This file is indexed.

/usr/share/tcltk/tcllib1.17/math/bignum.tcl is in tcllib 1.17-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
# bignum library in pure Tcl [VERSION 7Sep2004]
# Copyright (C) 2004 Salvatore Sanfilippo <antirez at invece dot org>
# Copyright (C) 2004 Arjen Markus <arjen dot markus at wldelft dot nl>
#
# LICENSE
#
# This software is:
# Copyright (C) 2004 Salvatore Sanfilippo <antirez at invece dot org>
# Copyright (C) 2004 Arjen Markus <arjen dot markus at wldelft dot nl>
# The following terms apply to all files associated with the software
# unless explicitly disclaimed in individual files.
#
# The authors hereby grant permission to use, copy, modify, distribute,
# and license this software and its documentation for any purpose, provided
# that existing copyright notices are retained in all copies and that this
# notice is included verbatim in any distributions. No written agreement,
# license, or royalty fee is required for any of the authorized uses.
# Modifications to this software may be copyrighted by their authors
# and need not follow the licensing terms described here, provided that
# the new terms are clearly indicated on the first page of each file where
# they apply.
#
# IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
# FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
# ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
# DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  THIS SOFTWARE
# IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
# NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
# MODIFICATIONS.
#
# GOVERNMENT USE: If you are acquiring this software on behalf of the
# U.S. government, the Government shall have only "Restricted Rights"
# in the software and related documentation as defined in the Federal
# Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).  If you
# are acquiring the software on behalf of the Department of Defense, the
# software shall be classified as "Commercial Computer Software" and the
# Government shall have only "Restricted Rights" as defined in Clause
# 252.227-7013 (c) (1) of DFARs.  Notwithstanding the foregoing, the
# authors grant the U.S. Government and others acting in its behalf
# permission to use and distribute the software in accordance with the
# terms specified in this license.

# TODO
# - pow and powm should check if the exponent is zero in order to return one

package require Tcl 8.4

namespace eval ::math::bignum {}

#################################### Misc ######################################

# Don't change atombits define if you don't know what you are doing.
# Note that it must be a power of two, and that 16 is too big
# because expr may overflow in the product of two 16 bit numbers.
set ::math::bignum::atombits 16
set ::math::bignum::atombase [expr {1 << $::math::bignum::atombits}]
set ::math::bignum::atommask [expr {$::math::bignum::atombase-1}]

# Note: to change 'atombits' is all you need to change the
# library internal representation base.

# Return the max between a and b (not bignums)
proc ::math::bignum::max {a b} {
    expr {($a > $b) ? $a : $b}
}

# Return the min between a and b (not bignums)
proc ::math::bignum::min {a b} {
    expr {($a < $b) ? $a : $b}
}

############################ Basic bignum operations ###########################

# Returns a new bignum initialized to the value of 0.
#
# The big numbers are represented as a Tcl lists
# The all-is-a-string representation does not pay here
# bignums in Tcl are already slow, we can't slow-down it more.
#
# The bignum representation is [list bignum <sign> <atom0> ... <atomN>]
# Where the atom0 is the least significant. Atoms are the digits
# of a number in base 2^$::math::bignum::atombits
#
# The sign is 0 if the number is positive, 1 for negative numbers.

# Note that the function accepts an argument used in order to
# create a bignum of <atoms> atoms. For default zero is
# represented as a single zero atom.
#
# The function is designed so that "set b [zero [atoms $a]]" will
# produce 'b' with the same number of atoms as 'a'.
proc ::math::bignum::zero {{value 0}} {
    set v [list bignum 0 0]
    while { $value > 1 } {
       lappend v 0
       incr value -1
    }
    return $v
}

# Get the bignum sign
proc ::math::bignum::sign bignum {
    lindex $bignum 1
}

# Get the number of atoms in the bignum
proc ::math::bignum::atoms bignum {
    expr {[llength $bignum]-2}
}

# Get the i-th atom out of a bignum.
# If the bignum is shorter than i atoms, the function
# returns 0.
proc ::math::bignum::atom {bignum i} {
    if {[::math::bignum::atoms $bignum] < [expr {$i+1}]} {
	return 0
    } else {
	lindex $bignum [expr {$i+2}]
    }
}

# Set the i-th atom out of a bignum. If the bignum
# has less than 'i+1' atoms, add zero atoms to reach i.
proc ::math::bignum::setatom {bignumvar i atomval} {
    upvar 1 $bignumvar bignum
    while {[::math::bignum::atoms $bignum] < [expr {$i+1}]} {
	lappend bignum 0
    }
    lset bignum [expr {$i+2}] $atomval
}

# Set the bignum sign
proc ::math::bignum::setsign {bignumvar sign} {
    upvar 1 $bignumvar bignum
    lset bignum 1 $sign
}

# Remove trailing atoms with a value of zero
# The normalized bignum is returned
proc ::math::bignum::normalize bignumvar {
    upvar 1 $bignumvar bignum
    set atoms [expr {[llength $bignum]-2}]
    set i [expr {$atoms+1}]
    while {$atoms && [lindex $bignum $i] == 0} {
	set bignum [lrange $bignum 0 end-1]
	incr atoms -1
	incr i -1
    }
    if {!$atoms} {
	set bignum [list bignum 0 0]
    }
    return $bignum
}

# Return the absolute value of N
proc ::math::bignum::abs n {
    ::math::bignum::setsign n 0
    return $n
}

################################# Comparison ###################################

# Compare by absolute value. Called by ::math::bignum::cmp after the sign check.
#
# Returns 1 if |a| > |b|
#         0 if a == b
#        -1 if |a| < |b|
#
proc ::math::bignum::abscmp {a b} {
    if {[llength $a] > [llength $b]} {
	return 1
    } elseif {[llength $a] < [llength $b]} {
	return -1
    }
    set j [expr {[llength $a]-1}]
    while {$j >= 2} {
	if {[lindex $a $j] > [lindex $b $j]} {
	    return 1
	} elseif {[lindex $a $j] < [lindex $b $j]} {
	    return -1
	}
	incr j -1
    }
    return 0
}

# High level comparison. Return values:
#
#  1 if a > b
# -1 if a < b
#  0 if a == b
#
proc ::math::bignum::cmp {a b} { ; # same sign case
    set a [_treat $a]
    set b [_treat $b]
    if {[::math::bignum::sign $a] == [::math::bignum::sign $b]} {
	if {[::math::bignum::sign $a] == 0} {
	    ::math::bignum::abscmp $a $b
	} else {
	    expr {-([::math::bignum::abscmp $a $b])}
	}
    } else { ; # different sign case
	if {[::math::bignum::sign $a]} {return -1}
	return 1
    }
}

# Return true if 'z' is zero.
proc ::math::bignum::iszero z {
    set z [_treat $z]
    expr {[llength $z] == 3 && [lindex $z 2] == 0}
}

# Comparison facilities
proc ::math::bignum::lt {a b} {expr {[::math::bignum::cmp $a $b] < 0}}
proc ::math::bignum::le {a b} {expr {[::math::bignum::cmp $a $b] <= 0}}
proc ::math::bignum::gt {a b} {expr {[::math::bignum::cmp $a $b] > 0}}
proc ::math::bignum::ge {a b} {expr {[::math::bignum::cmp $a $b] >= 0}}
proc ::math::bignum::eq {a b} {expr {[::math::bignum::cmp $a $b] == 0}}
proc ::math::bignum::ne {a b} {expr {[::math::bignum::cmp $a $b] != 0}}

########################### Addition / Subtraction #############################

# Add two bignums, don't care about the sign.
proc ::math::bignum::rawAdd {a b} {
    while {[llength $a] < [llength $b]} {lappend a 0}
    while {[llength $b] < [llength $a]} {lappend b 0}
    set r [::math::bignum::zero [expr {[llength $a]-1}]]
    set car 0
    for {set i 2} {$i < [llength $a]} {incr i} {
	set sum [expr {[lindex $a $i]+[lindex $b $i]+$car}]
	set car [expr {$sum >> $::math::bignum::atombits}]
	set sum [expr {$sum & $::math::bignum::atommask}]
	lset r $i $sum
    }
    if {$car} {
	lset r $i $car
    }
    ::math::bignum::normalize r
}

# Subtract two bignums, don't care about the sign. a > b condition needed.
proc ::math::bignum::rawSub {a b} {
    set atoms [::math::bignum::atoms $a]
    set r [::math::bignum::zero $atoms]
    while {[llength $b] < [llength $a]} {lappend b 0} ; # b padding
    set car 0
    incr atoms 2
    for {set i 2} {$i < $atoms} {incr i} {
	set sub [expr {[lindex $a $i]-[lindex $b $i]-$car}]
	set car 0
	if {$sub < 0} {
	    incr sub $::math::bignum::atombase
	    set car 1
	}
	lset r $i $sub
    }
    # Note that if a > b there is no car in the last for iteration
    ::math::bignum::normalize r
}

# Higher level addition, care about sign and call rawAdd or rawSub
# as needed.
proc ::math::bignum::add {a b} {
    set a [_treat $a]
    set b [_treat $b]
    # Same sign case
    if {[::math::bignum::sign $a] == [::math::bignum::sign $b]} {
	set r [::math::bignum::rawAdd $a $b]
	::math::bignum::setsign r [::math::bignum::sign $a]
    } else {
	# Different sign case
	set cmp [::math::bignum::abscmp $a $b]
	# 's' is the sign, set accordingly to A or B negative
	set s [expr {[::math::bignum::sign $a] == 1}]
	switch -- $cmp {
	    0 {return [::math::bignum::zero]}
	    1 {
		set r [::math::bignum::rawSub $a $b]
		::math::bignum::setsign r $s
		return $r
	    }
	    -1 {
		set r [::math::bignum::rawSub $b $a]
		::math::bignum::setsign r [expr {!$s}]
		return $r
	    }
	}
    }
    return $r
}

# Higher level subtraction, care about sign and call rawAdd or rawSub
# as needed.
proc ::math::bignum::sub {a b} {
    set a [_treat $a]
    set b [_treat $b]
    # Different sign case
    if {[::math::bignum::sign $a] != [::math::bignum::sign $b]} {
	set r [::math::bignum::rawAdd $a $b]
	::math::bignum::setsign r [::math::bignum::sign $a]
    } else {
	# Same sign case
	set cmp [::math::bignum::abscmp $a $b]
	# 's' is the sign, set accordingly to A and B both negative or positive
	set s [expr {[::math::bignum::sign $a] == 1}]
	switch -- $cmp {
	    0 {return [::math::bignum::zero]}
	    1 {
		set r [::math::bignum::rawSub $a $b]
		::math::bignum::setsign r $s
		return $r
	    }
	    -1 {
		set r [::math::bignum::rawSub $b $a]
		::math::bignum::setsign r [expr {!$s}]
		return $r
	    }
	}
    }
    return $r
}

############################### Multiplication #################################

set ::math::bignum::karatsubaThreshold 32

# Multiplication. Calls Karatsuba that calls Base multiplication under
# a given threshold.
proc ::math::bignum::mul {a b} {
    set a [_treat $a]
    set b [_treat $b]
    set r [::math::bignum::kmul $a $b]
    # The sign is the xor between the two signs
    ::math::bignum::setsign r [expr {[::math::bignum::sign $a]^[::math::bignum::sign $b]}]
}

# Karatsuba Multiplication
proc ::math::bignum::kmul {a b} {
    set n [expr {[::math::bignum::max [llength $a] [llength $b]]-2}]
    set nmin [expr {[::math::bignum::min [llength $a] [llength $b]]-2}]
    if {$nmin < $::math::bignum::karatsubaThreshold} {return [::math::bignum::bmul $a $b]}
    set m [expr {($n+($n&1))/2}]

    set x0 [concat [list bignum 0] [lrange $a 2 [expr {$m+1}]]]
    set y0 [concat [list bignum 0] [lrange $b 2 [expr {$m+1}]]]
    set x1 [concat [list bignum 0] [lrange $a [expr {$m+2}] end]]
    set y1 [concat [list bignum 0] [lrange $b [expr {$m+2}] end]]

    if {0} {
    puts "m: $m"
    puts "x0: $x0"
    puts "x1: $x1"
    puts "y0: $y0"
    puts "y1: $y1"
    }

    set p1 [::math::bignum::kmul $x1 $y1]
    set p2 [::math::bignum::kmul $x0 $y0]
    set p3 [::math::bignum::kmul [::math::bignum::add $x1 $x0] [::math::bignum::add $y1 $y0]]

    set p3 [::math::bignum::sub $p3 $p1]
    set p3 [::math::bignum::sub $p3 $p2]
    set p1 [::math::bignum::lshiftAtoms $p1 [expr {$m*2}]]
    set p3 [::math::bignum::lshiftAtoms $p3 $m]
    set p3 [::math::bignum::add $p3 $p1]
    set p3 [::math::bignum::add $p3 $p2]
    return $p3
}

# Base Multiplication.
proc ::math::bignum::bmul {a b} {
    set r [::math::bignum::zero [expr {[llength $a]+[llength $b]-3}]]
    for {set j 2} {$j < [llength $b]} {incr j} {
	set car 0
	set t [list bignum 0 0]
	for {set i 2} {$i < [llength $a]} {incr i} {
	    # note that A = B * C + D + E
	    # with A of N*2 bits and C,D,E of N bits
	    # can't overflow since:
	    # (2^N-1)*(2^N-1)+(2^N-1)+(2^N-1) == 2^(2*N)-1
	    set t0 [lindex $a $i]
	    set t1 [lindex $b $j]
	    set t2 [lindex $r [expr {$i+$j-2}]]
	    set mul [expr {wide($t0)*$t1+$t2+$car}]
	    set car [expr {$mul >> $::math::bignum::atombits}]
	    set mul [expr {$mul & $::math::bignum::atommask}]
	    lset r [expr {$i+$j-2}] $mul
	}
	if {$car} {
	    lset r [expr {$i+$j-2}] $car
	}
    }
    ::math::bignum::normalize r
}

################################## Shifting ####################################

# Left shift 'z' of 'n' atoms. Low-level function used by ::math::bignum::lshift
# Exploit the internal representation to go faster.
proc ::math::bignum::lshiftAtoms {z n} {
    while {$n} {
	set z [linsert $z 2 0]
	incr n -1
    }
    return $z
}

# Right shift 'z' of 'n' atoms. Low-level function used by ::math::bignum::lshift
# Exploit the internal representation to go faster.
proc ::math::bignum::rshiftAtoms {z n} {
    set z [lreplace $z 2 [expr {$n+1}]]
}

# Left shift 'z' of 'n' bits. Low-level function used by ::math::bignum::lshift.
# 'n' must be <= $::math::bignum::atombits
proc ::math::bignum::lshiftBits {z n} {
    set atoms [llength $z]
    set car 0
    for {set j 2} {$j < $atoms} {incr j} {
	set t [lindex $z $j]
	lset z $j \
	    [expr {wide($car)|((wide($t)<<$n)&$::math::bignum::atommask)}]
	set car [expr {wide($t)>>($::math::bignum::atombits-$n)}]
    }
    if {$car} {
	lappend z 0
	lset z $j $car
    }
    return $z ; # No normalization needed
}

# Right shift 'z' of 'n' bits. Low-level function used by ::math::bignum::rshift.
# 'n' must be <= $::math::bignum::atombits
proc ::math::bignum::rshiftBits {z n} {
    set atoms [llength $z]
    set car 0
    for {set j [expr {$atoms-1}]} {$j >= 2} {incr j -1} {
	set t [lindex $z $j]
	lset z $j [expr {wide($car)|(wide($t)>>$n)}]
	set car \
	    [expr {(wide($t)<<($::math::bignum::atombits-$n))&$::math::bignum::atommask}]
    }
    ::math::bignum::normalize z
}

# Left shift 'z' of 'n' bits.
proc ::math::bignum::lshift {z n} {
    set z [_treat $z]
    set atoms [expr {$n / $::math::bignum::atombits}]
    set bits [expr {$n & ($::math::bignum::atombits-1)}]
    ::math::bignum::lshiftBits [math::bignum::lshiftAtoms $z $atoms] $bits
}

# Right shift 'z' of 'n' bits.
proc ::math::bignum::rshift {z n} {
    set z [_treat $z]
    set atoms [expr {$n / $::math::bignum::atombits}]
    set bits [expr {$n & ($::math::bignum::atombits-1)}]

    #
    # Correct for "arithmetic shift" - signed integers
    #
    set corr 0
    if { [::math::bignum::sign $z] == 1 } {
        for {set j [expr {$atoms+1}]} {$j >= 2} {incr j -1} {
            set t [lindex $z $j]
            if { $t != 0 } {
                set corr 1
            }
        }
        if { $corr == 0 } {
            set t [lindex $z [expr {$atoms+2}]]
            if { ( $t & ~($::math::bignum::atommask<<($bits)) ) != 0 } {
                set corr 1
            }
        }
    }

    set newz [::math::bignum::rshiftBits [math::bignum::rshiftAtoms $z $atoms] $bits]
    if { $corr } {
        set newz [::math::bignum::sub $newz 1]
    }
    return $newz
}

############################## Bit oriented ops ################################

# Set the bit 'n' of 'bignumvar'
proc ::math::bignum::setbit {bignumvar n} {
    upvar 1 $bignumvar z
    set atom [expr {$n / $::math::bignum::atombits}]
    set bit [expr {1 << ($n & ($::math::bignum::atombits-1))}]
    incr atom 2
    while {$atom >= [llength $z]} {lappend z 0}
    lset z $atom [expr {[lindex $z $atom]|$bit}]
}

# Clear the bit 'n' of 'bignumvar'
proc ::math::bignum::clearbit {bignumvar n} {
    upvar 1 $bignumvar z
    set atom [expr {$n / $::math::bignum::atombits}]
    incr atom 2
    if {$atom >= [llength $z]} {return $z}
    set mask [expr {$::math::bignum::atommask^(1 << ($n & ($::math::bignum::atombits-1)))}]
    lset z $atom [expr {[lindex $z $atom]&$mask}]
    ::math::bignum::normalize z
}

# Test the bit 'n' of 'z'. Returns true if the bit is set.
proc ::math::bignum::testbit {z n} {
    set  atom [expr {$n / $::math::bignum::atombits}]
    incr atom 2
    if {$atom >= [llength $z]} {return 0}
    set mask [expr {1 << ($n & ($::math::bignum::atombits-1))}]
    expr {([lindex $z $atom] & $mask) != 0}
}

# does bitwise and between a and b
proc ::math::bignum::bitand {a b} {
    # The internal number rep is little endian. Appending zeros is
    # equivalent to adding leading zeros to a regular big-endian
    # representation. The two numbers are extended to the same length,
    # then the operation is applied to the absolute value.
    set a [_treat $a]
    set b [_treat $b]
    while {[llength $a] < [llength $b]} {lappend a 0}
    while {[llength $b] < [llength $a]} {lappend b 0}
    set r [::math::bignum::zero [expr {[llength $a]-1}]]
    for {set i 2} {$i < [llength $a]} {incr i} {
	set or [expr {[lindex $a $i] & [lindex $b $i]}]
	lset r $i $or
    }
    ::math::bignum::normalize r
}

# does bitwise XOR between a and b
proc ::math::bignum::bitxor {a b} {
    # The internal number rep is little endian. Appending zeros is
    # equivalent to adding leading zeros to a regular big-endian
    # representation. The two numbers are extended to the same length,
    # then the operation is applied to the absolute value.
    set a [_treat $a]
    set b [_treat $b]
    while {[llength $a] < [llength $b]} {lappend a 0}
    while {[llength $b] < [llength $a]} {lappend b 0}
    set r [::math::bignum::zero [expr {[llength $a]-1}]]
    for {set i 2} {$i < [llength $a]} {incr i} {
	set or [expr {[lindex $a $i] ^ [lindex $b $i]}]
	lset r $i $or
    }
    ::math::bignum::normalize r
}

# does bitwise or between a and b
proc ::math::bignum::bitor {a b} {
    # The internal number rep is little endian. Appending zeros is
    # equivalent to adding leading zeros to a regular big-endian
    # representation. The two numbers are extended to the same length,
    # then the operation is applied to the absolute value.
    set a [_treat $a]
    set b [_treat $b]
    while {[llength $a] < [llength $b]} {lappend a 0}
    while {[llength $b] < [llength $a]} {lappend b 0}
    set r [::math::bignum::zero [expr {[llength $a]-1}]]
    for {set i 2} {$i < [llength $a]} {incr i} {
	set or [expr {[lindex $a $i] | [lindex $b $i]}]
	lset r $i $or
    }
    ::math::bignum::normalize r
}

# Return the number of bits needed to represent 'z'.
proc ::math::bignum::bits z {
    set atoms [::math::bignum::atoms $z]
    set bits [expr {($atoms-1)*$::math::bignum::atombits}]
    set atom [lindex $z [expr {$atoms+1}]]
    while {$atom} {
	incr bits
	set atom [expr {$atom >> 1}]
    }
    return $bits
}

################################## Division ####################################

# Division. Returns [list n/d n%d]
#
# I got this algorithm from PGP 2.6.3i (see the mp_udiv function).
# Here is how it works:
#
# Input:  N=(Nn,...,N2,N1,N0)radix2
#         D=(Dn,...,D2,D1,D0)radix2
# Output: Q=(Qn,...,Q2,Q1,Q0)radix2 = N/D
#         R=(Rn,...,R2,R1,R0)radix2 = N%D
#
# Assume: N >= 0, D > 0
#
# For j from 0 to n
#      Qj <- 0
#      Rj <- 0
# For j from n down to 0
#      R <- R*2
#      if Nj = 1 then R0 <- 1
#      if R => D then R <- (R - D), Qn <- 1
#
# Note that the doubling of R is usually done leftshifting one position.
# The only operations needed are bit testing, bit setting and subtraction.
#
# This is the "raw" version, don't care about the sign, returns both
# quotient and rest as a two element list.
# This procedure is used by divqr, div, mod, rem.
proc ::math::bignum::rawDiv {n d} {
    set bit [expr {[::math::bignum::bits $n]-1}]
    set r [list bignum 0 0]
    set q [::math::bignum::zero [expr {[llength $n]-2}]]
    while {$bit >= 0} {
	set b_atom [expr {($bit / $::math::bignum::atombits) + 2}]
	set b_bit [expr {1 << ($bit & ($::math::bignum::atombits-1))}]
	set r [::math::bignum::lshiftBits $r 1]
	if {[lindex $n $b_atom]&$b_bit} {
	    lset r 2 [expr {[lindex $r 2] | 1}]
	}
	if {[::math::bignum::abscmp $r $d] >= 0} {
	    set r [::math::bignum::rawSub $r $d]
	    lset q $b_atom [expr {[lindex $q $b_atom]|$b_bit}]
	}
	incr bit -1
    }
    ::math::bignum::normalize q
    list $q $r
}

# Divide by single-atom immediate. Used to speedup bignum -> string conversion.
# The procedure returns a two-elements list with the bignum quotient and
# the remainder (that's just a number being <= of the max atom value).
proc ::math::bignum::rawDivByAtom {n d} {
    set atoms [::math::bignum::atoms $n]
    set t 0
    set j $atoms
    incr j -1
    for {} {$j >= 0} {incr j -1} {
	set t [expr {($t << $::math::bignum::atombits)+[lindex $n [expr {$j+2}]]}]
	lset n [expr {$j+2}] [expr {$t/$d}]
	set t [expr {$t % $d}]
    }
    ::math::bignum::normalize n
    list $n $t
}

# Higher level division. Returns a list with two bignums, the first
# is the quotient of n/d, the second the remainder n%d.
# Note that if you want the *modulo* operator you should use ::math::bignum::mod
#
# The remainder sign is always the same as the divident.
proc ::math::bignum::divqr {n d} {
    set n [_treat $n]
    set d [_treat $d]
    if {[::math::bignum::iszero $d]} {
	error "Division by zero"
    }
    foreach {q r} [::math::bignum::rawDiv $n $d] break
    ::math::bignum::setsign q [expr {[::math::bignum::sign $n]^[::math::bignum::sign $d]}]
    ::math::bignum::setsign r [::math::bignum::sign $n]
    list $q $r
}

# Like divqr, but only the quotient is returned.
proc ::math::bignum::div {n d} {
    lindex [::math::bignum::divqr $n $d] 0
}

# Like divqr, but only the remainder is returned.
proc ::math::bignum::rem {n d} {
    lindex [::math::bignum::divqr $n $d] 1
}

# Modular reduction. Returns N modulo M
proc ::math::bignum::mod {n m} {
    set n [_treat $n]
    set m [_treat $m]
    set r [lindex [::math::bignum::divqr $n $m] 1]
    if {[::math::bignum::sign $m] != [::math::bignum::sign $r]} {
	set r [::math::bignum::add $r $m]
    }
    return $r
}

# Returns true if n is odd
proc ::math::bignum::isodd n {
    expr {[lindex $n 2]&1}
}

# Returns true if n is even
proc ::math::bignum::iseven n {
    expr {!([lindex $n 2]&1)}
}

############################# Power and Power mod N ############################

# Returns b^e
proc ::math::bignum::pow {b e} {
    set b [_treat $b]
    set e [_treat $e]
    if {[::math::bignum::iszero $e]} {return [list bignum 0 1]}
    # The power is negative is the base is negative and the exponent is odd
    set sign [expr {[::math::bignum::sign $b] && [::math::bignum::isodd $e]}]
    # Set the base to it's abs value, i.e. make it positive
    ::math::bignum::setsign b 0
    # Main loop
    set r [list bignum 0 1]; # Start with result = 1
    while {[::math::bignum::abscmp $e [list bignum 0 1]] > 0} { ;# While the exp > 1
	if {[::math::bignum::isodd $e]} {
	    set r [::math::bignum::mul $r $b]
	}
	set e [::math::bignum::rshiftBits $e 1] ;# exp = exp / 2
	set b [::math::bignum::mul $b $b]
    }
    set r [::math::bignum::mul $r $b]
    ::math::bignum::setsign r $sign
    return $r
}

# Returns b^e mod m
proc ::math::bignum::powm {b e m} {
    set b [_treat $b]
    set e [_treat $e]
    set m [_treat $m]
    if {[::math::bignum::iszero $e]} {return [list bignum 0 1]}
    # The power is negative is the base is negative and the exponent is odd
    set sign [expr {[::math::bignum::sign $b] && [::math::bignum::isodd $e]}]
    # Set the base to it's abs value, i.e. make it positive
    ::math::bignum::setsign b 0
    # Main loop
    set r [list bignum 0 1]; # Start with result = 1
    while {[::math::bignum::abscmp $e [list bignum 0 1]] > 0} { ;# While the exp > 1
	if {[::math::bignum::isodd $e]} {
	    set r [::math::bignum::mod [::math::bignum::mul $r $b] $m]
	}
	set e [::math::bignum::rshiftBits $e 1] ;# exp = exp / 2
	set b [::math::bignum::mod [::math::bignum::mul $b $b] $m]
    }
    set r [::math::bignum::mul $r $b]
    ::math::bignum::setsign r $sign
    set r [::math::bignum::mod $r $m]
    return $r
}

################################## Square Root #################################

# SQRT using the 'binary sqrt algorithm'.
#
# The basic algoritm consists in starting from the higer-bit
# the real square root may have set, down to the bit zero,
# trying to set every bit and checking if guess*guess is not
# greater than 'n'. If it is greater we don't set the bit, otherwise
# we set it. In order to avoid to compute guess*guess a trick
# is used, so only addition and shifting are really required.
proc ::math::bignum::sqrt n {
    if {[lindex $n 1]} {
	error "Square root of a negative number"
    }
    set i [expr {(([::math::bignum::bits $n]-1)/2)+1}]
    set b [expr {$i*2}] ; # Bit to set to get 2^i*2^i

    set r [::math::bignum::zero] ; # guess
    set x [::math::bignum::zero] ; # guess^2
    set s [::math::bignum::zero] ; # guess^2 backup
    set t [::math::bignum::zero] ; # intermediate result
    for {} {$i >= 0} {incr i -1; incr b -2} {
	::math::bignum::setbit t $b
	set x [::math::bignum::rawAdd $s $t]
	::math::bignum::clearbit t $b
	if {[::math::bignum::abscmp $x $n] <= 0} {
	    set s $x
	    ::math::bignum::setbit r $i
	    ::math::bignum::setbit t [expr {$b+1}]
	}
	set t [::math::bignum::rshiftBits $t 1]
    }
    return $r
}

################################## Random Number ###############################

# Returns a random number in the range [0,2^n-1]
proc ::math::bignum::rand bits {
    set atoms [expr {($bits+$::math::bignum::atombits-1)/$::math::bignum::atombits}]
    set shift [expr {($atoms*$::math::bignum::atombits)-$bits}]
    set r [list bignum 0]
    while {$atoms} {
	lappend r [expr {int(rand()*(1<<$::math::bignum::atombits))}]
	incr atoms -1
    }
    set r [::math::bignum::rshiftBits $r $shift]
    return $r
}

############################ Convertion to/from string #########################

# The string representation charset. Max base is 36
set ::math::bignum::cset "0123456789abcdefghijklmnopqrstuvwxyz"

# Convert 'z' to a string representation in base 'base'.
# Note that this is missing a simple but very effective optimization
# that's to divide by the biggest power of the base that fits
# in a Tcl plain integer, and then to perform divisions with [expr].
proc ::math::bignum::tostr {z {base 10}} {
    if {[string length $::math::bignum::cset] < $base} {
	error "base too big for string convertion"
    }
    if {[::math::bignum::iszero $z]} {return 0}
    set sign [::math::bignum::sign $z]
    set str {}
    while {![::math::bignum::iszero $z]} {
	foreach {q r} [::math::bignum::rawDivByAtom $z $base] break
	append str [string index $::math::bignum::cset $r]
	set z $q
    }
    if {$sign} {append str -}
    # flip the resulting string
    set flipstr {}
    set i [string length $str]
    incr i -1
    while {$i >= 0} {
	append flipstr [string index $str $i]
	incr i -1
    }
    return $flipstr
}

# Create a bignum from a string representation in base 'base'.
proc ::math::bignum::fromstr {str {base 0}} {
    set z [::math::bignum::zero]
    set str [string trim $str]
    set sign 0
    if {[string index $str 0] eq {-}} {
	set str [string range $str 1 end]
	set sign 1
    }
    if {$base == 0} {
	switch -- [string tolower [string range $str 0 1]] {
	    0x {set base 16; set str [string range $str 2 end]}
	    ox {set base 8 ; set str [string range $str 2 end]}
	    bx {set base 2 ; set str [string range $str 2 end]}
	    default {set base 10}
	}
    }
    if {[string length $::math::bignum::cset] < $base} {
	error "base too big for string convertion"
    }
    set bigbase [list bignum 0 $base] ; # Build a bignum with the base value
    set basepow [list bignum 0 1] ; # multiply every digit for a succ. power
    set i [string length $str]
    incr i -1
    while {$i >= 0} {
	set digitval [string first [string index $str $i] $::math::bignum::cset]
	if {$digitval == -1} {
	    error "Illegal char '[string index $str $i]' for base $base"
	}
	set bigdigitval [list bignum 0 $digitval]
	set z [::math::bignum::rawAdd $z [::math::bignum::mul $basepow $bigdigitval]]
	set basepow [::math::bignum::mul $basepow $bigbase]
	incr i -1
    }
    if {![::math::bignum::iszero $z]} {
	::math::bignum::setsign z $sign
    }
    return $z
}

#
# Pre-treatment of some constants : 0 and 1
# Updated 19/11/2005 : abandon the 'upvar' command and its cost
#
proc ::math::bignum::_treat {num} {
    if {[llength $num]<2} {
        if {[string equal $num 0]} {
            # set to the bignum 0
            return {bignum 0 0}
        } elseif {[string equal $num 1]} {
            # set to the bignum 1
            return {bignum 0 1}
        }
    }
    return $num
}

namespace eval ::math::bignum {
    namespace export *
}

# Announce the package

package provide math::bignum 3.1.1