/usr/share/doc/swig2.0-doc/Manual/Library.html is in swig2.0-doc 2.0.12-1ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG Library</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body bgcolor="#ffffff">
<H1><a name="Library"></a>8 SWIG library</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Library_nn2">The %include directive and library search path</a>
<li><a href="#Library_nn3">C Arrays and Pointers</a>
<ul>
<li><a href="#Library_nn4">cpointer.i</a>
<li><a href="#Library_carrays">carrays.i</a>
<li><a href="#Library_nn6">cmalloc.i</a>
<li><a href="#Library_nn7">cdata.i</a>
</ul>
<li><a href="#Library_nn8">C String Handling</a>
<ul>
<li><a href="#Library_nn9">Default string handling</a>
<li><a href="#Library_nn10">Passing binary data</a>
<li><a href="#Library_nn11">Using %newobject to release memory</a>
<li><a href="#Library_nn12">cstring.i</a>
</ul>
<li><a href="#Library_stl_cpp_library">STL/C++ Library</a>
<ul>
<li><a href="#Library_std_string">std::string</a>
<li><a href="#Library_std_vector">std::vector</a>
<li><a href="#Library_stl_exceptions">STL exceptions</a>
<li><a href="#Library_std_shared_ptr">shared_ptr smart pointer</a>
</ul>
<li><a href="#Library_nn16">Utility Libraries</a>
<ul>
<li><a href="#Library_nn17">exception.i</a>
</ul>
</ul>
</div>
<!-- INDEX -->
<p>
To help build extension modules, SWIG is packaged with a library of
support files that you can include in your own interfaces. These
files often define new SWIG directives or provide utility
functions that can be used to access parts of the standard C and C++ libraries.
This chapter provides a reference to the current set of supported library files.
</p>
<p>
<b>Compatibility note:</b> Older versions of SWIG included a number of
library files for manipulating pointers, arrays, and other structures. Most
these files are now deprecated and have been removed from the distribution.
Alternative libraries provide similar functionality. Please read this chapter
carefully if you used the old libraries.
</p>
<H2><a name="Library_nn2"></a>8.1 The %include directive and library search path</H2>
<p>
Library files are included using the <tt>%include</tt> directive.
When searching for files, directories are searched in the following order:
</p>
<ol>
<li>The current directory
<li>Directories specified with the <tt>-I</tt> command line option
<li>.<tt>/swig_lib</tt>
<li>SWIG library install location as reported by <tt>swig -swiglib</tt>, for example <tt>/usr/local/share/swig/1.3.30</tt>
<li>On Windows, a directory <tt>Lib</tt> relative to the location of <tt>swig.exe</tt> is also searched.
</ol>
<p>
Within directories mentioned in points 3-5, SWIG first looks for a subdirectory
corresponding to a target language (e.g., <tt>python</tt>, <tt>tcl</tt>, etc.).
If found, SWIG will search the language specific directory first. This allows
for language-specific implementations of library files.
</p>
<p>
You can ignore the installed SWIG library by setting the <tt>SWIG_LIB</tt> environment variable.
Set the environment variable to hold an alternative library directory.
</p>
<p>
The directories that are searched are displayed when using <tt>-verbose</tt> commandline option.
</p>
<H2><a name="Library_nn3"></a>8.2 C Arrays and Pointers</H2>
<p>
This section describes library modules for manipulating low-level C arrays and pointers.
The primary use of these modules is in supporting C declarations that manipulate bare
pointers such as <tt>int *</tt>, <tt>double *</tt>, or <tt>void *</tt>. The modules can be
used to allocate memory, manufacture pointers, dereference memory, and wrap
pointers as class-like objects. Since these functions provide direct access to
memory, their use is potentially unsafe and you should exercise caution.
</p>
<H3><a name="Library_nn4"></a>8.2.1 cpointer.i</H3>
<p>
The <tt>cpointer.i</tt> module defines macros that can be used to used
to generate wrappers around simple C pointers. The primary use of
this module is in generating pointers to primitive datatypes such as
<tt>int</tt> and <tt>double</tt>.
</p>
<p>
<b><tt>%pointer_functions(type,name)</tt></b>
</p>
<div class="indent">
<p>Generates a collection of four functions for manipulating a pointer <tt>type *</tt>:</p>
<p>
<tt>type *new_name()</tt>
</p>
<div class="indent"><p>
Creates a new object of type <tt>type</tt> and returns a pointer to it. In C, the
object is created using <tt>calloc()</tt>. In C++, <tt>new</tt> is used.
</p></div>
<p>
<tt>type *copy_name(type value)</tt>
</p>
<div class="indent"><p>
Creates a new object of type <tt>type</tt> and returns a pointer to it.
An initial value is set by copying it from <tt>value</tt>. In C, the
object is created using <tt>calloc()</tt>. In C++, <tt>new</tt> is used.
</p></div>
<p>
<tt>type *delete_name(type *obj)</tt>
</p>
<div class="indent"><p>
Deletes an object type <tt>type</tt>.
</p></div>
<p>
<tt>void name_assign(type *obj, type value)</tt>
</p>
<div class="indent"><p>
Assigns <tt>*obj = value</tt>.
</p></div>
<p>
<tt>type name_value(type *obj)</tt>
</p>
<div class="indent"><p>
Returns the value of <tt>*obj</tt>.
</p></div>
<p>
When using this macro, <tt>type</tt> may be any type and <tt>name</tt> must be a legal identifier in the target
language. <tt>name</tt> should not correspond to any other name used in the interface file.
</p>
<p>
Here is a simple example of using <tt>%pointer_functions()</tt>:
</p>
<div class="code">
<pre>
%module example
%include "cpointer.i"
/* Create some functions for working with "int *" */
%pointer_functions(int, intp);
/* A function that uses an "int *" */
void add(int x, int y, int *result);
</pre>
</div>
<p>
Now, in Python:
</p>
<div class="targetlang">
<pre>
>>> import example
>>> c = example.new_intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function
>>> example.intp_value(c) # Dereference
7
>>> example.delete_intp(c) # Delete
</pre>
</div>
</div>
<p>
<b><tt>%pointer_class(type,name)</tt></b>
</p>
<div class="indent">
<p>
Wraps a pointer of <tt>type *</tt> inside a class-based interface. This
interface is as follows:
</p>
<div class="code">
<pre>
struct name {
name(); // Create pointer object
~name(); // Delete pointer object
void assign(type value); // Assign value
type value(); // Get value
type *cast(); // Cast the pointer to original type
static name *frompointer(type *); // Create class wrapper from existing
// pointer
};
</pre>
</div>
<p>
When using this macro, <tt>type</tt> is restricted to a simple type
name like <tt>int</tt>, <tt>float</tt>, or <tt>Foo</tt>. Pointers and
other complicated types are not allowed. <tt>name</tt> must be a
valid identifier not already in use. When a pointer is wrapped as a class,
the "class" may be transparently passed to any function that expects the pointer.
</p>
<p>
If the target language does not support proxy classes, the use of this macro will produce the example
same functions as <tt>%pointer_functions()</tt> macro.
</p>
<p>
It should be noted that the class interface does introduce a new object or wrap a pointer inside a special
structure. Instead, the raw pointer is used directly.
</p>
<p>
Here is the same example using a class instead:
</p>
<div class="code">
<pre>
%module example
%include "cpointer.i"
/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);
/* A function that uses an "int *" */
void add(int x, int y, int *result);
</pre>
</div>
<p>
Now, in Python (using proxy classes)
</p>
<div class="targetlang">
<pre>
>>> import example
>>> c = example.intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function
>>> c.value() # Dereference
7
</pre>
</div>
<p>
Of the two macros, <tt>%pointer_class</tt> is probably the most convenient when working with simple
pointers. This is because the pointers are access like objects and they can be easily garbage collected
(destruction of the pointer object destroys the underlying object).
</p>
</div>
<p>
<b><tt>%pointer_cast(type1, type2, name)</tt></b>
</p>
<div class="indent">
<p>
Creates a casting function that converts <tt>type1</tt> to <tt>type2</tt>. The name of the function is <tt>name</tt>.
For example:
</p>
<div class="code">
<pre>
%pointer_cast(int *, unsigned int *, int_to_uint);
</pre>
</div>
<p>
In this example, the function <tt>int_to_uint()</tt> would be used to cast types in the target language.
</p>
</div>
<p>
<b>Note:</b> None of these macros can be used to safely work with strings (<tt>char *</tt> or <tt>char **</tt>).
</p>
<P>
<b>Note:</b> When working with simple pointers, typemaps can often be used to provide more seamless operation.
</p>
<H3><a name="Library_carrays"></a>8.2.2 carrays.i</H3>
<p>
This module defines macros that assist in wrapping ordinary C pointers as arrays.
The module does not provide any safety or an extra layer of wrapping--it merely
provides functionality for creating, destroying, and modifying the contents of
raw C array data.
</p>
<p>
<b><tt>%array_functions(type,name)</tt></b>
</p>
<div class="indent">
<p>Creates four functions.</p>
<p>
<tt>type *new_name(int nelements)</tt>
</p>
<div class="indent"><p>
Creates a new array of objects of type <tt>type</tt>. In C, the array is allocated using
<tt>calloc()</tt>. In C++, <tt>new []</tt> is used.
</p></div>
<p>
<tt>type *delete_name(type *ary)</tt>
</p>
<div class="indent"><p>
Deletes an array. In C, <tt>free()</tt> is used. In C++, <tt>delete []</tt> is used.
</p></div>
<p>
<tt>type name_getitem(type *ary, int index)</tt>
</p>
<div class="indent"><p>
Returns the value <tt>ary[index]</tt>.
</p></div>
<p>
<tt>void name_setitem(type *ary, int index, type value)</tt>
</p>
<div class="indent"><p>
Assigns <tt>ary[index] = value</tt>.
</p></div>
<p>
When using this macro, <tt>type</tt> may be any type and <tt>name</tt>
must be a legal identifier in the target language. <tt>name</tt>
should not correspond to any other name used in the interface file.
</p>
<p>
Here is an example of <tt>%array_functions()</tt>. Suppose you had a
function like this:
</p>
<div class="code">
<pre>
void print_array(double x[10]) {
int i;
for (i = 0; i < 10; i++) {
printf("[%d] = %g\n", i, x[i]);
}
}
</pre>
</div>
<p>
To wrap it, you might write this:
</p>
<div class="code">
<pre>
%module example
%include "carrays.i"
%array_functions(double, doubleArray);
void print_array(double x[10]);
</pre>
</div>
<p>
Now, in a scripting language, you might write this:
</p>
<div class="code">
<pre>
a = new_doubleArray(10) # Create an array
for i in range(0,10):
doubleArray_setitem(a,i,2*i) # Set a value
print_array(a) # Pass to C
delete_doubleArray(a) # Destroy array
</pre>
</div>
</div>
<p>
<b><tt>%array_class(type,name)</tt></b>
</p>
<div class="indent">
<p>
Wraps a pointer of <tt>type *</tt> inside a class-based interface. This
interface is as follows:
</p>
<div class="code">
<pre>
struct name {
name(int nelements); // Create an array
~name(); // Delete array
type getitem(int index); // Return item
void setitem(int index, type value); // Set item
type *cast(); // Cast to original type
static name *frompointer(type *); // Create class wrapper from
// existing pointer
};
</pre>
</div>
<p>
When using this macro, <tt>type</tt> is restricted to a simple type
name like <tt>int</tt> or <tt>float</tt>. Pointers and
other complicated types are not allowed. <tt>name</tt> must be a
valid identifier not already in use. When a pointer is wrapped as a class,
it can be transparently passed to any function that expects the pointer.
</p>
<p>
When combined with proxy classes, the <tt>%array_class()</tt> macro can be especially useful.
For example:
</p>
<div class="code">
<pre>
%module example
%include "carrays.i"
%array_class(double, doubleArray);
void print_array(double x[10]);
</pre>
</div>
<p>
Allows you to do this:
</p>
<div class="code">
<pre>
import example
c = example.doubleArray(10) # Create double[10]
for i in range(0,10):
c[i] = 2*i # Assign values
example.print_array(c) # Pass to C
</pre>
</div>
</div>
<p>
<b>Note:</b> These macros do not encapsulate C arrays inside a special data structure
or proxy. There is no bounds checking or safety of any kind. If you want this,
you should consider using a special array object rather than a bare pointer.
</p>
<p>
<b>Note:</b> <tt>%array_functions()</tt> and <tt>%array_class()</tt> should not be
used with types of <tt>char</tt> or <tt>char *</tt>.
</p>
<H3><a name="Library_nn6"></a>8.2.3 cmalloc.i</H3>
<p>
This module defines macros for wrapping the low-level C memory allocation functions
<tt>malloc()</tt>, <tt>calloc()</tt>, <tt>realloc()</tt>, and <tt>free()</tt>.
</p>
<p>
<b><tt>%malloc(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Creates a wrapper around <tt>malloc()</tt> with the following prototype:
</p>
<div class="code"><pre>
<em>type</em> *malloc_<em>name</em>(int nbytes = sizeof(<em>type</em>));
</pre>
</div>
<p>
If <tt>type</tt> is <tt>void</tt>, then the size parameter <tt>nbytes</tt> is required.
The <tt>name</tt> parameter only needs to be specified when wrapping a type that
is not a valid identifier (e.g., "<tt>int *</tt>", "<tt>double **</tt>", etc.).
</p>
</div>
<p>
<b><tt>%calloc(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Creates a wrapper around <tt>calloc()</tt> with the following prototype:
</p>
<div class="code"><pre>
<em>type</em> *calloc_<em>name</em>(int nobj =1, int sz = sizeof(<em>type</em>));
</pre>
</div>
<p>
If <tt>type</tt> is <tt>void</tt>, then the size parameter <tt>sz</tt> is required.
</p>
</div>
<p>
<b><tt>%realloc(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Creates a wrapper around <tt>realloc()</tt> with the following prototype:
</p>
<div class="code"><pre>
<em>type</em> *realloc_<em>name</em>(<em>type</em> *ptr, int nitems);
</pre>
</div>
<p>
Note: unlike the C <tt>realloc()</tt>, the wrapper generated by this macro implicitly includes the
size of the corresponding type. For example, <tt>realloc_int(p, 100)</tt> reallocates <tt>p</tt> so that
it holds 100 integers.
</p>
</div>
<p>
<b><tt>%free(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Creates a wrapper around <tt>free()</tt> with the following prototype:
</p>
<div class="code"><pre>
void free_<em>name</em>(<em>type</em> *ptr);
</pre>
</div>
</div>
<p>
<b><tt>%sizeof(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Creates the constant:
</p>
<div class="code"><pre>
%constant int sizeof_<em>name</em> = sizeof(<em>type</em>);
</pre>
</div>
</div>
<p>
<b><tt>%allocators(type [,name=type])</tt></b>
</p>
<div class="indent"><p>
Generates wrappers for all five of the above operations.
</p></div>
<p>
Here is a simple example that illustrates the use of these macros:
</p>
<div class="code">
<pre>
// SWIG interface
%module example
%include "cmalloc.i"
%malloc(int);
%free(int);
%malloc(int *, intp);
%free(int *, intp);
%allocators(double);
</pre>
</div>
<p>
Now, in a script:
</p>
<div class="targetlang">
<pre>
>>> from example import *
>>> a = malloc_int()
>>> a
'_000efa70_p_int'
>>> free_int(a)
>>> b = malloc_intp()
>>> b
'_000efb20_p_p_int'
>>> free_intp(b)
>>> c = calloc_double(50)
>>> c
'_000fab98_p_double'
>>> c = realloc_double(100000)
>>> free_double(c)
>>> print sizeof_double
8
>>>
</pre>
</div>
<H3><a name="Library_nn7"></a>8.2.4 cdata.i</H3>
<p>
The <tt>cdata.i</tt> module defines functions for converting raw C data to and from strings
in the target language. The primary applications of this module would be packing/unpacking of
binary data structures---for instance, if you needed to extract data from a buffer.
The target language must support strings with embedded binary data
in order for this to work.
</p>
<p>
<b><tt>const char *cdata(void *ptr, size_t nbytes)</tt></b>
</p>
<div class="indent"><p>
Converts <tt>nbytes</tt> of data at <tt>ptr</tt> into a string. <tt>ptr</tt> can be any
pointer.
</p></div>
<p>
<b><tt>void memmove(void *ptr, const char *s)</tt></b>
</p>
<div class="indent"><p>
Copies all of the string data in <tt>s</tt> into the memory pointed to by
<tt>ptr</tt>. The string may contain embedded NULL bytes.
This is actually a wrapper to the standard C library <tt>memmove</tt> function, which is
declared as
<b><tt>void memmove(void *ptr, const void *src, size_t n)</tt></b>.
The <tt>src</tt> and length <tt>n</tt> parameters are
extracted from the language specific string <tt>s</tt> in the underlying wrapper code.
</p></div>
<p>
One use of these functions is packing and unpacking data from memory.
Here is a short example:
</p>
<div class="code">
<pre>
// SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"
%array_class(int, intArray);
</pre>
</div>
<p>
Python example:
</p>
<div class="targetlang">
<pre>
>>> a = intArray(10)
>>> for i in range(0,10):
... a[i] = i
>>> b = cdata(a,40)
>>> b
'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
>>> c = intArray(10)
>>> memmove(c,b)
>>> print c[4]
4
>>>
</pre>
</div>
<p>
Since the size of data is not always known, the following macro is also defined:
</p>
<p>
<b><tt>%cdata(type [,name=type])</tt></b>
</p>
<div class="indent">
<p>
Generates the following function for extracting C data for a given type.
</p>
<div class="code">
<pre>
char *cdata_<em>name</em>(type* ptr, int nitems)
</pre>
</div>
<p>
<tt>nitems</tt> is the number of items of the given type to extract.
</p>
</div>
<p>
<b>Note:</b> These functions provide direct access to memory and can be used to overwrite data.
Clearly they are unsafe.
</p>
<H2><a name="Library_nn8"></a>8.3 C String Handling</H2>
<p>
A common problem when working with C programs is dealing with
functions that manipulate raw character data using <tt>char *</tt>.
In part, problems arise because there are different interpretations of
<tt>char *</tt>---it could be a NULL-terminated string or it could
point to binary data. Moreover, functions that manipulate raw strings
may mutate data, perform implicit memory allocations, or utilize
fixed-sized buffers.
</p>
<p>
The problems (and perils) of using <tt>char *</tt> are
well-known. However, SWIG is not in the business of enforcing
morality. The modules in this section provide basic functionality
for manipulating raw C strings.
</p>
<H3><a name="Library_nn9"></a>8.3.1 Default string handling</H3>
<p>
Suppose you have a C function with this prototype:
</p>
<div class="code">
<pre>
char *foo(char *s);
</pre>
</div>
<p>
The default wrapping behavior for this function is to set <tt>s</tt>
to a raw <tt>char *</tt> that refers to the internal string data in the
target language. In other words, if you were using a language like Tcl,
and you wrote this,
</p>
<div class="code">
<pre>
% foo Hello
</pre>
</div>
<p>
then <tt>s</tt> would point to the representation of "Hello" inside
the Tcl interpreter. When returning a <tt>char *</tt>, SWIG assumes
that it is a NULL-terminated string and makes a copy of it. This
gives the target language its own copy of the result.
</p>
<p>
There are obvious problems with the default behavior. First, since
a <tt>char *</tt> argument points to data inside the target language, it is
<b>NOT</b> safe for a function to modify this data (doing so may corrupt the
interpreter and lead to a crash). Furthermore, the default behavior does
not work well with binary data. Instead, strings are assumed to be NULL-terminated.
</p>
<H3><a name="Library_nn10"></a>8.3.2 Passing binary data</H3>
<p>
If you have a function that expects binary data,
</p>
<div class="code">
<pre>
size_t parity(char *str, size_t len, size_t initial);
</pre>
</div>
<p>
you can wrap the parameters <tt>(char *str, size_t len)</tt> as a single
argument using a typemap. Just do this:
</p>
<div class="code">
<pre>
%apply (char *STRING, size_t LENGTH) { (char *str, size_t len) };
...
size_t parity(char *str, size_t len, size_t initial);
</pre>
</div>
<p>
Now, in the target language, you can use binary string data like this:
</p>
<div class="code">
<pre>
>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s,0)
</pre>
</div>
<p>
In the wrapper function, the passed string will be expanded to a pointer and length parameter.
The <tt>(char *STRING, int LENGTH)</tt> multi-argument typemap is also available in addition to <tt>(char *STRING, size_t LENGTH)</tt>.
</p>
<H3><a name="Library_nn11"></a>8.3.3 Using %newobject to release memory</H3>
<p>
If you have a function that allocates memory like this,
</p>
<div class="code">
<pre>
char *foo() {
char *result = (char *) malloc(...);
...
return result;
}
</pre>
</div>
<p>
then the SWIG generated wrappers will have a memory leak--the returned data will be copied
into a string object and the old contents ignored.
</p>
<p>
To fix the memory leak, use the <tt>%newobject</tt> directive.
</p>
<div class="code">
<pre>
%newobject foo;
...
char *foo();
</pre>
</div>
<p>
This will release the result if the appropriate target language support is available.
SWIG provides the appropriate "newfree" typemap for <tt>char *</tt> so that the memory is released,
however, you may need to provide your own "newfree" typemap for other types.
See <a href="Customization.html#Customization_ownership">Object ownership and %newobject</a> for more details.
</p>
<H3><a name="Library_nn12"></a>8.3.4 cstring.i</H3>
<p>
The <tt>cstring.i</tt> library file provides a collection of macros
for dealing with functions that either mutate string arguments or
which try to output string data through their arguments. An
example of such a function might be this rather questionable
implementation:
</p>
<div class="code">
<pre>
void get_path(char *s) {
// Potential buffer overflow---uh, oh.
sprintf(s,"%s/%s", base_directory, sub_directory);
}
...
// Somewhere else in the C program
{
char path[1024];
...
get_path(path);
...
}
</pre>
</div>
<p>
(Off topic rant: If your program really has functions like this, you
would be well-advised to replace them with safer alternatives
involving bounds checking).
</p>
<p>
The macros defined in this module all expand to various combinations of
typemaps. Therefore, the same pattern matching rules and ideas apply.
</p>
<p>
<b>%cstring_bounded_output(parm, maxsize)</b>
</p>
<div class="indent">
<p>
Turns parameter <tt><em>parm</em></tt> into an output value. The
output string is assumed to be NULL-terminated and smaller than
<tt><em>maxsize</em></tt> characters. Here is an example:
</p>
<div class="code">
<pre>
%cstring_bounded_output(char *path, 1024);
...
void get_path(char *path);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> get_path()
/home/beazley/packages/Foo/Bar
>>>
</pre>
</div>
<p>
Internally, the wrapper function allocates a small buffer (on the stack) of the
requested size and passes it as the pointer value. Data stored in the buffer is then
returned as a function return value.
If the function already returns a value, then the return value and the output string
are returned together (multiple return values). <b>If more than <tt><em>maxsize</em></tt>
bytes are written, your program will crash with a buffer overflow!</b>
</p>
</div>
<p>
<b>%cstring_chunk_output(parm, chunksize)</b>
</p>
<div class="indent">
<p>
Turns parameter <tt><em>parm</em></tt> into an output value. The
output string is always <tt><em>chunksize</em></tt> and may contain
binary data. Here is an example:
</p>
<div class="code">
<pre>
%cstring_chunk_output(char *packet, PACKETSIZE);
...
void get_packet(char *packet);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> get_packet()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>
</pre>
</div>
<p>
This macro is essentially identical to <tt>%cstring_bounded_output</tt>. The
only difference is that the result is always <tt><em>chunksize</em></tt> characters.
Furthermore, the result can contain binary data.
<b>If more than <tt><em>maxsize</em></tt>
bytes are written, your program will crash with a buffer overflow!</b>
</p>
</div>
<p>
<b>%cstring_bounded_mutable(parm, maxsize)</b>
</p>
<div class="indent">
<p>
Turns parameter <tt><em>parm</em></tt> into a mutable string argument.
The input string is assumed to be NULL-terminated and smaller than
<tt><em>maxsize</em></tt> characters. The output string is also assumed
to be NULL-terminated and less than <tt><em>maxsize</em></tt> characters.
</p>
<div class="code">
<pre>
%cstring_bounded_mutable(char *ustr, 1024);
...
void make_upper(char *ustr);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> make_upper("hello world")
'HELLO WORLD'
>>>
</pre>
</div>
<p>
Internally, this macro is almost exactly the same as
<tt>%cstring_bounded_output</tt>. The only difference is that the
parameter accepts an input value that is used to initialize the
internal buffer. It is important to emphasize that this function
does not mutate the string value passed---instead it makes a copy of the
input value, mutates it, and returns it as a result.
<b>If more than <tt><em>maxsize</em></tt> bytes are
written, your program will crash with a buffer overflow!</b>
</p>
</div>
<p>
<b>%cstring_mutable(parm [, expansion])</b>
</p>
<div class="indent">
<p>
Turns parameter <tt><em>parm</em></tt> into a mutable string argument.
The input string is assumed to be NULL-terminated. An optional
parameter <tt><em>expansion</em></tt> specifies the number of
extra characters by which the string might grow when it is modified.
The output string is assumed to be NULL-terminated and less than
the size of the input string plus any expansion characters.
</p>
<div class="code">
<pre>
%cstring_mutable(char *ustr);
...
void make_upper(char *ustr);
%cstring_mutable(char *hstr, HEADER_SIZE);
...
void attach_header(char *hstr);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> make_upper("hello world")
'HELLO WORLD'
>>> attach_header("Hello world")
'header: Hello world'
>>>
</pre>
</div>
<p>
This macro differs from <tt>%cstring_bounded_mutable()</tt> in that a
buffer is dynamically allocated (on the heap using
<tt>malloc/new</tt>). This buffer is always large enough to store a
copy of the input value plus any expansion bytes that might have been
requested.
It is important to emphasize that this function
does not directly mutate the string value passed---instead it makes a copy of the
input value, mutates it, and returns it as a result.
<b>If the function expands the result by more than <tt><em>expansion</em></tt> extra
bytes, then the program will crash with a buffer overflow!</b>
</p>
</div>
<p>
<b>%cstring_output_maxsize(parm, maxparm)</b>
</p>
<div class="indent">
<p>
This macro is used to handle bounded character output functions where
both a <tt>char *</tt> and a maximum length parameter are provided.
As input, a user simply supplies the maximum length.
The return value is assumed to be a NULL-terminated string.
</p>
<div class="code">
<pre>
%cstring_output_maxsize(char *path, int maxpath);
...
void get_path(char *path, int maxpath);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> get_path(1024)
'/home/beazley/Packages/Foo/Bar'
>>>
</pre>
</div>
<p>
This macro provides a safer alternative for functions that need to
write string data into a buffer. User supplied buffer size is
used to dynamically allocate memory on heap. Results are placed
into that buffer and returned as a string object.
</p>
</div>
<p>
<b>%cstring_output_withsize(parm, maxparm)</b>
</p>
<div class="indent">
<p>
This macro is used to handle bounded character output functions where
both a <tt>char *</tt> and a pointer <tt>int *</tt> are passed. Initially,
the <tt>int *</tt> parameter points to a value containing the maximum size.
On return, this value is assumed to contain the actual number of bytes.
As input, a user simply supplies the maximum length. The output value is a
string that may contain binary data.
</p>
<div class="code">
<pre>
%cstring_output_withsize(char *data, int *maxdata);
...
void get_data(char *data, int *maxdata);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> get_data(1024)
'x627388912'
>>> get_data(1024)
'xyzzy'
>>>
</pre>
</div>
<p>
This macro is a somewhat more powerful version of <tt>%cstring_output_chunk()</tt>. Memory
is dynamically allocated and can be arbitrary large. Furthermore, a function can control
how much data is actually returned by changing the value of the <tt>maxparm</tt> argument.
</p>
</div>
<p>
<b>%cstring_output_allocate(parm, release)</b>
</p>
<div class="indent">
<p>
This macro is used to return strings that are allocated within the program and
returned in a parameter of type <tt>char **</tt>. For example:
</p>
<div class="code">
<pre>
void foo(char **s) {
*s = (char *) malloc(64);
sprintf(*s, "Hello world\n");
}
</pre>
</div>
<p>
The returned string is assumed to be NULL-terminated. <tt><em>release</em></tt>
specifies how the allocated memory is to be released (if applicable). Here is an
example:
</p>
<div class="code">
<pre>
%cstring_output_allocate(char **s, free(*$1));
...
void foo(char **s);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> foo()
'Hello world\n'
>>>
</pre>
</div>
</div>
<p>
<b>%cstring_output_allocate_size(parm, szparm, release)</b>
</p>
<div class="indent">
<p>
This macro is used to return strings that are allocated within the program and
returned in two parameters of type <tt>char **</tt> and <tt>int *</tt>. For example:
</p>
<div class="code">
<pre>
void foo(char **s, int *sz) {
*s = (char *) malloc(64);
*sz = 64;
// Write some binary data
...
}
</pre>
</div>
<p>
The returned string may contain binary data. <tt><em>release</em></tt>
specifies how the allocated memory is to be released (if applicable). Here is an
example:
</p>
<div class="code">
<pre>
%cstring_output_allocate_size(char **s, int *slen, free(*$1));
...
void foo(char **s, int *slen);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
>>> foo()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>
</pre>
</div>
<p>
This is the safest and most reliable way to return binary string data in
SWIG. If you have functions that conform to another prototype, you might
consider wrapping them with a helper function. For example, if you had this:
</p>
<div class="code">
<pre>
char *get_data(int *len);
</pre>
</div>
<p>
You could wrap it with a function like this:
</p>
<div class="code">
<pre>
void my_get_data(char **result, int *len) {
*result = get_data(len);
}
</pre>
</div>
</div>
<p>
<b>Comments:</b>
</p>
<ul>
<li>Support for the <tt>cstring.i</tt> module depends on the target language. Not all
SWIG modules currently support this library.
</li>
<li>Reliable handling of raw C strings is a delicate topic. There are many ways
to accomplish this in SWIG. This library provides support for a few common techniques.
</li>
<li>If used in C++, this library uses <tt>new</tt> and <tt>delete []</tt> for memory
allocation. If using ANSI C, the library uses <tt>malloc()</tt> and <tt>free()</tt>.
</li>
<li>Rather than manipulating <tt>char *</tt> directly, you might consider using a special string
structure or class instead.
</li>
</ul>
<H2><a name="Library_stl_cpp_library"></a>8.4 STL/C++ Library</H2>
<p>
The library modules in this section provide access to parts of the standard C++ library including the STL.
SWIG support for the STL is an ongoing effort. Support is quite comprehensive for some language modules
but some of the lesser used modules do not have quite as much library code written.
</p>
<p>
The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.
</p>
<table BORDER summary="SWIG C++ library files">
<tr VALIGN=TOP>
<td><b>C++ class</b></td>
<td><b>C++ Library file</b></td>
<td><b>SWIG Interface library file</b></td>
</tr>
<tr> <td>std::deque</td> <td>deque</td> <td>std_deque.i</td> </tr>
<tr> <td>std::list</td> <td>list</td> <td>std_list.i</td> </tr>
<tr> <td>std::map</td> <td>map</td> <td>std_map.i</td> </tr>
<tr> <td>std::pair</td> <td>utility</td> <td>std_pair.i</td> </tr>
<tr> <td>std::set</td> <td>set</td> <td>std_set.i</td> </tr>
<tr> <td>std::string</td> <td>string</td> <td>std_string.i</td> </tr>
<tr> <td>std::vector</td> <td>vector</td> <td>std_vector.i</td> </tr>
<tr> <td>std::shared_ptr</td> <td>shared_ptr</td> <td>std_shared_ptr.i</td> </tr>
</table>
<p>
The list is by no means complete; some language modules support a subset of the above and some support additional STL classes.
Please look for the library files in the appropriate language library directory.
</p>
<H3><a name="Library_std_string"></a>8.4.1 std::string</H3>
<p>
The <tt>std_string.i</tt> library provides typemaps for converting C++ <tt>std::string</tt>
objects to and from strings in the target scripting language. For example:
</p>
<div class="code">
<pre>
%module example
%include "std_string.i"
std::string foo();
void bar(const std::string &x);
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string
</pre>
</div>
<p>
A common problem that people encounter is that of classes/structures
containing a <tt>std::string</tt>. This can be overcome by defining a typemap.
For example:
</p>
<div class="code">
<pre>
%module example
%include "std_string.i"
%apply const std::string& {std::string* foo};
struct my_struct
{
std::string foo;
};
</pre>
</div>
<p>
In the target language:
</p>
<div class="targetlang">
<pre>
x = my_struct();
x.foo="Hello World"; # assign with string
print x.foo; # print as string
</pre>
</div>
<p>
This module only supports types <tt>std::string</tt> and
<tt>const std::string &</tt>. Pointers and non-const references
are left unmodified and returned as SWIG pointers.
</p>
<p>
This library file is fully aware of C++ namespaces. If you export <tt>std::string</tt> or rename
it with a typedef, make sure you include those declarations in your interface. For example:
</p>
<div class="code">
<pre>
%module example
%include "std_string.i"
using namespace std;
typedef std::string String;
...
void foo(string s, const String &t); // std_string typemaps still applied
</pre>
</div>
<H3><a name="Library_std_vector"></a>8.4.2 std::vector</H3>
<p>
The <tt>std_vector.i</tt> library provides support for the C++ <tt>std::vector</tt> class in the STL.
Using this library involves the use of the <tt>%template</tt> directive. All you need to do is to
instantiate different versions of <tt>vector</tt> for the types that you want to use. For example:
</p>
<div class="code">
<pre>
%module example
%include "std_vector.i"
namespace std {
%template(vectori) vector<int>;
%template(vectord) vector<double>;
};
</pre>
</div>
<p>
When a template <tt>vector<X></tt> is instantiated a number of things happen:
</p>
<ul>
<li>A class that exposes the C++ API is created in the target language .
This can be used to create objects, invoke methods, etc. This class is
currently a subset of the real STL vector class.
</li>
<li>Input typemaps are defined for <tt>vector<X></tt>, <tt>const vector<X> &</tt>, and
<tt>const vector<X> *</tt>. For each of these, a pointer <tt>vector<X> *</tt> may be passed or
a native list object in the target language.
</li>
<li>An output typemap is defined for <tt>vector<X></tt>. In this case, the values in the
vector are expanded into a list object in the target language.
</li>
<li>For all other variations of the type, the wrappers expect to receive a <tt>vector<X> *</tt>
object in the usual manner.
</li>
<li>An exception handler for <tt>std::out_of_range</tt> is defined.
</li>
<li>Optionally, special methods for indexing, item retrieval, slicing, and element assignment
may be defined. This depends on the target language.
</li>
</ul>
<p>
To illustrate the use of this library, consider the following functions:
</p>
<div class="code">
<pre>
/* File : example.h */
#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>
double average(std::vector<int> v) {
return std::accumulate(v.begin(),v.end(),0.0)/v.size();
}
std::vector<double> half(const std::vector<double>& v) {
std::vector<double> w(v);
for (unsigned int i=0; i<w.size(); i++)
w[i] /= 2.0;
return w;
}
void halve_in_place(std::vector<double>& v) {
std::transform(v.begin(),v.end(),v.begin(),
std::bind2nd(std::divides<double>(),2.0));
}
</pre>
</div>
<p>
To wrap with SWIG, you might write the following:
</p>
<div class="code">
<pre>
%module example
%{
#include "example.h"
%}
%include "std_vector.i"
// Instantiate templates used by example
namespace std {
%template(IntVector) vector<int>;
%template(DoubleVector) vector<double>;
}
// Include the header file with above prototypes
%include "example.h"
</pre>
</div>
<p>
Now, to illustrate the behavior in the scripting interpreter, consider this Python example:
</p>
<div class="targetlang">
<pre>
>>> from example import *
>>> iv = IntVector(4) # Create an vector<int>
>>> for i in range(0,4):
... iv[i] = i
>>> average(iv) # Call method
1.5
>>> average([0,1,2,3]) # Call with list
1.5
>>> half([1,2,3]) # Half a list
(0.5,1.0,1.5)
>>> halve_in_place([1,2,3]) # Oops
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_std__vectorTdouble_t
>>> dv = DoubleVector(4)
>>> for i in range(0,4):
... dv[i] = i
>>> halve_in_place(dv) # Ok
>>> for i in dv:
... print i
...
0.0
0.5
1.0
1.5
>>> dv[20] = 4.5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "example.py", line 81, in __setitem__
def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)
IndexError: vector index out of range
>>>
</pre>
</div>
<p>
This library module is fully aware of C++ namespaces. If you use vectors with other names,
make sure you include the appropriate <tt>using</tt> or typedef directives. For example:
</p>
<div class="code">
<pre>
%include "std_vector.i"
namespace std {
%template(IntVector) vector<int>;
}
using namespace std;
typedef std::vector Vector;
void foo(vector<int> *x, const Vector &x);
</pre>
</div>
<p>
<b>Note:</b> This module makes use of several advanced SWIG features including templatized typemaps
and template partial specialization. If you are trying to wrap other C++ code with templates, you
might look at the code contained in <tt>std_vector.i</tt>. Alternatively, you can show them the code
if you want to make their head explode.
</p>
<p>
<b>Note:</b> This module is defined for all SWIG target languages. However argument conversion
details and the public API exposed to the interpreter vary.
</p>
<H3><a name="Library_stl_exceptions"></a>8.4.3 STL exceptions</H3>
<p>
Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception
should the values not be valid. The classic example is array bounds checking.
The library wrappers are written to throw a C++ exception in the case of error.
The C++ exception in turn gets converted into an appropriate error/exception for the target language.
By and large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate "throws" typemaps.
For example:
</p>
<div class="code">
<pre>
%module example
%include "std_vector.i"
%typemap(throws) std::out_of_range {
// custom exception handler
}
%template(VectInt) std::vector<int>;
</pre>
</div>
<p>
The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target language.
</p>
<p>
When using the STL it is advisable to add in an exception handler to catch all STL exceptions.
The <tt>%exception</tt> directive can be used by placing the following code before any other methods or libraries to be wrapped:
</p>
<div class="code">
<pre>
%include "exception.i"
%exception {
try {
$action
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());
}
}
</pre>
</div>
<p>
Any thrown STL exceptions will then be gracefully handled instead of causing a crash.
</p>
<H3><a name="Library_std_shared_ptr"></a>8.4.4 shared_ptr smart pointer</H3>
<p>
Some target languages have support for handling the widely used <tt>boost::shared_ptr</tt> smart pointer.
This smart pointer is also available as <tt>std::tr1::shared_ptr</tt> before it becomes fully standardized as <tt>std::shared_ptr</tt>.
The <tt>boost_shared_ptr.i</tt> library provides support for <tt>boost::shared_ptr</tt> and <tt>std_shared_ptr.i</tt> provides support for <tt>std::shared_ptr</tt>, but if the following macro is defined as shown, it can be used for <tt>std::tr1::shared_ptr</tt>:
</p>
<div class="code">
<pre>
#define SWIG_SHARED_PTR_SUBNAMESPACE tr1
%include <std_shared_ptr.i>
</pre>
</div>
<p>
You can only use one of these variants of shared_ptr in your interface file at a time.
and all three variants must be used in conjunction with the <tt>%shared_ptr(T)</tt> macro,
where <tt>T</tt> is the underlying pointer type equating to usage <tt>shared_ptr<T></tt>.
The type <tt>T</tt> must be non-primitive.
A simple example demonstrates usage:
</p>
<div class="code">
<pre>
%module example
%include <boost_shared_ptr.i>
%shared_ptr(IntValue)
%inline %{
#include <boost/shared_ptr.hpp>
struct IntValue {
int value;
IntValue(int v) : value(v) {}
};
static int extractValue(const IntValue &t) {
return t.value;
}
static int extractValueSmart(boost::shared_ptr<IntValue> t) {
return t->value;
}
%}
</pre>
</div>
<p>
Note that the <tt>%shared_ptr(IntValue)</tt> declaration occurs after the inclusion of the <tt>boost_shared_ptr.i</tt>
library which provides the macro and, very importantly, before any usage or declaration of the type, <tt>IntValue</tt>.
The <tt>%shared_ptr</tt> macro provides, a few things for handling this smart pointer, but mostly a number of
typemaps. These typemaps override the default typemaps so that the underlying proxy class is stored and passed around
as a pointer to a <tt>shared_ptr</tt> instead of a plain pointer to the underlying type.
This approach means that any instantiation of the type can be passed to methods taking the type by value, reference, pointer
or as a smart pointer.
The interested reader might want to look at the generated code, however, usage is simple and no different
handling is required from the target language.
For example, a simple use case of the above code from Java would be:
</p>
<div class="targetlang">
<pre>
IntValue iv = new IntValue(1234);
int val1 = example.extractValue(iv);
int val2 = example.extractValueSmart(iv);
System.out.println(val1 + " " + val2);
</pre>
</div>
<p>
This shared_ptr library works quite differently to SWIG's normal, but somewhat limited,
<a href="SWIGPlus.html#SWIGPlus_smart_pointers">smart pointer handling</a>.
The shared_ptr library does not generate extra wrappers, just for smart pointer handling, in addition to the proxy class.
The normal proxy class including inheritance relationships is generated as usual.
The only real change introduced by the <tt>%shared_ptr</tt> macro is that the proxy class stores a pointer to the shared_ptr instance instead of a raw pointer to the instance.
A proxy class derived from a base which is being wrapped with shared_ptr can and <b>must</b> be wrapped as a shared_ptr too.
In other words all classes in an inheritance hierarchy must all be used with the <tt>%shared_ptr</tt> macro.
For example the following code can be used with the base class shown earlier:
</p>
<div class="code">
<pre>
%shared_ptr(DerivedIntValue)
%inline %{
struct DerivedIntValue : IntValue {
DerivedIntValue(int value) : IntValue(value) {}
...
};
%}
</pre>
</div>
<p>
A shared_ptr of the derived class can now be passed to a method where the base is expected in the target language, just as it can in C++:
</p>
<div class="targetlang">
<pre>
DerivedIntValue div = new DerivedIntValue(5678);
int val3 = example.extractValue(div);
int val4 = example.extractValueSmart(div);
</pre>
</div>
<p>
If the <tt>%shared_ptr</tt> macro is omitted for any class in the inheritance hierarchy, SWIG will warn about this and the generated code may or may not result in a C++ compilation error.
For example, the following input:
</p>
<div class="code">
<pre>
%include "boost_shared_ptr.i"
%shared_ptr(Parent);
%inline %{
#include <boost/shared_ptr.hpp>
struct GrandParent {
virtual ~GrandParent() {}
};
struct Parent : GrandParent {
virtual ~Parent() {}
};
struct Child : Parent {
virtual ~Child() {}
};
%}
</pre>
</div>
<p>
warns about the missing smart pointer information:
</p>
<div class="shell">
<pre>
example.i:12: Warning 520: Base class 'GrandParent' of 'Parent' is not similarly marked as a smart pointer.
example.i:16: Warning 520: Derived class 'Child' of 'Parent' is not similarly marked as a smart pointer.
</pre>
</div>
<p>
Adding the missing <tt>%shared_ptr</tt> macros will fix this:
</p>
<div class="code">
<pre>
%include "boost_shared_ptr.i"
%shared_ptr(GrandParent);
%shared_ptr(Parent);
%shared_ptr(Child);
... as before ...
</pre>
</div>
<b>Note:</b> There is currently no support for <tt>%shared_ptr</tt> and the director feature.
<H2><a name="Library_nn16"></a>8.5 Utility Libraries</H2>
<H3><a name="Library_nn17"></a>8.5.1 exception.i</H3>
<p>
The <tt>exception.i</tt> library provides a language-independent function for raising a run-time
exception in the target language. This library is largely used by the SWIG library writers.
If possible, use the error handling scheme available to your target language as there is greater
flexibility in what errors/exceptions can be thrown.
</p>
<p>
<b><tt>SWIG_exception(int code, const char *message)</tt></b>
</p>
<div class="indent">
<p>
Raises an exception in the target language. <tt>code</tt> is one of the following symbolic
constants:
</p>
<div class="code">
<pre>
SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
</pre>
</div>
<p>
<tt>message</tt> is a string indicating more information about the problem.
</p>
</div>
<p>
The primary use of this module is in writing language-independent exception handlers.
For example:
</p>
<div class="code">
<pre>
%include "exception.i"
%exception std::vector::getitem {
try {
$action
} catch (std::out_of_range& e) {
SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
}
}
</pre>
</div>
</body>
</html>
|