxdydz    [expr {0.125*$xdelta*$ydelta*$zdelta}]

    for { set k 0 } { $k < $znumber } { incr k } {
        set z [expr {$zbegin+$hzdelta+double($k)*$zdelta}]
        for { set j 0 } { $j < $ynumber } { incr j } {
            set y [expr {$ybegin+$hydelta+double($j)*$ydelta}]
            for { set i 0 } { $i < $xnumber } { incr i } {
                set x [expr {$xbegin+$hxdelta+double($i)*$xdelta}]

                foreach {dx dy dz} $dpoints {
                    set x1 [expr {$x+$dx}]
                    set y1 [expr {$y+$dy}]
                    set z1 [expr {$z+$dz}]
                    set func_value  [uplevel 1 $func $x1 $y1 $z1]
                    set result      [expr {$result+$func_value}]
                }
            }
        }
    }

    return [expr {$result*$dxdydz}]
}

# eulerStep --
#    Integrate a system of ordinary differential equations of the type
#    x' = f(x,t), where x is a vector of quantities. Integration is
#    done over a single step according to Euler's method.
#
# Arguments:
#    t           Start value of independent variable (time for instance)
#    tstep       Step size of interval
#    xvec        Vector of dependent values at the start
#    func        Function taking the arguments t and xvec to return
#                the derivative of each dependent variable.
# Return value:
#    List of values at the end of the step
#
proc ::math::calculus::eulerStep { t tstep xvec func } {

   set xderiv   [uplevel 1 $func $t [list $xvec]]
   set result   {}
   foreach xv $xvec dx $xderiv {
      set xnew [expr {$xv+$tstep*$dx}]
      lappend result $xnew
   }

   return $result
}

# heunStep --
#    Integrate a system of ordinary differential equations of the type
#    x' = f(x,t), where x is a vector of quantities. Integration is
#    done over a single step according to Heun's method.
#
# Arguments:
#    t           Start value of independent variable (time for instance)
#    tstep       Step size of interval
#    xvec        Vector of dependent values at the start
#    func        Function taking the arguments t and xvec to return
#                the derivative of each dependent variable.
# Return value:
#    List of values at the end of the step
#
proc ::math::calculus::heunStep { t tstep xvec func } {

   #
   # Predictor step
   #
   set funcq    [uplevel 1 namespace which -command $func]
   set xpred    [eulerStep $t $tstep $xvec $funcq]

   #
   # Corrector step
   #
   set tcorr    [expr {$t+$tstep}]
   set xcorr    [eulerStep $tcorr $tstep $xpred $funcq]

   set result   {}
   foreach xv $xvec xc $xcorr {
      set xnew [expr {0.5*($xv+$xc)}]
      lappend result $xnew
   }

   return $result
}

# rungeKuttaStep --
#    Integrate a system of ordinary differential equations of the type
#    x' = f(x,t), where x is a vector of quantities. Integration is
#    done over a single step according to Runge-Kutta 4th order.
#
# Arguments:
#    t           Start value of independent variable (time for instance)
#    tstep       Step size of interval
#    xvec        Vector of dependent values at the start
#    func        Function taking the arguments t and xvec to return
#                the derivative of each dependent variable.
# Return value:
#    List of values at the end of the step
#
proc ::math::calculus::rungeKuttaStep { t tstep xvec func } {

   set funcq    [uplevel 1 namespace which -command $func]

   #
   # Four steps:
   # - k1 = tstep*func(t,x0)
   # - k2 = tstep*func(t+0.5*tstep,x0+0.5*k1)
   # - k3 = tstep*func(t+0.5*tstep,x0+0.5*k2)
   # - k4 = tstep*func(t+    tstep,x0+    k3)
   # - x1 = x0 + (k1+2*k2+2*k3+k4)/6
   #
   set tstep2   [expr {$tstep/2.0}]
   set tstep6   [expr {$tstep/6.0}]

   set xk1      [$funcq $t $xvec]
   set xvec2    {}
   foreach x1 $xvec xv $xk1 {
      lappend xvec2 [expr {$x1+$tstep2*$xv}]
   }
   set xk2      [$funcq [expr {$t+$tstep2}] $xvec2]

   set xvec3    {}
   foreach x1 $xvec xv $xk2 {
      lappend xvec3 [expr {$x1+$tstep2*$xv}]
   }
   set xk3      [$funcq [expr {$t+$tstep2}] $xvec3]

   set xvec4    {}
   foreach x1 $xvec xv $xk3 {
      lappend xvec4 [expr {$x1+$tstep*$xv}]
   }
   set xk4      [$funcq [expr {$t+$tstep}] $xvec4]

   set result   {}
   foreach x0 $xvec k1 $xk1 k2 $xk2 k3 $xk3 k4 $xk4 {
      set dx [expr {$k1+2.0*$k2+2.0*$k3+$k4}]
      lappend result [expr {$x0+$dx*$tstep6}]
   }

   return $result
}

# boundaryValueSecondOrder --
#    Integrate a second-order differential equation and solve for
#    given boundary values.
#
#    The equation is (see the documentation):
#       d       dy   d
#       -- A(x) -- + -- B(x) y + C(x) y = D(x)
#       dx      dx   dx
#
#    The procedure uses finite differences and tridiagonal matrices to
#    solve the equation. The boundary values are put in the matrix
#    directly.
#
# Arguments:
#    coeff_func  Name of triple-valued function for coefficients A, B, C
#    force_func  Name of the function providing the force term D(x)
#    leftbnd     Left boundary condition (list of: xvalue, boundary
#                value or keyword zero-flux, zero-derivative)
#    rightbnd    Right boundary condition (ditto)
#    nostep      Number of steps
# Return value:
#    List of x-values and calculated values (x1, y1, x2, y2, ...)
#
proc ::math::calculus::boundaryValueSecondOrder {
   coeff_func force_func leftbnd rightbnd nostep } {

   set coeffq    [uplevel 1 namespace which -command $coeff_func]
   set forceq    [uplevel 1 namespace which -command $force_func]

   if { [llength $leftbnd] != 2 || [llength $rightbnd] != 2 } {
      error "Boundary condition(s) incorrect"
   }
   if { $nostep < 1 } {
      error "Number of steps must be larger/equal 1"
   }

   #
   # Set up the matrix, as three different lists and the
   # righthand side as the fourth
   #
   set xleft  [lindex $leftbnd 0]
   set xright [lindex $rightbnd 0]
   set xstep  [expr {($xright-$xleft)/double($nostep)}]

   set acoeff {}
   set bcoeff {}
   set ccoeff {}
   set dvalue {}

   set x $xleft
   foreach {A B C} [$coeffq $x] { break }

   set A1 [expr {$A/$xstep-0.5*$B}]
   set B1 [expr {$A/$xstep+0.5*$B+0.5*$C*$xstep}]
   set C1 0.0

   for { set i 1 } { $i <= $nostep } { incr i } {
      set x [expr {$xleft+double($i)*$xstep}]
      if { [expr {abs($x)-0.5*abs($xstep)}] < 0.0 } {
         set x 0.0
      }
      foreach {A B C} [$coeffq $x] { break }

      set A2 0.0
      set B2 [expr {$A/$xstep-0.5*$B+0.5*$C*$xstep}]
      set C2 [expr {$A/$xstep+0.5*$B}]
      lappend acoeff [expr {$A1+$A2}]
      lappend bcoeff [expr {-$B1-$B2}]
      lappend ccoeff [expr {$C1+$C2}]
      set A1 [expr {$A/$xstep-0.5*$B}]
      set B1 [expr {$A/$xstep+0.5*$B+0.5*$C*$xstep}]
      set C1 0.0
   }
   set xvec {}
   for { set i 0 } { $i < $nostep } { incr i } {
      set x [expr {$xleft+(0.5+double($i))*$xstep}]
      if { [expr {abs($x)-0.25*abs($xstep)}] < 0.0 } {
         set x 0.0
      }
      lappend xvec   $x
      lappend dvalue [expr {$xstep*[$forceq $x]}]
   }

   #
   # Substitute the boundary values
   #
   set A  [lindex $acoeff 0]
   set D  [lindex $dvalue 0]
   set D1 [expr {$D-$A*[lindex $leftbnd 1]}]
   set C  [lindex $ccoeff end]
   set D  [lindex $dvalue end]
   set D2 [expr {$D-$C*[lindex $rightbnd 1]}]
   set dvalue [concat $D1 [lrange $dvalue 1 end-1] $D2]

   set yvec [solveTriDiagonal [lrange $acoeff 1 end] $bcoeff [lrange $ccoeff 0 end-1] $dvalue]

   foreach x $xvec y $yvec {
      lappend result $x $y
   }
   return $result
}

# solveTriDiagonal --
#    Solve a system of equations Ax = b where A is a tridiagonal matrix
#
# Arguments:
#    acoeff      Values on lower diagonal
#    bcoeff      Values on main diagonal
#    ccoeff      Values on upper diagonal
#    dvalue      Values on righthand side
# Return value:
#    List of values forming the solution
#
proc ::math::calculus::solveTriDiagonal { acoeff bcoeff ccoeff dvalue } {

   set nostep [llength $acoeff]
   #
   # First step: Gauss-elimination
   #
   set B [lindex $bcoeff 0]
   set C [lindex $ccoeff 0]
   set D [lindex $dvalue 0]
   set acoeff  [concat 0.0 $acoeff]
   set bcoeff2 [list $B]
   set dvalue2 [list $D]
   for { set i 1 } { $i <= $nostep } { incr i } {
      set A2    [lindex $acoeff $i]
      set B2    [lindex $bcoeff $i]
      set D2    [lindex $dvalue $i]
      set ratab [expr {$A2/double($B)}]
      set B2    [expr {$B2-$ratab*$C}]
      set D2    [expr {$D2-$ratab*$D}]
      lappend bcoeff2 $B2
      lappend dvalue2 $D2
      set B     $B2
      set C     [lindex $ccoeff $i]
      set D     $D2
   }

   #
   # Second step: substitution
   #
   set yvec {}
   set B [lindex $bcoeff2 end]
   set D [lindex $dvalue2 end]
   set y [expr {$D/$B}]
   for { set i [expr {$nostep-1}] } { $i >= 0 } { incr i -1 } {
      set yvec  [concat $y $yvec]
      set B     [lindex $bcoeff2 $i]
      set C     [lindex $ccoeff  $i]
      set D     [lindex $dvalue2 $i]
      set y     [expr {($D-$C*$y)/$B}]
   }
   set yvec [concat $y $yvec]

   return $yvec
}

# newtonRaphson --
#    Determine the root of an equation via the Newton-Raphson method
#
# Arguments:
#    func        Function (proc) in x
#    deriv       Derivative (proc) of func w.r.t. x
#    initval     Initial value for x
# Return value:
#    Estimate of root
#
proc ::math::calculus::newtonRaphson { func deriv initval } {
   variable nr_maxiter
   variable nr_tolerance

   set funcq  [uplevel 1 namespace which -command $func]
   set derivq [uplevel 1 namespace which -command $deriv]

   set value $initval
   set diff  [expr {10.0*$nr_tolerance}]

   for { set i 0 } { $i < $nr_maxiter } { incr i } {
      if { $diff < $nr_tolerance } {
         break
      }

      set newval [expr {$value-[$funcq $value]/[$derivq $value]}]
      if { $value != 0.0 } {
         set diff   [expr {abs($newval-$value)/abs($value)}]
      } else {
         set diff   [expr {abs($newval-$value)}]
      }
      set value $newval
   }

   return $newval
}

# newtonRaphsonParameters --
#    Set the parameters for the Newton-Raphson method
#
# Arguments:
#    maxiter     Maximum number of iterations
#    tolerance   Relative precisiion of the result
# Return value:
#    None
#
proc ::math::calculus::newtonRaphsonParameters { maxiter tolerance } {
   variable nr_maxiter
   variable nr_tolerance

   if { $maxiter > 0 } {
      set nr_maxiter $maxiter
   }
   if { $tolerance > 0 } {
      set nr_tolerance $tolerance
   }
}

#----------------------------------------------------------------------
#
# midpoint --
#
#	Perform one set of steps in evaluating an integral using the
#	midpoint method.
#
# Usage:
#	midpoint f a b s ?n?
#
# Parameters:
#	f - function to integrate
#	a - One limit of integration
#	b - Other limit of integration.  a and b need not be in ascending
#	    order.
#	s - Value returned from a previous call to midpoint (see below)
#	n - Step number (see below)
#
# Results:
#	Returns an estimate of the integral obtained by dividing the
#	interval into 3**n equal intervals and using the midpoint rule.
#
# Side effects:
#	f is evaluated 2*3**(n-1) times and may have side effects.
#
# The 'midpoint' procedure is designed for successive approximations.
# It should be called initially with n==0.  On this initial call, s
# is ignored.  The function is evaluated at the midpoint of the interval, and
# the value is multiplied by the width of the interval to give the
# coarsest possible estimate of the integral.
#
# On each iteration except the first, n should be incremented by one,
# and the previous value returned from [midpoint] should be supplied
# as 's'.  The function will be evaluated at additional points
# to give a total of 3**n equally spaced points, and the estimate
# of the integral will be updated and returned
#
# Under normal circumstances, user code will not call this function
# directly. Instead, it will use ::math::calculus::romberg to
# do error control and extrapolation to a zero step size.
#
#----------------------------------------------------------------------

proc ::math::calculus::midpoint { f a b { n 0 } { s 0. } } {

    if { $n == 0 } {

	# First iteration.  Simply evaluate the function at the midpoint
	# of the interval.

	set cmd $f; lappend cmd [expr { 0.5 * ( $a + $b ) }]; set v [eval $cmd]
	return [expr { ( $b - $a ) * $v }]

    } else {

	# Subsequent iterations. We've divided the interval into
	# $it subintervals.  Evaluate the function at the 1/3 and
	# 2/3 points of each subinterval.  Then update the estimate
	# of the integral that we produced on the last step with
	# the new sum.

	set it [expr { pow( 3, $n-1 ) }]
	set h [expr { ( $b - $a ) / ( 3. * $it ) }]
	set h2 [expr { $h + $h }]
	set x [expr { $a + 0.5 * $h }]
	set sum 0
	for { set j 0 } { $j < $it } { incr j } {
	    set cmd $f; lappend cmd $x; set y [eval $cmd]
	    set sum [expr { $sum + $y }]
	    set x [expr { $x + $h2 }]
	    set cmd $f; lappend cmd $x; set y [eval $cmd]
	    set sum [expr { $sum + $y }]
	    set x [expr { $x + $h}]
	}
	return [expr { ( $s + ( $b - $a ) * $sum / $it ) / 3. }]

    }
}

#----------------------------------------------------------------------
#
# romberg --
#	
#	Compute the integral of a function over an interval using
#	Romberg's method.
#
# Usage:
#	romberg f a b ?-option value?...
#
# Parameters:
#	f - Function to integrate.  Must be a single Tcl command,
#	    to which will be appended the abscissa at which the function
#	    should be evaluated.  f should be analytic over the
#	    region of integration, but may have a removable singularity
#	    at either endpoint.
#	a - One bound of the interval
#	b - The other bound of the interval.  a and b need not be in
#	    ascending order.
#
# Options:
#	-abserror ABSERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-10.
#	-relerror RELERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-6.
#	-degree N
#		Specifies the degree of the polynomial that will be
#		used to extrapolate to a zero step size.  -degree 0
#		requests integration with the midpoint rule; -degree 1
#		is equivalent to Simpson's 3/8 rule; higher degrees
#		are difficult to describe but (within reason) give
#		faster convergence for smooth functions.  Default is
#		-degree 4.
#	-maxiter N
#		Specifies the maximum number of triplings of the
#		number of steps to take in integration.  At most
#		3**N function evaluations will be performed in
#		integrating with -maxiter N.  The integration
#		will terminate at that time, even if the result
#		satisfies neither the -relerror nor -abserror tests.
#
# Results:
#	Returns a two-element list.  The first element is the estimated
#	value of the integral; the second is the estimated absolute
#	error of the value.
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg { f a b args } {

    # Replace f with a context-independent version

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    # Assign default parameters

    array set params {
	-abserror 1.0e-10
	-degree 4
	-relerror 1.0e-6
	-maxiter 14
    }

    # Extract parameters

    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list romberg wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end \
                         f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list romberg badoption $key] \
                "unknown option \"$key\",\
                     should be -abserror, -degree, -relerror, or -maxiter"
        }
        set params($key) $value
    }

    # Check params

    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { ![string is double -strict $params(-abserror)] } {
	return -code error [expectDouble $params(-abserror)]
    }
    if { ![string is integer -strict $params(-degree)] } {
	return -code error [expectInteger $params(-degree)]
    }
    if { ![string is integer -strict $params(-maxiter)] } {
	return -code error [expectInteger $params(-maxiter)]
    }
    if { ![string is double -strict $params(-relerror)] } {
	return -code error [expectDouble $params(-relerror)]
    }
    foreach key {-abserror -degree -maxiter -relerror} {
	if { $params($key) <= 0 } {
	    return -code error -errorcode [list romberg notPositive $key] \
		"$key must be positive"
	}
    }
    if { $params(-maxiter) <= $params(-degree) } {
	return -code error -errorcode [list romberg tooFewIter] \
	    "-maxiter must be greater than -degree"
    }

    # Create lists of step size and sum with the given number of steps.

    set x [list]
    set y [list]
    set s 0;				# Current best estimate of integral
    set indx end-$params(-degree)
    set pow3 1.;			# Current step size (times b-a)

    # Perform successive integrations, tripling the number of steps each time

    for { set i 0 } { $i < $params(-maxiter) } { incr i } {
	set s [midpoint $f $a $b $i $s]
	lappend x $pow3
	lappend y $s
	set pow3 [expr { $pow3 / 9. }]

	# Once $degree steps have been done, start Richardson extrapolation
	# to a zero step size.

	if { $i >= $params(-degree) } {
	    set x [lrange $x $indx end]
	    set y [lrange $y $indx end]
	    foreach {estimate err} [neville $x $y 0.] break
	    if { $err < $params(-abserror)
		 || $err < $params(-relerror) * abs($estimate) } {
		return [list $estimate $err]
	    }
	}
    }

    # If -maxiter iterations have been done, give up, and return
    # with the current error estimate.

    return [list $estimate $err]
}

#----------------------------------------------------------------------
#
# u_infinity --
#	Change of variable for integrating over a half-infinite
#	interval
#
# Parameters:
#	f - Function being integrated
#	u - 1/x, where x is the abscissa where f is to be evaluated
#
# Results:
#	Returns f(1/u)/(u**2)
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_infinity { f u } {
    set cmd $f
    lappend cmd [expr { 1.0 / $u }]
    set y [eval $cmd]
    return [expr { $y / ( $u * $u ) }]
}

#----------------------------------------------------------------------
#
# romberg_infinity --
#	Evaluate a function on a half-open interval
#
# Usage:
#	Same as 'romberg'
#
# The 'romberg_infinity' procedure performs Romberg integration on
# an interval [a,b] where an infinite a or b may be represented by
# a large number (e.g. 1.e30).  It operates by a change of variable;
# instead of integrating f(x) from a to b, it makes a change
# of variable u = 1/x, and integrates from 1/b to 1/a f(1/u)/u**2 du.
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_infinity { f a b args } {
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a * $b <= 0. } {
        return -code error -errorcode {romberg_infinity cross-axis} \
            "limits of integration have opposite sign"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list u_infinity $f]
    return [eval [linsert $args 0 \
                      romberg $f [expr { 1.0 / $b }] [expr { 1.0 / $a }]]]
}

#----------------------------------------------------------------------
#
# u_sqrtSingLower --
#	Change of variable for integrating over an interval with
#	an inverse square root singularity at the lower bound.
#
# Parameters:
#	f - Function being integrated
#	a - Lower bound
#	u - sqrt(x-a), where x is the abscissa where f is to be evaluated
#
# Results:
#	Returns 2 * u * f( a + u**2 )
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_sqrtSingLower { f a u } {
    set cmd $f
    lappend cmd [expr { $a + $u * $u }]
    set y [eval $cmd]
    return [expr { 2. * $u * $y }]
}

#----------------------------------------------------------------------
#
# u_sqrtSingUpper --
#	Change of variable for integrating over an interval with
#	an inverse square root singularity at the upper bound.
#
# Parameters:
#	f - Function being integrated
#	b - Upper bound
#	u - sqrt(b-x), where x is the abscissa where f is to be evaluated
#
# Results:
#	Returns 2 * u * f( b - u**2 )
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_sqrtSingUpper { f b u } {
    set cmd $f
    lappend cmd [expr { $b - $u * $u }]
    set y [eval $cmd]
    return [expr { 2. * $u * $y }]
}

#----------------------------------------------------------------------
#
# math::calculus::romberg_sqrtSingLower --
#	Integrate a function with an inverse square root singularity
#	at the lower bound
#
# Usage:
#	Same as 'romberg'
#
# The 'romberg_sqrtSingLower' procedure is a wrapper for 'romberg'
# for integrating a function with an inverse square root singularity
# at the lower bound of the interval.  It works by making the change
# of variable u = sqrt( x-a ).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_sqrtSingLower { f a b args } {
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list u_sqrtSingLower $f $a]
    return [eval [linsert $args 0 \
			     romberg $f 0 [expr { sqrt( $b - $a ) }]]]
}

#----------------------------------------------------------------------
#
# math::calculus::romberg_sqrtSingUpper --
#	Integrate a function with an inverse square root singularity
#	at the upper bound
#
# Usage:
#	Same as 'romberg'
#
# The 'romberg_sqrtSingUpper' procedure is a wrapper for 'romberg'
# for integrating a function with an inverse square root singularity
# at the upper bound of the interval.  It works by making the change
# of variable u = sqrt( b-x ).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_sqrtSingUpper { f a b args } {
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list u_sqrtSingUpper $f $b]
    return [eval [linsert $args 0 \
		      romberg $f 0. [expr { sqrt( $b - $a ) }]]]
}

#----------------------------------------------------------------------
#
# u_powerLawLower --
#	Change of variable for integrating over an interval with
#	an integrable power law singularity at the lower bound.
#
# Parameters:
#	f - Function being integrated
#	gammaover1mgamma - gamma / (1 - gamma), where gamma is the power
#	oneover1mgamma - 1 / (1 - gamma), where gamma is the power
#	a - Lower limit of integration
#	u - Changed variable u == (x-a)**(1-gamma)
#
# Results:
#	Returns u**(1/1-gamma) * f(a + u**(1/1-gamma) ).
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_powerLawLower { f gammaover1mgamma oneover1mgamma
					 a u } {
    set cmd $f
    lappend cmd [expr { $a + pow( $u, $oneover1mgamma ) }]
    set y [eval $cmd]
    return [expr { $y * pow( $u, $gammaover1mgamma ) }]
}

#----------------------------------------------------------------------
#
# math::calculus::romberg_powerLawLower --
#	Integrate a function with an integrable power law singularity
#	at the lower bound
#
# Usage:
#	romberg_powerLawLower gamma f a b ?-option value...?
#
# Parameters:
#	gamma - Power (0<gamma<1) of the singularity
#	f - Function to integrate.  Must be a single Tcl command,
#	    to which will be appended the abscissa at which the function
#	    should be evaluated.  f is expected to have an integrable
#	    power law singularity at the lower endpoint; that is, the
#	    integrand is expected to diverge as (x-a)**gamma.
#	a - One bound of the interval
#	b - The other bound of the interval.  a and b need not be in
#	    ascending order.
#
# Options:
#	-abserror ABSERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-10.
#	-relerror RELERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-6.
#	-degree N
#		Specifies the degree of the polynomial that will be
#		used to extrapolate to a zero step size.  -degree 0
#		requests integration with the midpoint rule; -degree 1
#		is equivalent to Simpson's 3/8 rule; higher degrees
#		are difficult to describe but (within reason) give
#		faster convergence for smooth functions.  Default is
#		-degree 4.
#	-maxiter N
#		Specifies the maximum number of triplings of the
#		number of steps to take in integration.  At most
#		3**N function evaluations will be performed in
#		integrating with -maxiter N.  The integration
#		will terminate at that time, even if the result
#		satisfies neither the -relerror nor -abserror tests.
#
# Results:
#	Returns a two-element list.  The first element is the estimated
#	value of the integral; the second is the estimated absolute
#	error of the value.
#
# The 'romberg_sqrtSingLower' procedure is a wrapper for 'romberg'
# for integrating a function with an integrable power law singularity
# at the lower bound of the interval.  It works by making the change
# of variable u = (x-a)**(1-gamma).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_powerLawLower { gamma f a b args } {
    if { ![string is double -strict $gamma] } {
	return -code error [expectDouble $gamma]
    }
    if { $gamma <= 0.0 || $gamma >= 1.0 } {
	return -code error -errorcode [list romberg gammaTooBig] \
	    "gamma must lie in the interval (0,1)"
    }
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set onemgamma [expr { 1. - $gamma }]
    set f [list u_powerLawLower $f \
	       [expr { $gamma / $onemgamma }] \
	       [expr { 1 / $onemgamma }] \
	       $a]
	
    set limit [expr { pow( $b - $a, $onemgamma ) }]
    set result {}
    foreach v [eval [linsert $args 0 romberg $f 0 $limit]] {
	lappend result [expr { $v / $onemgamma }]
    }
    return $result

}

#----------------------------------------------------------------------
#
# u_powerLawLower --
#	Change of variable for integrating over an interval with
#	an integrable power law singularity at the upper bound.
#
# Parameters:
#	f - Function being integrated
#	gammaover1mgamma - gamma / (1 - gamma), where gamma is the power
#	oneover1mgamma - 1 / (1 - gamma), where gamma is the power
#	b - Upper limit of integration
#	u - Changed variable u == (b-x)**(1-gamma)
#
# Results:
#	Returns u**(1/1-gamma) * f(b-u**(1/1-gamma) ).
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_powerLawUpper { f gammaover1mgamma oneover1mgamma
					 b u } {
    set cmd $f
    lappend cmd [expr { $b - pow( $u, $oneover1mgamma ) }]
    set y [eval $cmd]
    return [expr { $y * pow( $u, $gammaover1mgamma ) }]
}

#----------------------------------------------------------------------
#
# math::calculus::romberg_powerLawUpper --
#	Integrate a function with an integrable power law singularity
#	at the upper bound
#
# Usage:
#	romberg_powerLawLower gamma f a b ?-option value...?
#
# Parameters:
#	gamma - Power (0<gamma<1) of the singularity
#	f - Function to integrate.  Must be a single Tcl command,
#	    to which will be appended the abscissa at which the function
#	    should be evaluated.  f is expected to have an integrable
#	    power law singularity at the upper endpoint; that is, the
#	    integrand is expected to diverge as (b-x)**gamma.
#	a - One bound of the interval
#	b - The other bound of the interval.  a and b need not be in
#	    ascending order.
#
# Options:
#	-abserror ABSERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-10.
#	-relerror RELERROR
#		Requests that the integration be performed to make
#		the estimated absolute error of the integral less than
#		the given value.  Default is 1.e-6.
#	-degree N
#		Specifies the degree of the polynomial that will be
#		used to extrapolate to a zero step size.  -degree 0
#		requests integration with the midpoint rule; -degree 1
#		is equivalent to Simpson's 3/8 rule; higher degrees
#		are difficult to describe but (within reason) give
#		faster convergence for smooth functions.  Default is
#		-degree 4.
#	-maxiter N
#		Specifies the maximum number of triplings of the
#		number of steps to take in integration.  At most
#		3**N function evaluations will be performed in
#		integrating with -maxiter N.  The integration
#		will terminate at that time, even if the result
#		satisfies neither the -relerror nor -abserror tests.
#
# Results:
#	Returns a two-element list.  The first element is the estimated
#	value of the integral; the second is the estimated absolute
#	error of the value.
#
# The 'romberg_PowerLawUpper' procedure is a wrapper for 'romberg'
# for integrating a function with an integrable power law singularity
# at the upper bound of the interval.  It works by making the change
# of variable u = (b-x)**(1-gamma).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_powerLawUpper { gamma f a b args } {
    if { ![string is double -strict $gamma] } {
	return -code error [expectDouble $gamma]
    }
    if { $gamma <= 0.0 || $gamma >= 1.0 } {
	return -code error -errorcode [list romberg gammaTooBig] \
	    "gamma must lie in the interval (0,1)"
    }
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set onemgamma [expr { 1. - $gamma }]
    set f [list u_powerLawUpper $f \
	       [expr { $gamma / $onemgamma }] \
	       [expr { 1. / $onemgamma }] \
	       $b]
	
    set limit [expr { pow( $b - $a, $onemgamma ) }]
    set result {}
    foreach v [eval [linsert $args 0 romberg $f 0 $limit]] {
	lappend result [expr { $v / $onemgamma }]
    }
    return $result

}

#----------------------------------------------------------------------
#
# u_expUpper --
#
#	Change of variable to integrate a function that decays
#	exponentially.
#
# Parameters:
#	f - Function to integrate
#	u - Changed variable u = exp(-x)
#
# Results:
#	Returns (1/u)*f(-log(u))
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_expUpper { f u } {
    set cmd $f
    lappend cmd [expr { -log($u) }]
    set y [eval $cmd]
    return [expr { $y / $u }]
}

#----------------------------------------------------------------------
#
# romberg_expUpper --
#
#	Integrate a function that decays exponentially over a
#	half-infinite interval.
#
# Parameters:
#	Same as romberg.  The upper limit of integration, 'b',
#	is expected to be very large.
#
# Results:
#	Same as romberg.
#
# The romberg_expUpper function operates by making the change of
# variable, u = exp(-x).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_expUpper { f a b args } {
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list u_expUpper $f]
    return [eval [linsert $args 0 \
		      romberg $f [expr {exp(-$b)}] [expr {exp(-$a)}]]]
}

#----------------------------------------------------------------------
#
# u_expLower --
#
#	Change of variable to integrate a function that grows
#	exponentially.
#
# Parameters:
#	f - Function to integrate
#	u - Changed variable u = exp(x)
#
# Results:
#	Returns (1/u)*f(log(u))
#
# Side effects:
#	Whatever f does.
#
#----------------------------------------------------------------------

proc ::math::calculus::u_expLower { f u } {
    set cmd $f
    lappend cmd [expr { log($u) }]
    set y [eval $cmd]
    return [expr { $y / $u }]
}

#----------------------------------------------------------------------
#
# romberg_expLower --
#
#	Integrate a function that grows exponentially over a
#	half-infinite interval.
#
# Parameters:
#	Same as romberg.  The lower limit of integration, 'a',
#	is expected to be very large and negative.
#
# Results:
#	Same as romberg.
#
# The romberg_expUpper function operates by making the change of
# variable, u = exp(x).
#
#----------------------------------------------------------------------

proc ::math::calculus::romberg_expLower { f a b args } {
    if { ![string is double -strict $a] } {
	return -code error [expectDouble $a]
    }
    if { ![string is double -strict $b] } {
	return -code error [expectDouble $b]
    }
    if { $a >= $b } {
	return -code error "limits of integration out of order"
    }
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list u_expLower $f]
    return [eval [linsert $args 0 \
		      romberg $f [expr {exp($a)}] [expr {exp($b)}]]]
}


# regula_falsi --
#    Compute the zero of a function via regula falsi
# Arguments:
#    f       Name of the procedure/command that evaluates the function
#    xb      Start of the interval that brackets the zero
#    xe      End of the interval that brackets the zero
#    eps     Relative error that is allowed (default: 1.0e-4)
# Result:
#    Estimate of the zero, such that the estimated (!)
#    error < eps * abs(xe-xb)
# Note:
#    f(xb)*f(xe) must be negative and eps must be positive
#
proc ::math::calculus::regula_falsi { f xb xe {eps 1.0e-4} } {
    if { $eps <= 0.0 } {
       return -code error "Relative error must be positive"
    }

    set fb [$f $xb]
    set fe [$f $xe]

    if { $fb * $fe > 0.0 } {
       return -code error "Interval must be chosen such that the \
function has a different sign at the beginning than at the end"
    }

    set max_error [expr {$eps * abs($xe-$xb)}]
    set interval  [expr {abs($xe-$xb)}]

    while { $interval > $max_error } {
       set coeff [expr {($fe-$fb)/($xe-$xb)}]
       set xi    [expr {$xb-$fb/$coeff}]
       set fi    [$f $xi]

       if { $fi == 0.0 } {
          break
       }
       set diff1 [expr {abs($xe-$xi)}]
       set diff2 [expr {abs($xb-$xi)}]
       if { $diff1 > $diff2 } {
          set interval $diff2
       } else {
          set interval $diff1
       }

       if { $fb*$fi < 0.0 } {
          set xe $xi
          set fe $fi
       } else {
          set xb $xi
          set fb $fi
       }
    }

    return $xi
}

#

# qk15_basic --
#     Apply the QK15 rule to a single interval and return all results
#
# Arguments:
#     f             Function to integrate (name of procedure)
#     xstart        Start of the interval
#     xend          End of the interval
#
# Returns:
#     List of the following:
#     result        Estimated integral (I) of function f
#     abserr        Estimate of the absolute error in "result"
#     resabs        Estimated integral of the absolute value of f
#     resasc        Estimated integral of abs(f - I/(xend-xstart))
#
# Note:
#     Translation of the 15-point Gauss-Kronrod rule (QK15) as found
#     in the SLATEC library (QUADPACK) into Tcl.
#
namespace eval ::math::calculus {
    variable qk15_xgk
    variable qk15_wgk
    variable qk15_wg

    set qk15_xgk {
           0.9914553711208126e+00    0.9491079123427585e+00
           0.8648644233597691e+00    0.7415311855993944e+00
           0.5860872354676911e+00    0.4058451513773972e+00
           0.2077849550078985e+00    0.0e+00               }
    set qk15_wgk {
           0.2293532201052922e-01    0.6309209262997855e-01
           0.1047900103222502e+00    0.1406532597155259e+00
           0.1690047266392679e+00    0.1903505780647854e+00
           0.2044329400752989e+00    0.2094821410847278e+00}
    set qk15_wg {
           0.1294849661688697e+00    0.2797053914892767e+00
           0.3818300505051189e+00    0.4179591836734694e+00}
}

if {[package vsatisfies [package present Tcl] 8.5]} {
    proc ::math::calculus::Min {a b} { expr {min ($a, $b)} }
    proc ::math::calculus::Max {a b} { expr {max ($a, $b)} }
} else {
    proc ::math::calculus::Min {a b} { if {$a < $b} { return $a } else { return $b }}
    proc ::math::calculus::Max {a b} { if {$a > $b} { return $a } else { return $b }}
}

proc ::math::calculus::qk15_basic {xstart xend func} {
    variable qk15_wg
    variable qk15_wgk
    variable qk15_xgk

    #
    # Use fixed values for epmach and uflow:
    # - epmach is the largest relative spacing.
    # - uflow is the smallest positive magnitude.

    set epmach [expr {2.3e-308}]
    set uflow  [expr {1.2e-16}]

    set centr  [expr {0.5e+00*($xstart+$xend)}]
    set hlgth  [expr {0.5e+00*($xend-$xstart)}]
    set dhlgth [expr {abs($hlgth)}]

    #
    # Compute the 15-point Kronrod approximation to
    # the integral, and estimate the absolute error.
    #
    set fc     [uplevel 2 $func $centr]
    set resg   [expr {$fc*[lindex $qk15_wg 3]}]
    set resk   [expr {$fc*[lindex $qk15_wgk 7]}]
    set resabs [expr {abs($resk)}]

    set fv1    [lrepeat 7 0.0]
    set fv2    [lrepeat 7 0.0]

    for {set j 0} {$j < 3} {incr j} {
        set jtw [expr {$j*2 +1}]
        set absc [expr {$hlgth*[lindex $qk15_xgk $jtw]}]
        set fval1 [uplevel 2 $func [expr {$centr-$absc}]]
        set fval2 [uplevel 2 $func [expr {$centr+$absc}]]
        lset fv1 $jtw $fval1
        lset fv2 $jtw $fval2
        set fsum [expr {$fval1+$fval2}]
        set resg [expr {$resg+[lindex $qk15_wg $j]*$fsum}]
        set resk [expr {$resk+[lindex $qk15_wgk $jtw]*$fsum}]
        set resabs [expr {$resabs+[lindex $qk15_wgk $jtw]*(abs($fval1)+abs($fval2))}]
    }
    for {set j 0} {$j < 4} {incr j} {
        set jtwm1 [expr {$j*2}]
        set absc [expr {$hlgth*[lindex $qk15_xgk $jtwm1]}]
        set fval1 [uplevel 2 $func [expr {$centr-$absc}]]
        set fval2 [uplevel 2 $func [expr {$centr+$absc}]]
        lset fv1 $jtwm1 $fval1
        lset fv2 $jtwm1 $fval2
        set fsum [expr {$fval1+$fval2}]
        set resk [expr {$resk+[lindex $qk15_wgk $jtwm1]*$fsum}]
        set resabs [expr {$resabs+[lindex $qk15_wgk $jtwm1]*(abs($fval1)+abs($fval2))}]
    }

    set reskh [expr {$resk*0.5e+00}]
    set resasc [expr {[lindex $qk15_wgk 7]*abs($fc-$reskh)}]

    for {set j 0} {$j < 7} {incr j} {
        set wgk    [lindex $qk15_wgk $j]
        set FV1    [lindex $fv1      $j]
        set FV2    [lindex $fv2      $j]
        set resasc [expr {$resasc+$wgk*(abs($FV1-$reskh)+abs($FV2-$reskh))}]
    }

    set result [expr {$resk*$hlgth}]
    set resabs [expr {$resabs*$dhlgth}]
    set resasc [expr {$resasc*$dhlgth}]
    set abserr [expr {abs(($resk-$resg)*$hlgth)}]
    if { $resasc != 0.0e+00 && $abserr != 0.0e+00 } {
        set abserr [expr {$resasc*[Min 0.1e+01 [expr {pow((0.2e+3*$abserr/$resasc),1.5e+00)}]]}]
    }
    if { $resabs > $uflow/(0.5e+02*$epmach) } {
        set abserr [Max [expr {($epmach*0.5e+02)*$resabs}] $abserr]
    }

    return [list $result $abserr $resabs $resasc]
}

# qk15 --
#     Apply the QK15 rule to an interval and return the estimated integral
#
# Arguments:
#     xstart        Start of the interval
#     xend          End of the interval
#     func          Function to integrate (name of procedure)
#     n             Number of subintervals (default: 1)
#
# Returns:
#     Estimated integral of function func
#
proc ::math::calculus::qk15 {xstart xend func {n 1}} {
    if { $n == 1 } {
        return [lindex [qk15_basic $xstart $xend $func] 0]
    } else {
        set dx [expr {($xend-$xstart)/double($n)}]
        set result 0.0
        for {set i 0} {$i < $n} {incr i} {
            set xb [expr {$xstart + $dx * $i}]
            set xe [expr {$xstart + $dx * ($i+1)}]

            set result [expr {$result + [lindex [qk15_basic $xb $xe $func] 0]}]
        }
    }

    return $result
}

# qk15_detailed --
#     Apply the QK15 rule to an interval and return the estimated integral
#     as well as the other values
#
# Arguments:
#     xstart        Start of the interval
#     xend          End of the interval
#     func          Function to integrate (name of procedure)
#     n             Number of subintervals (default: 1)
#
# Returns:
#     List of the following:
#     result        Estimated integral (I) of function func
#     abserr        Estimate of the absolute error in "result"
#     resabs        Estimated integral of the absolute value of f
#     resasc        Estimated integral of abs(f - I/(xend-xstart))
#
proc ::math::calculus::qk15_detailed {xstart xend func {n 1}} {
    if { $n == 1 } {
        return [qk15_basic $xstart $xend $func]
    } else {
        set dx [expr {($xend-$xstart)/double($n)}]
        set result 0.0
        set abserr 0.0
        set resabs 0.0
        set resasc 0.0
        for {set i 0} {$i < $n} {incr i} {
            set xb [expr {$xstart + $dx * $i}]
            set xe [expr {$xstart + $dx * ($i+1)}]

            foreach {dresult dabserr dresabs dresasc} [qk15_basic $xb $xe $func] break
            set result [expr {$result + $dresult}]
            set abserr [expr {$abserr + $dabserr}]
            set resabs [expr {$resabs + $dresabs}]
            set resasc [expr {$resasc + $dresasc}]
        }
    }

    return [list $result $abserr $resabs $resasc]
}