This file is indexed.

/usr/share/singular/LIB/weierstr.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
////////////////////////////////////////////////////////////////////////////
version="version weierstr.lib 4.0.0.0 Jun_2013 "; // $Id: b457489cc9c710a0b3f9d3dee99355b33c6ae63e $
category="Teaching";
info="
LIBRARY:  weierstr.lib   Procedures for the Weierstrass Theorems
AUTHOR:                  G.-M. Greuel, greuel@mathematik.uni-kl.de

PROCEDURES:
 weierstrDiv(g,f,d);   perform Weierstrass division of g by f up to degree d
 weierstrPrep(f,d);    perform Weierstrass preparation of f up to degree d
 lastvarGeneral(f);    make f general of finite order w.r.t. last variable
 generalOrder(f);      compute integer b s.t. f is x_n-general of order b

           (parameters in square brackets [] are optional)
";

LIB "mondromy.lib";
LIB "poly.lib";
///////////////////////////////////////////////////////////////////////////////

proc generalOrder (poly f)
"USAGE:   generalOrder(f); f=poly
RETURN:  integer b if f is general of order b w.r.t. the last variable, say T,
         resp. -1 if not
         (i.e. f(0,...,0,T) is of order b, resp. f(0,...,0,T)==0)
NOTE:    the procedure works for any monomial ordering
EXAMPLE: example generalOrder; shows an example
"
{ int ii;
  int n = nvars(basering);
  for (ii=1; ii<n; ii++)
  {
    f = subst(f,var(ii),0);
  }
  return(mindeg(f));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y),ds;
   poly f = x2-4xy+4y2-2xy2+4y3+y4;
   generalOrder(f);
}
///////////////////////////////////////////////////////////////////////////////

proc weierstrDiv ( poly g, poly f, int d )
"USAGE:   weierstrDiv(g,f,d); g,f=poly, d=integer
ASSUME:  f must be general of finite order, say b, in the last ring variable,
         say T; if not use the procedure lastvarGeneral first
PURPOSE: perform the Weierstrass division of g by f up to order d
RETURN:  - a list, say l, of two polynomials and an integer, such that@*
            g = l[1]*f + l[2],  deg_T(l[2]) < b, up to (including) total degree d@*
         - l[3] is the number of iterations used
         - if f is not T-general, return (0,g)
NOTE:    the procedure works for any monomial ordering
THEORY:  the proof of Grauert-Remmert (Analytische Stellenalgebren) is used
         for the algorithm
EXAMPLE: example weierstrDiv; shows an example
"
{
//------------- initialisation and check T - general -------------------------
  int a,b,ii,D;
  poly r,h;
  list result;
  int y = printlevel - voice + 2;
  int n = nvars(basering);
  intvec v;
  v[n]=1;
  b = generalOrder(f);
  if (y>0)
  {
     "//",f;"// is "+string(var(n))+"-general of order", b;
     pause("press <return> to continue");
  }
  if ( b==-1 )
  {
     "// second polynomial is not general w.r.t. last variable";
     "// use the procedure lastvarGeneral first";
     result=h,g;
     return(result);
  }
//------------------------- start computation --------------------------------
  D = d+b;
  poly fhat = jet(f,b-1,v);
  poly ftilde = (f-fhat)/var(n)^b;
  poly u = invunit(ftilde,D);
  if (y>0)
  {
     "// fhat (up to order", d,"):";
     "//", fhat;
     "// ftilde:";
     "//", ftilde;
     "// ftilde-inverse:";
     "//", u;
     pause("press <return> to continue");
  }
  poly khat, ktilde;
  poly k=g;
  khat = jet(k,b-1,v);
  ktilde = (k-r)/var(n)^b;
  r = khat;
  h = ktilde;
  ii=0;
  while (size(k) > 0)
  {
  if (y>0)
    {
     "// loop",ii+1;
     "// khat:";
     "//", khat;
     "// ktilde:";
     "//", ktilde;
     "// remainder:";
     "//", r;
     "// multiplier:";
     "//", h;
     pause("press <return> to continue");
    }
    k = jet(-fhat*u*ktilde,D);
    khat = jet(k,b-1,v);
    ktilde = (k-khat)/var(n)^b;
    r = r + khat;
    h = h + ktilde;
    ii=ii+1;
  }
  result = jet(u*h,d),jet(r,d),ii;
  return(result);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y),ds;
   poly f = y - xy2 + x2;
   poly g = y;
   list l = weierstrDiv(g,f,10); l;"";
   l[1]*f + l[2];               //g = l[1]*f+l[2] up to degree 10
}
///////////////////////////////////////////////////////////////////////////////

proc weierstrPrep (poly f, int d)
"USAGE:   weierstrPrep(f,d); f=poly, d=integer
ASSUME:  f must be general of finite order, say b, in the last ring variable,
         say T; if not apply the procedure lastvarGeneral first
PURPOSE: perform the Weierstrass preparation of f up to order d
RETURN:  - a list, say l, of two polynomials and one integer,
         l[1] a unit, l[2] a Weierstrass polynomial, l[3] an integer
         such that l[1]*f = l[2], where l[2] is a Weierstrass polynomial,
         (i.e. l[2] = T^b + lower terms in T) up to (including) total degree d
         l[3] is the number of iterations used@*
         - if f is not T-general, return (0,0)
NOTE:    the procedure works for any monomial ordering
THEORY:  the proof of Grauert-Remmert (Analytische Stellenalgebren) is used
         for the algorithm
EXAMPLE: example weierstrPrep; shows an example
"
{
  int n = nvars(basering);
  int b = generalOrder(f);
  if ( b==-1 )
  {
     "// second polynomial is not general w.r.t. last variable";
     "// use the procedure lastvarGeneral first";
     poly h,g;
     list result=h,g;
     return(result);
  }
  list L = weierstrDiv(var(n)^b,f,d);
  list result = L[1], var(n)^b - L[2],L[3];
  return(result);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y),ds;
   poly f = xy+y2+y4;
   list l = weierstrPrep(f,5); l; "";
   f*l[1]-l[2];                      // = 0 up to degree 5
}
///////////////////////////////////////////////////////////////////////////////

proc lastvarGeneral (poly f)
"USAGE:   lastvarGeneral(f,d); f=poly
RETURN:  poly, say g, obtained from f by a generic change of variables, s.t.
         g is general of finite order b w.r.t. the last ring variable, say T
         (i.e. g(0,...,0,T)= c*T^b + higher terms, c!=0)
NOTE:    the procedure works for any monomial ordering
EXAMPLE: example lastvarGeneral; shows an example
"
{
  int n = nvars(basering);
  int b = generalOrder(f);
  if ( b >=0 )  { return(f); }
  else
  {
    def B = basering;
    int ii;
    map phi;
    ideal m=maxideal(1);
    int d = mindeg1(f);
    poly g = jet(f,d);
    for (ii=1; ii<=n-1; ii++)
    {
       if (size(g)>size(subst(g,var(ii),0)) )
       {
          m[ii]= var(ii)+ random(1-(voice-2)*10,1+(voice-2)*10)*var(n);
          phi = B,m;
          g = phi(f);
          break;
       }
    }
    if ( voice <=5 )
    {
       return(lastvarGeneral(g));
    }
    if ( voice ==6 )
    {
       for (ii=1; ii<=n-1; ii++)
      {
         m[ii]= var(ii)+ var(n)*random(1,1000);
      }
      phi = basering,m;
      g = phi(f);
      return(lastvarGeneral(g));
    }
    else
    {
      for (ii=1; ii<=n-1; ii++)
      {
         m[ii]= var(ii)+ var(n)^random(2,voice*d);
      }
      phi = basering,m;
      g = phi(f);
      return(lastvarGeneral(g));
    }
  }
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 2,(x,y,z),ls;
   poly f = xyz;
   lastvarGeneral(f);
}
///////////////////////////////////////////////////////////////////////////////