This file is indexed.

/usr/share/singular/LIB/tasks.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
//////////////////////////////////////////////////////////////////////
version="version tasks.lib 4.0.0.0 Dec_2013 "; // $Id: 9c9ecb6bd816d6b914cdf4a7a223d8aa98905ed0 $
category="General purpose";
info="
LIBRARY:   tasks.lib  A parallel framework based on tasks

AUTHOR:    Andreas Steenpass, e-mail: steenpass@mathematik.uni-kl.de

OVERVIEW:
This library provides a parallel framework based on tasks. It introduces a new
Singular type @code{task}; an object of this type is a command (given by a
string) applied to a list of arguments. Tasks can be computed in parallel via
the procedures in this library and they can even be started recursively, i.e.
from within other tasks.

tasks.lib respects the limits for computational resources defined
in @ref{resources_lib}, i.e., all tasks within the same Singular session will
not use more computational resources than provided via resources.lib, even if
tasks are started recursively.

The Singular library @ref{parallel_lib} provides implementations of several
parallel 'skeletons' based on tasks.lib.

KEYWORDS:  parallelization; distributed computing; task

SEE ALSO:  resources_lib, parallel_lib

PROCEDURES:
  createTask();    create a task
  killTask();      kill a task
  copyTask();      copy a task
  compareTasks();  compare two tasks
  printTask();     print a task
  startTasks();    start tasks
  stopTask();      stop a task
  waitTasks();     wait for a certain number of tasks
  waitAllTasks();  wait for all tasks
  pollTask();      poll a task
  getCommand();    get the command of a task
  getArguments();  get the arguments of a task
  getResult();     get the result of a task
  getState();      get the state of a task
";

/*
RATIONALE FOR DEVELOPERS

The Singular type 'task'
------------------------
tasks.lib introduces a Singular type 'task' which makes use of a pointer-like
model in order to avoid unnecessary copying of data. 'task' is defined as a
newstruct whose only member is 'int index'. This index points to an entry in
the lib-internal list 'tasks'. The elements of this list are of the type
'internal_task' which is defined as a newstruct with the following members:
int id         - the internal ID
string command - the command
list arguments - the arguments
def result     - the result
string state   - the current state, see 'The life cycle of a task'
list links     - control handles, see 'Links'
int linkID     - the ID of the control handles


The life cycle of a task
------------------------
'uninitialized' --> 'created' --> 'started' --> 'completed'
                                     | ^
                                     v |
                                  'stopped'

The state of a task t is 'uninitialized' iff
(t.index == 0) or (typeof(tasks[t.index]) != "internal_task").

A task can be reset to 'uninitialized' by killTask() at any time.


Assigned members for 'internal_task'
------------------------------------
For each state, the following members of an internal_task must be assigned:

created:       command arguments        state
started:    id command arguments        state links linkID
stopped:       command arguments        state
completed:     command arguments result state

All other members should be wiped out.

Local supervisors
-----------------
A call of 'startTasks(t(1..n));' for tasks t(1), ..., t(n) creates a child
process which plays the role of a supervisor for these tasks. The computation
of the tasks is done in child processes of the supervisor.

The supervisor assigns an internal state to each task which is represented by
an integer. The meaning of these integers and their relation to the global
state of each task is as follows:

internal state | meaning           | corresponding global state
---------------|-------------------|---------------------------
             0 | waiting           | started
             1 | started           | started
             2 | (result) computed | started
             3 | (result) sent     | completed
            -1 | stopped           | stopped

Links
-----
The ssi link between the main process and the supervisor is named 'l(pid)'
where pid is the PID of the main process. The links between the supervisor and
its child processes are named 'll(pid)(1)', 'll(pid)(2)', ... where pid is the
PID of the supervisor. The link between the child processes of the supervisor
and the main process is named 'L(pid)' where pid is the PID of the main
process. This link is only for sending the results to the main process and must
not be used in the other direction!

For any task t whose state is 'started', tasks[t.index].links is
list(L(pid), l(pid)) where pid is the PID of the main process.

Communication model
-------------------
stopTask() <--> supervisor
    0, id -->

waitTasks() <--> supervisor
(demanded_task is an intvec containing the IDs of the tasks which are being
waited for; ndemanded is the number of tasks that is being waited for.)
    1, demanded_tasks, ndemanded -->
    [receiving results]
    1, 0:2, -1 -->
    results_sent <--
    [receiving remaining results]

pollTask() <--> supervisor
    2, id -->
    state <--
    [receive result if state == 2 (computed)]

startTasks_child() <--> startTasks_grandchild()
    [compute the result]
    1, id <--
    [wait until the result is requested]
    1 -->
    [send the result]
    2 <--

sending and receiving results:
main process <--> supervisor <--> startTasks_grandchild()
    [request the result, see above]
    index, result  (main process <-- startTasks_grandchild())
    3, id          (main process --> supervisor)
*/

LIB "resources.lib";

static proc mod_init()
{
    /* initialize the semaphores */
    if (!defined(Resources)) {
        LIB "resources.lib";
    }
    // the number of processor cores
    int sem_cores = Resources::sem_cores;
    exportto(Tasks, sem_cores);
    // the number of leaves in the parallel tree (not strict)
    int sem_leaves = semaphore(system("--cpus")+10);
    exportto(Tasks, sem_leaves);
    // the number of processes waiting for sem_cores with low priority
    int sem_queue = semaphore(2);
    exportto(Tasks, sem_queue);

    /* define the Singular type 'task' */
    newstruct("task", "int index");
    newstruct("internal_task", "int id, string command, list arguments,"
        +"def result, string state, list links, int linkID");
    system("install", "task", "=", createTask, 1);
    system("install", "task", "==", compareTasks, 2);
    system("install", "task", "print", printTask, 1);

    /* define (lib-)global variables */
    list tasks;     // the lib-internal list of tasks
    exportto(Tasks, tasks);
    int ntasks;     // the current maximal index in 'tasks'
    exportto(Tasks, ntasks);
    int nlinkIDs;   // the current maximal linkID
    exportto(Tasks, nlinkIDs);
}

proc createTask(alias string command, alias list arguments)
"USAGE:   createTask(command, arguments), command string, arguments list
RETURN:   a task with the given command and arguments whose state is 'created'.
NOTE:     't = command, arguments;' is a shortcut for
          't = createTask(command, arguments);'.
SEE ALSO: startTasks, getCommand, getArguments, getState, killTask, copyTask,
          compareTasks, printTask
EXAMPLE:  example createTask; shows an example"
{
    internal_task T;
    ntasks++;
    tasks[ntasks] = T;
    tasks[ntasks].command = command;
    tasks[ntasks].arguments = arguments;
    tasks[ntasks].state = "created";
    task t;
    t.index = ntasks;
    return(t);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = createTask("std", list(I));
    // This is the same as:
    // task t = "std", list(I);
    t;
    killTask(t);
}

proc killTask(task t)
"USAGE:   killTask(t), t task
RETURN:   nothing. If the state of t is 'started', then t is stopped first. The
          internal data structures of t are erased and its state is set to
          'uninitialized'.
NOTE:     'killTask(t);' is not the same as 'kill t;'. The latter command does
          not erase the internal data structures of t. Hence killTask() should
          be called for any no longer needed task in order to free memory.
SEE ALSO: stopTask, getState, createTask, printTask
EXAMPLE:  example killTask; shows an example"
{
    if (t.index == 0) {
        return();
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        return();
    }
    if (tasks[t.index].state == "started") {
        stopTask(t);
    }
    tasks[t.index] = def(0);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    startTasks(t);
    t;
    killTask(t);
    t;
    getState(t);
}

proc copyTask(task t)
"USAGE:   copyTask(t), t task
RETURN:   a copy of t.
NOTE:     'task t1 = copyTask(t2);' is not the same as 'task t1 = t2;'. After
          the latter command, t1 points to the same object as t2; any changes
          to t2 will also effect t1. In contrast to this, copyTask() creates a
          new independend task.
       @* A task whose state is 'started' cannot be copied.
SEE ALSO: getCommand, getArguments, getResult, getState, createTask, killTask,
          compareTasks, printTask
EXAMPLE:  example copyTask; shows an example"
{
    task t_copy;
    if (t.index == 0) {
        return(t_copy);
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        return(t_copy);
    }
    if (tasks[t.index].state == "started") {
        ERROR("cannot copy a task whose state is 'started'");
    }
    ntasks++;
    tasks[ntasks] = tasks[t.index];
    t_copy.index = ntasks;
    return(t_copy);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t1 = "std", list(I);
    startTasks(t1);
    waitAllTasks(t1);
    task t2 = copyTask(t1);
    killTask(t1);
    t2;   // t2 survived
    getResult(t2);
    killTask(t2);
}

proc compareTasks(task t1, task t2)
"USAGE:   compareTasks(t1, t2), t1, t2 tasks
RETURN:   1, if t1 and t2 coincide;
          0, otherwise.
NOTE:     The arguments and the results of t1 and t2 are not compared.
       @* 't1 == t2' is a shortcut for 'compareTasks(t1, t2)'.
SEE ALSO: getCommand, getArguments, getResult, getState, copyTask, printTask
EXAMPLE:  example compareTasks; shows an example"
{
    if (tasks[t1.index].id != tasks[t2.index].id) {
        return(0);
    }
    if (tasks[t1.index].command != tasks[t2.index].command) {
        return(0);
    }
    if (tasks[t1.index].state != tasks[t2.index].state) {
        return(0);
    }
    if (tasks[t1.index].linkID != tasks[t2.index].linkID) {
        return(0);
    }
    return(1);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t1 = "std", list(I);
    task t2 = "std", list(I);
    compareTasks(t1, t2);
    startTasks(t1);
    waitAllTasks(t1);
    t1 == t2;   // the same as compareTasks(t1, t2);
    killTask(t1);
    killTask(t2);
    // The arguments and the result are not compared!
    ideal J = x;
    task t3 = "std", list(I);
    task t4 = "std", list(J);
    t3 == t4;
    killTask(t3);
    killTask(t4);
}

proc printTask(task t)
"USAGE:   printTask(t), t task
RETURN:   nothing. Prints information about t.
NOTE:     'print(t);' and 't;' are shortcuts for 'printTask(t)'.
SEE ALSO: getCommand, getArguments, getResult, getState, createTask, killTask
EXAMPLE:  example printTask; shows an example"
{
    if (t.index == 0) {
        "An uninitialized task";
        return();
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        "An uninitialized task";
        return();
    }
    "A task with the following properties:"+newline
        +"command:          "+tasks[t.index].command+newline
        +"no. of arguments: "+string(size(tasks[t.index].arguments))+newline
        +"state:            "+tasks[t.index].state;
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t;
    printTask(t);
    t = "std", list(I);
    t;   // the same as printTask(t);
    startTasks(t);
    waitAllTasks(t);
    t;
    killTask(t);
}

proc startTasks(list #)
"USAGE:   startTasks(t1, t2, ...), t1, t2, ... tasks
RETURN:   nothing. Starts the tasks t1, t2, ... and sets their states to
          'started'.
NOTE:     A task whose state is neither 'created' nor 'stopped' cannot be
          started.
       @* If startTasks() is applied to a task whose state is 'stopped', then
          the computation of this task will be restarted from the beginning.
       @* Tasks can be started from within other tasks. A started task should
          not be accessed from within any task other than the one within which
          it was started.
       @* For each task, the start of its computation is subject to the
          internal scheduling.
SEE ALSO: stopTask, waitTasks, pollTask, getState, createTask, printTask
EXAMPLE:  example startTasks; shows an example"
{
    int nargs = size(#);
    if (nargs == 0) {
        ERROR("missing argument");
    }
    int i;
    for (i = nargs; i > 0; i--) {
        if (typeof(#[i]) != "task") {
            ERROR("argument not of type 'task' (argument no. "+string(i)+")");
        }
        if (#[i].index == 0) {
            ERROR("cannot start an uninitialized task (task no. "
                +string(i)+")");
        }
        if (typeof(tasks[#[i].index]) != "internal_task") {
            ERROR("cannot start an uninitialized task (task no. "
                +string(i)+")");
        }
        if (tasks[#[i].index].state != "created"
            && tasks[#[i].index].state != "stopped") {
            ERROR("cannot start a task whose state is not"+newline
                +"'created' or 'stopped'");
        }
    }
    for (i = nargs; i > 0; i--) {
        tasks[#[i].index].id = i;   // has to be set before forking
        tasks[#[i].index].state = "started";
    }
    int pid = system("pid");
    link l(pid) = "ssi:fork";
    open(l(pid));
    write(l(pid), quote(startTasks_child(#, eval(pid))));
    int port = read(l(pid));
    link L(pid) = "ssi:connect localhost:"+string(port);
    open(L(pid));
    nlinkIDs++;
    for (i = nargs; i > 0; i--) {
        tasks[#[i].index].links = list(L(pid), l(pid));
        tasks[#[i].index].linkID = nlinkIDs;
    }
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t1 = "std", list(I);
    task t2 = "slimgb", list(I);
    startTasks(t1, t2);
    waitAllTasks(t1, t2);
    getResult(t1);
    getResult(t2);
    killTask(t1);
    killTask(t2);
}

/* This procedure is started within the child after forking. */
static proc startTasks_child(list localtasks, int pid_parent)
{
    int port = system("reserve", 1);
    write(l(pid_parent), port);
    link L(pid_parent) = system("reservedLink");
    export(L(pid_parent));

    int sem_write = semaphore(1);
    int pid = system("pid");

    int nlocaltasks = size(localtasks);
    intvec state = 0:nlocaltasks;
        // the internal state of each localtask (see rationale)
    int nwaiting = nlocaltasks;
        // the number of local tasks with internal state 0 (waiting)
    int nfinished;
        // the number of local tasks with internal state 3 (result sent) or
        // -1 (stopped)
    intvec queue = 1..nlocaltasks;
    int next = 1;

    list links;
    links[nlocaltasks+1] = l(pid_parent);
    intvec assignment = 0:nlocaltasks;
        // the task with id = i is running in link no. assignment[i]
    int nlinks;

    // data sent by other processes
    int code;
    int id;
    if (!defined(demanded_tasks)) {
        intvec demanded_tasks;
        int demanded_tasks_index = 1;
        exportto(Tasks, demanded_tasks);
        exportto(Tasks, demanded_tasks_index);
    }
    else {
        demanded_tasks = 0;
        demanded_tasks_index = 1;
    }
    int ndemanded = -1;

    // internal counts
    int granted_leaves;
    int results_sent;

    // auxiliary variables
    intvec waiting_tasks;
    int wait;
    int deadlock;
    int tmp;
    int i;
    int j;

    while (nwaiting > 0) {
        wait = 0;
        if (nlinks == 0) {
            wait = -1;
            granted_leaves++;
            while (-wait < nwaiting) {
                if (system("semaphore", "try_acquire", sem_leaves) == 1) {
                    wait--;
                }
                else {
                    break;
                }
            }
        }
        while (wait == 0) {
            wait = waitfirst(links, 500);
            if (wait == 0) {
                while (-wait < nwaiting) {
                    if (system("semaphore", "try_acquire", sem_leaves) == 1) {
                        wait--;
                    }
                    else {
                        break;
                    }
                }
            }
        }
        if (wait < 0) {   // open (-wait) new links
            while (wait < 0) {
                wait++;
                nlinks++;
                link ll(pid)(nlinks) = "ssi:fork";
                open(ll(pid)(nlinks));
                links[nlinks] = ll(pid)(nlinks);
                write(links[nlinks],
                    quote(startTasks_grandchild(
                    eval(localtasks[queue[next]].index), eval(pid_parent),
                    eval(pid), eval(nlinks), eval(sem_write))));
                assignment[queue[next]] = nlinks;
                state[queue[next]] = 1;
                nwaiting--;
                next++;
            }
            // wait == 0
        }
        if (wait > 0 && wait <= nlocaltasks) {
            code = read(links[wait]);
            if (code == 1) {   // result computed
                id = read(links[wait]);
                state[id] = 2;
                if (ndemanded > 0 && removeDemanded(id)) {
                    write(links[wait], 1);
                    ndemanded--;
                    results_sent++;
                }
            }
            // code == 2: startTasks_grandchild() ended, do nothing
        }
        if (wait == nlocaltasks+1) {
            code = read(l(pid_parent));
            if (code == 0) {   // stopTask
                id = read(l(pid_parent));
                if (state[id] == 0) {   // waiting
                    queue = give_priority(queue, intvec(id));
                    next++;
                }
                if (state[id] == 1 || state[id] == 2) {  // started or computed
                    close(links[assignment[id]]);
                    open(links[assignment[id]]);
                    write(links[assignment[id]],
                        quote(startTasks_grandchild(
                        eval(localtasks[queue[next]].index), eval(pid_parent),
                        eval(pid), eval(assignment[id]), eval(sem_write))));
                    assignment[queue[next]] = assignment[id];
                    assignment[id] = 0;
                    state[queue[next]] = 1;
                    next++;
                }
                // state[id] == -1 (stopped) or state[id] == 3 (sent)
                // should not happen
                nwaiting--;
                nfinished++;
                state[id] = -1;
            }
            if (code == 1) {   // waitTasks
                demanded_tasks = read(l(pid_parent));
                demanded_tasks_index = size(demanded_tasks);
                ndemanded = read(l(pid_parent));
                if (ndemanded > demanded_tasks_index) {
                    ndemanded = demanded_tasks_index;
                }
                if (demanded_tasks == 0 && ndemanded == -1) {
                    write(l(pid_parent), results_sent);
                    continue;
                }
                else {
                    results_sent = 0;
                }
                demanded_tasks = demanded_tasks[demanded_tasks_index..1];
                deadlock = 0;
                waiting_tasks = 0:demanded_tasks_index;
                j = 0;
                for (i = demanded_tasks_index; i > 0; i--) {
                    id = demanded_tasks[i];
                    if (state[id] == 0) {   // waiting
                        j++;
                        waiting_tasks[j] = id;
                        deadlock = 1;
                    }
                }
                if (j > 0) {
                    waiting_tasks = waiting_tasks[1..j];
                    queue = queue[next..size(queue)];
                    next = 1;
                    queue = give_priority(queue, waiting_tasks);
                    waiting_tasks = 0;
                }
                for (i = demanded_tasks_index; i > 0; i--) {
                    id = demanded_tasks[i];
                    if (state[id] == 1) {   // started
                        deadlock = 0;
                    }
                    if (state[id] == 2) {   // computed
                        write(links[assignment[id]], 1);
                        tmp = removeDemanded(id);
                        ndemanded--;
                        results_sent++;
                        deadlock = 0;
                    }
                }
                if (deadlock) {
                    granted_leaves++;
                    nlinks++;
                    link ll(pid)(nlinks) = "ssi:fork";
                    open(ll(pid)(nlinks));
                    links[nlinks] = ll(pid)(nlinks);
                    write(links[nlinks],
                        quote(startTasks_grandchild(
                        eval(localtasks[queue[next]].index), eval(pid_parent),
                        eval(pid), eval(nlinks), eval(sem_write))));
                    assignment[queue[next]] = nlinks;
                    state[queue[next]] = 1;
                    nwaiting--;
                    next++;
                }
            }
            if (code == 2) {   // pollTask
                id = read(l(pid_parent));
                if (state[id] == 0) {   // waiting
                    queue = queue[next..size(queue)];
                    next = 1;
                    queue = give_priority(queue, intvec(id));
                }
                if (state[id] == 2) {   // computed
                    write(links[assignment[id]], 1);
                }
                write(l(pid_parent), state[id]);
            }
            if (code == 3) {   // got result
                id = read(l(pid_parent));
                write(links[assignment[id]],
                    quote(startTasks_grandchild(
                    eval(localtasks[queue[next]].index), eval(pid_parent),
                    eval(pid), eval(assignment[id]), eval(sem_write))));
                assignment[queue[next]] = assignment[id];
                assignment[id] = 0;
                state[queue[next]] = 1;
                state[id] = 3;
                nwaiting--;
                nfinished++;
                next++;
            }
        }
    }
    while (nfinished < nlocaltasks || ndemanded != -1) {
        wait = waitfirst(links);
        if (wait <= nlocaltasks) {
            code = read(links[wait]);
            if (code == 1) {   // result computed
                id = read(links[wait]);
                state[id] = 2;
                if (ndemanded > 0 && removeDemanded(id)) {
                    write(links[wait], 1);
                    ndemanded--;
                    results_sent++;
                }
            }
            // code == 2: startTasks_grandchild() ended, do nothing
        }
        if (wait == nlocaltasks+1) {
            code = read(l(pid_parent));
            if (code == 0) {   // stopTask
                id = read(l(pid_parent));
                if (state[id] == 1 || state[id] == 2) {  // started or computed
                    close(links[assignment[id]]);
                    if (nlinks > granted_leaves) {
                        tmp = system("semaphore", "release", sem_leaves);
                    }
                    links[assignment[id]] = def(0);
                    nlinks--;
                    assignment[id] = 0;
                    nfinished++;
                }
                // else: nothing to do
                state[id] = -1;
            }
            if (code == 1) {   // waitTasks
                demanded_tasks = read(l(pid_parent));
                demanded_tasks_index = size(demanded_tasks);
                ndemanded = read(l(pid_parent));
                if (ndemanded > demanded_tasks_index) {
                    ndemanded = demanded_tasks_index;
                }
                if (demanded_tasks == 0 && ndemanded == -1) {
                    write(l(pid_parent), results_sent);
                    continue;
                }
                else {
                    results_sent = 0;
                }
                demanded_tasks = demanded_tasks[demanded_tasks_index..1];
                for (i = demanded_tasks_index; i > 0; i--) {
                    id = demanded_tasks[i];
                    if (state[id] == 2) {   // computed
                        write(links[assignment[id]], 1);
                        tmp = removeDemanded(id);
                        ndemanded--;
                        results_sent++;
                    }
                }
            }
            if (code == 2) {   // pollTask
                id = read(l(pid_parent));
                if (state[id] == 2) {   // computed
                    write(links[assignment[id]], 1);
                }
                write(l(pid_parent), state[id]);
            }
            if (code == 3) {   // got result
                id = read(l(pid_parent));
                close(links[assignment[id]]);
                if (nlinks > granted_leaves) {
                    tmp = system("semaphore", "release", sem_leaves);
                }
                links[assignment[id]] = def(0);
                nlinks--;
                assignment[id] = 0;
                state[id] = 3;
                nfinished++;
            }
        }
    }
}

/* This procedure has to be started within the grandchildren after forking. */
static proc startTasks_grandchild(int index, int pid_grandparent,
    int pid_parent, int link_no, int sem_write)
{
    def result;
    int tmp = system("semaphore", "acquire", sem_queue);
    tmp = system("semaphore", "acquire", sem_cores);
    tmp = system("semaphore", "release", sem_queue);
    execute("result = "+tasks[index].command+"("
        +argsToString("tasks[index].arguments", size(tasks[index].arguments))
        +");");
    tmp = system("semaphore", "release", sem_cores);
    write(ll(pid_parent)(link_no), 1);
    write(ll(pid_parent)(link_no), tasks[index].id);
    tmp = read(ll(pid_parent)(link_no));
    tmp = system("semaphore", "acquire", sem_write);
    write(L(pid_grandparent), index);
    write(L(pid_grandparent), result);
    tmp = system("semaphore", "release", sem_write);
    return(2);
}

/* Remove id from demanded_tasks and return 1, if id is an element of
 * demanded_tasks; return 0, otherwise. Note:
 * - demanded_tasks and demanded_tasks_index are (lib-)global objects
 *   exported in startTasks_child().
 * - demanded_tasks_index is used to avoid copying. It is defined to be
 *   the greatest integer with demanded_tasks[demanded_tasks_index] != 0
 *   and demanded_tasks[demanded_tasks_index+1] == 0 (if defined).
 */
static proc removeDemanded(alias int id)
{
    if (demanded_tasks[demanded_tasks_index] == id) {
        demanded_tasks[demanded_tasks_index] = 0;
        demanded_tasks_index--;
        return(1);
    }
    int i;
    for (i = demanded_tasks_index-1; i > 0; i--) {
        if (demanded_tasks[i] == id) {
            demanded_tasks[i..demanded_tasks_index]
                = demanded_tasks[(i+1)..demanded_tasks_index], 0;
            demanded_tasks_index--;
            return(1);
        }
    }
    return(0);
}

/* Move the elements in 'preferred' to the beginning of 'queue'. We may assume
 * that
 * - 'preferred' is a subset of 'queue';
 * - the elements of 'preferred' are distinct and non-zero;
 * - the elements of 'queue' are distinct and non-zero.
 * For performance reasons, we may also assume that 'queue' and 'preferred' are
 * more or less ordered in most cases. Note that queue has the format
 * '0, indices, 0'.
 */
static proc give_priority(intvec queue, intvec preferred)
{
    int size_queue = size(queue);
    int size_preferred = size(preferred);
    if (size_queue == size_preferred) {
        return(queue);
    }
    int index = size_queue;
    int i;
    int j;
    for (i = size_preferred; i > 0; i--) {
        for (j = size_queue; j > 0; j--) {
            if (queue[index] == preferred[i]) {
                queue[index] = 0;
                break;
            }
            index--;
            if (index == 0) {
                index = size_queue;
            }
        }
    }
    intvec not_preferred = 0:(size_queue-size_preferred);
    index = 1;
    for (i = 1; i <= size_queue; i++) {
        if (queue[i]) {
            not_preferred[index] = queue[i];
            index++;
        }
    }
    queue = preferred, not_preferred;
    return(queue);
}

proc stopTask(task t)
"USAGE:   stopTask(t), t task
RETURN:   nothing. Stops the t and sets its state to 'stopped'.
NOTE:     A task whose state is not 'started' cannot be stopped.
       @* Intermediate results are discarded when a task is stopped.
       @* killTask() should be called for any no longer needed task.
SEE ALSO: startTasks, waitTasks, pollTask, getState, killTask, printTask
EXAMPLE:  example stopTask; shows an example"
{
    if (t.index == 0) {
        ERROR("cannot stop an uninitialized task");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        ERROR("cannot stop an uninitialized task");
    }
    if (tasks[t.index].state != "started") {
        ERROR("cannot stop a task whose state is not 'started'");
    }
    write(tasks[t.index].links[2], 0);
    write(tasks[t.index].links[2], tasks[t.index].id);
    tasks[t.index].id = 0;
    tasks[t.index].links = list();
    tasks[t.index].linkID = 0;
    tasks[t.index].state = "stopped";
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    startTasks(t);
    stopTask(t);
    t;
    killTask(t);
}

proc waitTasks(list T, int N, list #)
"USAGE:   waitTasks(T, N[, timeout]), T list of tasks, N int, timeout int
RETURN:   an ordered list of the indices of those tasks which have been
          successfully completed. The state of these tasks is set to
          'completed'.
       @* The procedure waits for N tasks to complete.
       @* An optional timeout in ms can be provided. Default is 0 which
          disables the timeout.
NOTE:     A task whose state is neither 'started' nor 'completed' cannot be
          waited for.
       @* The result of any completed task can be accessed via @ref{getResult}.
       @* The returned list may contain more than N entries if the computation
          of some tasks has already finished and/or if several tasks finish
          \"at the same time\". It may contain less than N entries in
          the case of timeout or errors occurring.
       @* Polling is guaranteed, i.e. the index of any task t for which
          'pollTask(t);' would return 1 will appear in the returned list.
SEE ALSO: startTasks, pollTask, getResult, getState, printTask
EXAMPLE:  example waitTasks; shows an example"
{
    /* initialize the timer */
    int oldtimerresolution = system("--ticks-per-sec");
    system("--ticks-per-sec", 1000);
    int starting_time = rtimer;

    /* read optional parameters */
    int timeout;
    if (size(#) > 0) {
        if (size(#) > 1 || typeof(#[1]) != "int") {
            ERROR("wrong optional parameter");
        }
        timeout = #[1];
    }

    /* check for errors */
    if (timeout < 0) {
        ERROR("negative timeout");
    }
    int nargs = size(T);
    if (nargs == 0) {
        ERROR("missing task");
    }
    if (N < 1 || N > nargs) {
        ERROR("wrong number of tasks to wait for");
    }
    int i;
    for (i = nargs; i > 0; i--) {
        if (typeof(T[i]) != "task") {
            ERROR("element not of type 'task' (element no. "+string(i)+")");
        }
        if (T[i].index == 0) {
            ERROR("cannot wait for an uninitialized task (task no. "+string(i)
                +")");
        }
        if (typeof(tasks[T[i].index]) != "internal_task") {
            ERROR("cannot wait for an uninitialized task (task no. "+string(i)
                +")");
        }
        if (tasks[T[i].index].state != "started"
            && tasks[T[i].index].state != "completed") {
            ERROR("cannot wait for a task whose state is not"+newline
                +"'started' or 'completed' (task no. "+string(i)+")");
        }
    }

    /* sort the tasks */
    int ncompleted;
    list requests;
    list links;
    int sorted_in;
    int j;
    for (i = 1; i <= nargs; i++) {
        if (tasks[T[i].index].state == "completed") {
            ncompleted++;
        }
        else {   // tasks[T[i].index].state == "started"
            sorted_in = 0;
            for (j = size(requests); j > 0; j--) {
                if (requests[j][1] == tasks[T[i].index].linkID) {
                    requests[j][2][size(requests[j][2])+1] =
                        tasks[T[i].index].id;
                    sorted_in = 1;
                    break;
                }
            }
            if (!sorted_in) {
                requests[size(requests)+1] = list(tasks[T[i].index].linkID,
                    intvec(tasks[T[i].index].id),
                    tasks[T[i].index].links[2]);
                links[size(links)+1] = tasks[T[i].index].links[1];
            }
        }
    }

    /* send the reqests */
    for (j = size(requests); j > 0; j--) {
        write(requests[j][3], 1);
        write(requests[j][3], requests[j][2]);
        write(requests[j][3], N-ncompleted);
    }

    /* wait for the results */
    int wait;
    int index;
    int results_got;
    int remaining_time;
    int tmp;
    while (ncompleted < N) {
        wait = waitfirst(links, 0);
        if (wait == 0) {
            if (timeout == 0) {
                tmp = system("semaphore", "release", sem_cores);
                wait = waitfirst(links);
                tmp = system("semaphore", "acquire", sem_cores);
            }
            else {
                remaining_time = timeout-(rtimer-starting_time);
                if (remaining_time < 0) {
                    break;
                }
                else {
                    tmp = system("semaphore", "release", sem_cores);
                    wait = waitfirst(links, remaining_time);
                    tmp = system("semaphore", "acquire", sem_cores);
                }
            }
        }
        if (wait < 1) {
            break;
        }
        index = read(links[wait]);
        tasks[index].result = read(links[wait]);
        write(tasks[index].links[2], 3);
        write(tasks[index].links[2], tasks[index].id);
        tasks[index].id = 0;
        tasks[index].links = list();
        tasks[index].linkID = 0;
        tasks[index].state = "completed";
        ncompleted++;
        results_got++;
    }
    if (wait == -1) {
        ERROR("error in waitfirst()");
    }

    /* end communication process */
    for (j = size(requests); j > 0; j--) {
        write(requests[j][3], 1);
        write(requests[j][3], 0);
        write(requests[j][3], -1);
    }
    int results_sent;
    for (j = size(requests); j > 0; j--) {
        results_sent = results_sent + read(requests[j][3]);
    }
    while (results_sent > results_got) {
        wait = waitfirst(links);
        if (wait == -1) {
            ERROR("error in waitfirst()");
        }
        index = read(links[wait]);
        tasks[index].result = read(links[wait]);
        write(tasks[index].links[2], 3);
        write(tasks[index].links[2], tasks[index].id);
        tasks[index].id = 0;
        tasks[index].links = list();
        tasks[index].linkID = 0;
        tasks[index].state = "completed";
        results_got++;
    }

    /* list completed tasks */
    list completed;
    completed[nargs+1] = 0;
    j = 0;
    for (i = 1; i <= nargs; i++) {
        if (tasks[T[i].index].state == "completed") {
            j++;
            completed[j] = i;
        }
    }
    completed[nargs+1] = def(0);

    /* return the result */
    system("--ticks-per-sec", oldtimerresolution);
    return(completed);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t1 = "std", list(I);
    task t2 = "slimgb", list(I);
    startTasks(t1, t2);
    waitTasks(list(t1, t2), 2);   // wait for both tasks
    getResult(t1);
    getResult(t2);
    killTask(t1);
    killTask(t2);
}

proc waitAllTasks(list #)
"USAGE:   waitAllTasks(t1, t2, ...), t1, t2, ... tasks
RETURN:   nothing. Waits for all the tasks t1, t2, ... to complete. The state
          of the tasks is set to 'completed'.
NOTE:     A task whose state is neither 'started' nor 'completed' cannot be
          waited for.
       @* The result of any completed task can be accessed via @ref{getResult}.
       @* 'waitAllTasks(t1, t2, ...);' is a shortcut for
          'waitTasks(list(t1, t2, ...), size(list(t1, t2, ...)));'. Since
          returning a list of the indices of the completed tasks does not make
          sense in this case, nothing is returned.
SEE ALSO: waitTasks, startTasks, pollTask, getResult, getState, printTask
EXAMPLE:  example waitAllTasks; shows an example"
{
    list tmp = waitTasks(#, size(#));
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t1 = "std", list(I);
    task t2 = "slimgb", list(I);
    startTasks(t1, t2);
    waitAllTasks(t1, t2);   // the same as 'waitTasks(list(t1, t2), 2);',
                            // but without return value
    getResult(t1);
    getResult(t2);
    killTask(t1);
    killTask(t2);
}

proc pollTask(task t)
"USAGE:   pollTask(t), t task
RETURN:   1, if the computation of the task t has successfully finished;
          0, otherwise.
       @* The state of any task whose computation has successfully finished is
          set to 'completed'.
NOTE:     A task whose state is neither 'started' nor 'completed' cannot be
          polled.
       @* The result of any completed task can be accessed via @ref{getResult}.
       @* pollTask() should return immediately. However, receiving the result
          of the task may take some time.
SEE ALSO: startTasks, waitTasks, getResult, getState, printTask
EXAMPLE:  example pollTask; shows an example"
{
    if (t.index == 0) {
        ERROR("cannot poll an uninitialized task");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        ERROR("cannot poll an uninitialized task");
    }
    if (tasks[t.index].state != "started"
        && tasks[t.index].state != "completed") {
        ERROR("cannot poll a task whose state is not"+newline
            +"'started' or 'completed'");
    }
    if (tasks[t.index].state == "completed") {
        return(1);
    }
    // tasks[t.index].state == "started"
    write(tasks[t.index].links[2], 2);
    write(tasks[t.index].links[2], tasks[t.index].id);
    int state = read(tasks[t.index].links[2]);
    if (state == 0 || state == 1) {   // waiting or started
        return(0);
    }
    if (state == 2) {   // computed
        int index = read(tasks[t.index].links[1]);   // index == t.index
        tasks[t.index].result = read(tasks[t.index].links[1]);
        write(tasks[t.index].links[2], 3);
        write(tasks[t.index].links[2], tasks[t.index].id);
        tasks[t.index].id = 0;
        tasks[t.index].links = list();
        tasks[t.index].linkID = 0;
        tasks[t.index].state = "completed";
        return(1);
    }
    // state == -1 (stopped) or state == 3 (sent) should not happen
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    startTasks(t);
    waitAllTasks(t);
    pollTask(t);   // task already completed
    t;
    getResult(t);
    killTask(t);
}

proc getCommand(task t)
"USAGE:   getCommand(t), t task
RETURN:   a string, the command of t.
NOTE:     This command cannot be applied to tasks whose state is
          'uninitialized'.
SEE ALSO: getArguments, getResult, getState, createTask, printTask
EXAMPLE:  example getCommand; shows an example"
{
    if (t.index == 0) {
        ERROR("cannot get command of an uninitialized task");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        ERROR("cannot get command of an uninitialized task");
    }
    return(tasks[t.index].command);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    getCommand(t);
    killTask(t);
}

proc getArguments(task t)
"USAGE:   getArguments(t), t task
RETURN:   a list, the arguments of t.
NOTE:     This command cannot be applied to tasks whose state is
          'uninitialized'.
SEE ALSO: getCommand, getResult, getState, createTask, printTask
EXAMPLE:  example getArguments; shows an example"
{
    if (t.index == 0) {
        ERROR("cannot get arguments of an uninitialized task");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        ERROR("cannot get arguments of an uninitialized task");
    }
    return(tasks[t.index].arguments);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    getArguments(t);
    killTask(t);
}

proc getResult(task t)
"USAGE:   getResult(t), t task
RETURN:   the result of t.
NOTE:     This command cannot be applied to tasks whose state is not
          'completed'.
SEE ALSO: getCommand, getArguments, getState, waitTasks, pollTask, printTask
EXAMPLE:  example getResult; shows an example"
{
    if (t.index == 0) {
        ERROR("cannot get result of an uninitialized task");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        ERROR("cannot get result of an uninitialized task");
    }
    if (tasks[t.index].state != "completed") {
        ERROR("cannot get result of a task which is not completed");
    }
    return(tasks[t.index].result);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    startTasks(t);
    waitAllTasks(t);
    getResult(t);
    killTask(t);
}

proc getState(task t)
"USAGE:   getState(t), t task
RETURN:   a string, the state of t.
SEE ALSO: getCommand, getArguments, getResult, printTask, createTask,
          startTasks, stopTask, waitTasks, pollTask, killTask
EXAMPLE:  example getState; shows an example"
{
    if (t.index == 0) {
        return("uninitialized");
    }
    if (typeof(tasks[t.index]) != "internal_task") {
        return("uninitialized");
    }
    return(tasks[t.index].state);
}
example
{
    "EXAMPLE:";
    echo = 2;
    ring R = 0, (x,y), dp;
    ideal I = x9y2+x10, x2y7-y8;
    task t = "std", list(I);
    getState(t);
    startTasks(t);
    getState(t);
    waitAllTasks(t);
    getState(t);
    killTask(t);
    getState(t);
}

/ * construct the string "name[1], name[2], name[3], ..., name[length]" */
static proc argsToString(string name, int length)
{
    string output;
    if (length > 0) {
        output = name+"[1]";
    }
    int i;
    for (i = 2; i <= length; i++) {
        output = output+", "+name+"["+string(i)+"]";
    }
    return(output);
}