/usr/share/singular/LIB/sing.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | ////////////////////////////////////////////////////////////////////////////
version="version sing.lib 4.0.0.0 Jun_2013 "; // $Id: 40709774f881e257950947e75efa72e9ffded150 $
category="Singularities";
info="
LIBRARY: sing.lib Invariants of Singularities
AUTHORS: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de @*
Bernd Martin, email: martin@math.tu-cottbus.de
PROCEDURES:
codim(id1, id2); vector space dimension of id2/id1 if finite
deform(i); infinitesimal deformations of ideal i
dim_slocus(i); dimension of singular locus of ideal i
is_active(f,id); is polynomial f an active element mod id? (id ideal/module)
is_ci(i); is ideal i a complete intersection?
is_is(i); is ideal i an isolated singularity?
is_reg(f,id); is polynomial f a regular element mod id? (id ideal/module)
is_regs(i[,id]); are gen's of ideal i regular sequence modulo id?
locstd(i); SB for local degree ordering without cancelling units
milnor(i); milnor number of ideal i; (assume i is ICIS in nf)
nf_icis(i); generic combinations of generators; get ICIS in nf
slocus(i); ideal of singular locus of ideal i
qhspectrum(f,w); spectrum numbers of w-homogeneous polynomial f
Tjurina(i); SB of Tjurina module of ideal i (assume i is ICIS)
tjurina(i); Tjurina number of ideal i (assume i is ICIS)
T_1(i); T^1-module of ideal i
T_2((i); T^2-module of ideal i
T_12(i); T^1- and T^2-module of ideal i
tangentcone(id); compute tangent cone of id
";
LIB "inout.lib";
LIB "random.lib";
LIB "primdec.lib";
///////////////////////////////////////////////////////////////////////////////
proc deform (ideal id)
"USAGE: deform(id); id=ideal or poly
RETURN: matrix, columns are kbase of infinitesimal deformations
EXAMPLE: example deform; shows an example
"
{
list L=T_1(id,"");
def K=L[1]; attrib(K,"isSB",1);
return(L[2]*kbase(K));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 32003,(x,y,z),ds;
ideal i = xy,xz,yz;
matrix T = deform(i);
print(T);
print(deform(x3+y5+z2));
}
///////////////////////////////////////////////////////////////////////////////
proc dim_slocus (ideal i)
"USAGE: dim_slocus(i); i ideal or poly
RETURN: dimension of singular locus of i
EXAMPLE: example dim_slocus; shows an example
"
{
return(dim(std(slocus(i))));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 32003,(x,y,z),ds;
ideal i = x5+y6+z6,x2+2y2+3z2;
dim_slocus(i);
}
///////////////////////////////////////////////////////////////////////////////
proc is_active (poly f,def id)
"USAGE: is_active(f,id); f poly, id ideal or module
RETURN: 1 if f is an active element modulo id (i.e. dim(id)=dim(id+f*R^n)+1,
if id is a submodule of R^n) resp. 0 if f is not active.
The basering may be a quotient ring
NOTE: regular parameters are active but not vice versa (id may have embedded
components). proc is_reg tests whether f is a regular parameter
EXAMPLE: example is_active; shows an example
"
{
if( size(id)==0 ) { return(1); }
if( typeof(id)=="ideal" ) { ideal m=f; }
if( typeof(id)=="module" ) { module m=f*freemodule(nrows(id)); }
return(dim(std(id))-dim(std(id+m)));
}
example
{ "EXAMPLE:"; echo = 2;
ring r =32003,(x,y,z),ds;
ideal i = yx3+y,yz3+y3z;
poly f = x;
is_active(f,i);
qring q = std(x4y5);
poly f = x;
module m = [yx3+x,yx3+y3x];
is_active(f,m);
}
///////////////////////////////////////////////////////////////////////////////
proc is_ci (ideal i)
"USAGE: is_ci(i); i ideal
RETURN: intvec = sequence of dimensions of ideals (j[1],...,j[k]), for
k=1,...,size(j), where j is minimal base of i. i is a complete
intersection if last number equals nvars-size(i)
NOTE: dim(0-ideal) = -1. You may first apply simplify(i,10); in order to
delete zeroes and multiples from set of generators
printlevel >=0: display comments (default)
EXAMPLE: example is_ci; shows an example
"
{
int n; intvec dimvec; ideal id;
i=minbase(i);
int s = ncols(i);
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//--------------------------- compute dimensions ------------------------------
for( n=1; n<=s; n=n+1 )
{
id = i[1..n];
dimvec[n] = dim(std(id));
}
n = dimvec[s];
//--------------------------- output ------------------------------------------
if( n+s != nvars(basering) )
{ dbprint(p,"// no complete intersection"); }
if( n+s == nvars(basering) )
{ dbprint(p,"// complete intersection of dim "+string(n)); }
dbprint(p,"// dim-sequence:");
return(dimvec);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1; // display comments
ring r = 32003,(x,y,z),ds;
ideal i = x4+y5+z6,xyz,yx2+xz2+zy7;
is_ci(i);
i = xy,yz;
is_ci(i);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc is_is (ideal i)
"USAGE: is_is(id); id ideal or poly
RETURN: intvec = sequence of dimensions of singular loci of ideals
generated by id[1]..id[i], k = 1..size(id); @*
dim(0-ideal) = -1;
id defines an isolated singularity if last number is 0
NOTE: printlevel >=0: display comments (default)
EXAMPLE: example is_is; shows an example
"
{
int l; intvec dims; ideal j;
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
//--------------------------- compute dimensions ------------------------------
for( l=1; l<=ncols(i); l=l+1 )
{
j = i[1..l];
dims[l] = dim(std(slocus(j)));
}
dbprint(p,"// dim of singular locus = "+string(dims[size(dims)]),
"// isolated singularity if last number is 0 in dim-sequence:");
return(dims);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 32003,(x,y,z),ds;
ideal i = x2y,x4+y5+z6,yx2+xz2+zy7;
is_is(i);
poly f = xy+yz;
is_is(f);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc is_reg (poly f,def id)
"USAGE: is_reg(f,id); f poly, id ideal or module
RETURN: 1 if multiplication with f is injective modulo id, 0 otherwise
NOTE: Let R be the basering and id a submodule of R^n. The procedure checks
injectivity of multiplication with f on R^n/id. The basering may be a
quotient ring.
EXAMPLE: example is_reg; shows an example
"
{
if( f==0 ) { return(0); }
int d,ii;
def q = quotient(id,ideal(f));
id=std(id);
d=size(q);
for( ii=1; ii<=d; ii=ii+1 )
{
if( reduce(q[ii],id)!=0 )
{ return(0); }
}
return(1);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 32003,(x,y),ds;
ideal i = x8,y8;
ideal j = (x+y)^4;
i = intersect(i,j);
poly f = xy;
is_reg(f,i);
}
///////////////////////////////////////////////////////////////////////////////
proc is_regs (ideal i, list #)
"USAGE: is_regs(i[,id]); i poly, id ideal or module (default: id=0)
RETURN: 1 if generators of i are a regular sequence modulo id, 0 otherwise
NOTE: Let R be the basering and id a submodule of R^n. The procedure checks
injectivity of multiplication with i[k] on R^n/id+i[1..k-1].
The basering may be a quotient ring.
printlevel >=0: display comments (default)
printlevel >=1: display comments during computation
EXAMPLE: example is_regs; shows an example
"
{
int d,ii,r;
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
if( size(#)==0 ) { ideal id; }
else { def id=#[1]; }
if( size(i)==0 ) { return(0); }
d=size(i);
if( typeof(id)=="ideal" ) { ideal m=1; }
if( typeof(id)=="module" ) { module m=freemodule(nrows(id)); }
for( ii=1; ii<=d; ii=ii+1 )
{
if( p>=2 )
{ "// checking whether element",ii,"is regular mod 1 ..",ii-1; }
if( is_reg(i[ii],id)==0 )
{
dbprint(p,"// elements 1.."+string(ii-1)+" are regular, " +
string(ii)+" is not regular mod 1.."+string(ii-1));
return(0);
}
id=id+i[ii]*m;
}
if( p>=1 ) { "// elements are a regular sequence of length",d; }
return(1);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r1 = 32003,(x,y,z),ds;
ideal i = x8,y8,(x+y)^4;
is_regs(i);
module m = [x,0,y];
i = x8,(x+z)^4;;
is_regs(i,m);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc milnor (ideal i)
"USAGE: milnor(i); i ideal or poly
RETURN: Milnor number of i, if i is ICIS (isolated complete intersection
singularity) in generic form, resp. -1 if not
NOTE: use proc nf_icis to put generators in generic form
printlevel >=1: display comments
EXAMPLE: example milnor; shows an example
"
{
i = simplify(i,10); //delete zeroes and multiples from set of generators
int n = size(i);
int l,q,m_nr; ideal t; intvec disc;
int p = printlevel-voice+2; // p=printlevel+1 (default: p=0)
//---------------------------- hypersurface case ------------------------------
if( n==1 or n==0 )
{
i = std(jacob(i[1]));
m_nr = vdim(i);
if( m_nr<0 and p>=1 ) { "// Milnor number is infinite"; }
return(m_nr);
}
//------------ isolated complete intersection singularity (ICIS) --------------
for( l=n; l>0; l=l-1)
{ t = minor(jacob(i),l);
i[l] = 0;
q = vdim(std(i+t));
disc[l]= q;
if( q ==-1 )
{ if( p>=1 )
{ "// not in generic form or no ICIS; use proc nf_icis to put";
"// generators in generic form and then try milnor again!"; }
return(q);
}
m_nr = q-m_nr;
}
//---------------------------- change sign ------------------------------------
if (m_nr < 0) { m_nr=-m_nr; }
if( p>=1 ) { "//sequence of discriminant numbers:",disc; }
return(m_nr);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 2;
ring r = 32003,(x,y,z),ds;
ideal j = x5+y6+z6,x2+2y2+3z2,xyz+yx;
milnor(j);
poly f = x7+y7+(x-y)^2*x2y2+z2;
milnor(f);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc nf_icis (ideal i)
"USAGE: nf_icis(i); i ideal
RETURN: ideal = generic linear combination of generators of i if i is an ICIS
(isolated complete intersection singularity), return i if not
NOTE: this proc is useful in connection with proc milnor
printlevel >=0: display comments (default)
EXAMPLE: example nf_icis; shows an example
"
{
i = simplify(i,10); //delete zeroes and multiples from set of generators
int p,b = 100,0;
int n = size(i);
matrix mat=freemodule(n);
int P = printlevel-voice+3; // P=printlevel+1 (default: P=1)
//---------------------------- test: complete intersection? -------------------
intvec sl = is_ci(i);
if( n+sl[n] != nvars(basering) )
{
dbprint(P,"// no complete intersection");
return(i);
}
//--------------- test: isolated singularity in generic form? -----------------
sl = is_is(i);
if ( sl[n] != 0 )
{
dbprint(P,"// no isolated singularity");
return(i);
}
//------------ produce generic linear combinations of generators --------------
int prob;
while ( sum(sl) != 0 )
{ prob=prob+1;
p=p-25; b=b+10;
i = genericid(i,p,b); // proc genericid from random.lib
sl = is_is(i);
}
dbprint(P,"// ICIS in generic form after "+string(prob)+" genericity loop(s)");
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 32003,(x,y,z),ds;
ideal i = x3+y4,z4+yx;
nf_icis(i);
ideal j = x3+y4,xy,yz;
nf_icis(j);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc slocus(ideal i)
"USAGE: slocus(i); i ideal
RETURN: ideal of singular locus of i. Quotient rings and rings with integer coefficients are currently not supported.
EXAMPLE: example slocus; shows an example
"
{
// quotient rings currently not supported
ASSUME( 0, 0==isQuotientRing(basering) );
// integer coefficient rings currently not supported
ASSUME( 0, hasFieldCoefficient(basering) );
def R=basering;
int j,k;
ideal res;
if(ord_test(basering)!=1)
{
string va=varstr(basering);
if( size( parstr(basering))>0){va=va+","+parstr(basering);}
execute ("ring S = ("+charstr(basering)+"),("+va+"),dp;");
ideal i=imap(R,i);
list l=equidim(i);
setring R;
list l=imap(S,l);
}
else
{
list l=equidim(i);
}
int n=size(l);
if (n==1){return(slocusEqi(i));}
res=slocusEqi(l[1]);
for(j=2;j<=n;j++){res=intersect(res,slocusEqi(l[j]));}
for(j=1;j<n;j++)
{
for(k=j+1;k<=n;k++){res=intersect(res,l[j]+l[k]);}
}
return(res);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(u,v,w,x,y,z),dp;
ideal i = wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;;
slocus(i);
}
///////////////////////////////////////////////////////////////////////////////
static proc slocusEqi (ideal i)
"USAGE: slocus(i); i ideal
RETURN: ideal of singular locus of i if i is pure dimensional
NOTE: this proc returns i and c-minors of jacobian ideal of i where c is the
codimension of i. Hence, if i is not pure dimensional, slocus may
return an ideal such that its 0-locus is strictly contained in the
singular locus of i
EXAMPLE: example slocus; shows an example
"
{
ideal ist=std(i);
if ( size(ist)==0 ) // we have a zero ideal
{
// the zero locus of the zero ideal is nonsingular
return( ideal(1) ) ;
}
if( deg( ist[1] ) == 0 ) // the ideal has a constant generator
{
return(ist);
}
int cod = nvars(basering) - dim(ist);
i = i + minor( jacob(i), cod );
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),ds;
ideal i = x5+y6+z6,x2+2y2+3z2;
slocus(i);
}
///////////////////////////////////////////////////////////////////////////////
proc qhspectrum (poly f, intvec w)
"USAGE: qhspectrum(f,w); f=poly, w=intvec
ASSUME: f is a weighted homogeneous isolated singularity w.r.t. the weights
given by w; w must consist of as many positive integers as there
are variables of the basering
COMPUTE: the spectral numbers of the w-homogeneous polynomial f, computed in a
ring of characteristic 0
RETURN: intvec d,s1,...,su where:
d = w-degree(f) and si/d = i-th spectral-number(f)
No return value if basering has parameters or if f is no isolated
singularity, displays a warning in this case.
EXAMPLE: example qhspectrum; shows an example
"
{
int i,d,W;
intvec sp;
def r = basering;
if( find(charstr(r),",")!=0 )
{
"// coefficient field must not have parameters!";
return();
}
ring s = 0,x(1..nvars(r)),ws(w);
map phi = r,maxideal(1);
poly f = phi(f);
d = ord(f);
W = sum(w)-d;
ideal k = std(jacob(f));
if( vdim(k) == -1 )
{
"// f is no isolated singuarity!";
return();
}
k = kbase(k);
for (i=1; i<=size(k); i++)
{
sp[i]=W+ord(k[i]);
}
list L = sort(sp);
sp = d,L[1];
return(sp);
}
example
{ "EXAMPLE:"; echo = 2;
ring r;
poly f=x3+y5+z2;
intvec w=10,6,15;
qhspectrum(f,w);
// the spectrum numbers are:
// 1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30
}
///////////////////////////////////////////////////////////////////////////////
proc Tjurina (def id, list #)
"USAGE: Tjurina(id[,<any>]); id=ideal or poly
ASSUME: id=ICIS (isolated complete intersection singularity)
RETURN: standard basis of Tjurina-module of id,
of type module if id=ideal, resp. of type ideal if id=poly.
If a second argument is present (of any type) return a list: @*
[1] = Tjurina number,
[2] = k-basis of miniversal deformation,
[3] = SB of Tjurina module,
[4] = Tjurina module
DISPLAY: Tjurina number if printlevel >= 0 (default)
NOTE: Tjurina number = -1 implies that id is not an ICIS
EXAMPLE: example Tjurina; shows examples
"
{
//---------------------------- initialisation ---------------------------------
def i = simplify(id,10);
int tau,n = 0,size(i);
if( size(ideal(i))==1 ) { def m=i; } // hypersurface case
else { def m=i*freemodule(n); } // complete intersection case
//--------------- compute Tjurina module, Tjurina number etc ------------------
def t1 = jacob(i)+m; // Tjurina module/ideal
def st1 = std(t1); // SB of Tjurina module/ideal
tau = vdim(st1); // Tjurina number
dbprint(printlevel-voice+3,"// Tjurina number = "+string(tau));
if( size(#)>0 )
{
def kB = kbase(st1); // basis of miniversal deformation
return(tau,kB,st1,t1);
}
return(st1);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 0,(x,y,z),ds;
poly f = x5+y6+z7+xyz; // singularity T[5,6,7]
list T = Tjurina(f,"");
show(T[1]); // Tjurina number, should be 16
show(T[2]); // basis of miniversal deformation
show(T[3]); // SB of Tjurina ideal
show(T[4]); ""; // Tjurina ideal
ideal j = x2+y2+z2,x2+2y2+3z2;
show(kbase(Tjurina(j))); // basis of miniversal deformation
hilb(Tjurina(j)); // Hilbert series of Tjurina module
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc tjurina (ideal i)
"USAGE: tjurina(id); id=ideal or poly
ASSUME: id=ICIS (isolated complete intersection singularity)
RETURN: int = Tjurina number of id
NOTE: Tjurina number = -1 implies that id is not an ICIS
EXAMPLE: example tjurina; shows an example
"
{
return(vdim(Tjurina(i)));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=32003,(x,y,z),(c,ds);
ideal j=x2+y2+z2,x2+2y2+3z2;
tjurina(j);
}
///////////////////////////////////////////////////////////////////////////////
proc T_1 (ideal id, list #)
"USAGE: T_1(id[,<any>]); id = ideal or poly
RETURN: T_1(id): of type module/ideal if id is of type ideal/poly.
We call T_1(id) the T_1-module of id. It is a std basis of the
presentation of 1st order deformations of P/id, if P is the basering.
If a second argument is present (of any type) return a list of
3 modules:
[1]= T_1(id)
[2]= generators of normal bundle of id, lifted to P
[3]= module of relations of [2], lifted to P
(note: transpose[3]*[2]=0 mod id)
The list contains all non-easy objects which must be computed
to get T_1(id).
DISPLAY: k-dimension of T_1(id) if printlevel >= 0 (default)
NOTE: T_1(id) itself is usually of minor importance. Nevertheless, from it
all relevant information can be obtained. The most important are
probably vdim(T_1(id)); (which computes the Tjurina number),
hilb(T_1(id)); and kbase(T_1(id)).
If T_1 is called with two arguments, then matrix([2])*(kbase([1]))
represents a basis of 1st order semiuniversal deformation of id
(use proc 'deform', to get this in a direct way).
For a complete intersection the proc Tjurina is faster.
EXAMPLE: example T_1; shows an example
"
{
def RR=basering;
list RRL=ringlist(RR);
if(RRL[4]!=0)
{
int aa=size(#);
ideal QU=RRL[4];
RRL[4]=ideal(0);
def RS=ring(RRL);
setring RS;
ideal id=imap(RR,id);
ideal QU=imap(RR,QU);
if(aa)
{
list RES=T_1(id+QU,1);
}
else
{
module RES=T_1(id+QU);
}
setring RR;
def RES=imap(RS,RES);
return(RES);
}
ideal J=simplify(id,10);
//--------------------------- hypersurface case -------------------------------
if( size(J)<2 )
{
ideal t1 = std(J+jacob(J[1]));
module nb = [1]; module pnb;
dbprint(printlevel-voice+3,"// dim T_1 = "+string(vdim(t1)));
if( size(#)>0 )
{
module st1 = t1*gen(1);
attrib(st1,"isSB",1);
return(st1,nb,pnb);
}
return(t1);
}
//--------------------------- presentation of J -------------------------------
int rk;
def P = basering;
module jac, t1;
jac = jacob(J); // jacobian matrix of J converted to module
list A=nres(J,2); // compute presentation of J
def A(1..2)=A[1..2]; kill A; // A(2) = 1st syzygy module of J
//---------- go to quotient ring mod J and compute normal bundle --------------
qring R = std(J);
module jac = fetch(P,jac);
module t1 = transpose(fetch(P,A(2)));
list B=nres(t1,2); // resolve t1, B(2)=(J/J^2)*=normal_bdl
def B(1..2)=B[1..2]; kill B;
t1 = modulo(B(2),jac); // pres. of normal_bdl/trivial_deformations
rk=nrows(t1);
//-------------------------- pull back to basering ----------------------------
setring P;
t1 = fetch(R,t1)+J*freemodule(rk); // T_1-module, presentation of T_1
t1 = std(t1);
dbprint(printlevel-voice+3,"// dim T_1 = "+string(vdim(t1)));
if( size(#)>0 )
{
module B2 = fetch(R,B(2)); // presentation of normal bundle
list L = t1,B2,A(2);
attrib(L[1],"isSB",1);
return(L);
}
return(t1);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 32003,(x,y,z),(c,ds);
ideal i = xy,xz,yz;
module T = T_1(i);
vdim(T); // Tjurina number = dim_K(T_1), should be 3
list L=T_1(i,"");
module kB = kbase(L[1]);
print(L[2]*kB); // basis of 1st order miniversal deformation
show(L[2]); // presentation of normal bundle
print(L[3]); // relations of i
print(transpose(L[3])*L[2]); // should be 0 (mod i)
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc T_2 (ideal id, list #)
"USAGE: T_2(id[,<any>]); id = ideal
RETURN: T_2(id): T_2-module of id . This is a std basis of a presentation of
the module of obstructions of R=P/id, if P is the basering.
If a second argument is present (of any type) return a list of
4 modules and 1 ideal:
[1]= T_2(id)
[2]= standard basis of id (ideal)
[3]= module of relations of id (=1st syzygy module of id) @*
[4]= presentation of syz/kos
[5]= relations of Hom_P([3]/kos,R), lifted to P
The list contains all non-easy objects which must be computed
to get T_2(id).
DISPLAY: k-dimension of T_2(id) if printlevel >= 0 (default)
NOTE: The most important information is probably vdim(T_2(id)).
Use proc miniversal to get equations of the miniversal deformation.
EXAMPLE: example T_2; shows an example
"
{
def RR=basering;
list RRL=ringlist(RR);
if(RRL[4]!=0)
{
int aa=size(#);
ideal QU=RRL[4];
RRL[4]=ideal(0);
def RS=ring(RRL);
setring RS;
ideal id=imap(RR,id);
ideal QU=imap(RR,QU);
if(aa)
{
list RES=T_2(id+QU,1);
}
else
{
module RES=T_2(id+QU);
}
setring RR;
def RES=imap(RS,RES);
return(RES);
}
//--------------------------- initialisation ----------------------------------
def P = basering;
ideal J = id;
module kos,SK,B2,t2;
list L;
int n,rk;
//------------------- presentation of non-trivial syzygies --------------------
list A=nres(J,2); // resolve J, A(2)=syz
def A(1..2)=A[1..2]; kill A;
kos = koszul(2,J); // module of Koszul relations
SK = modulo(A(2),kos); // presentation of syz/kos
ideal J0 = std(J); // standard basis of J
//?*** sollte bei der Berechnung von res mit anfallen, zu aendern!!
//---------------------- fetch to quotient ring mod J -------------------------
qring R = J0; // make P/J the basering
module A2' = transpose(fetch(P,A(2))); // dual of syz
module t2 = transpose(fetch(P,SK)); // dual of syz/kos
list B=nres(t2,2); // resolve (syz/kos)*
def B(1..2)=B[1..2]; kill B;
t2 = modulo(B(2),A2'); // presentation of T_2
rk = nrows(t2);
//--------------------- fetch back to basering -------------------------------
setring P;
t2 = fetch(R,t2)+J*freemodule(rk);
t2 = std(t2);
dbprint(printlevel-voice+3,"// dim T_2 = "+string(vdim(t2)));
if( size(#)>0 )
{
B2 = fetch(R,B(2)); // generators of Hom_P(syz/kos,R)
L = t2,J0,A(2),SK,B2;
return(L);
}
return(t2);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 32003,(x,y),(c,dp);
ideal j = x6-y4,x6y6,x2y4-x5y2;
module T = T_2(j);
vdim(T);
hilb(T);"";
ring r1 = 0,(x,y,z),dp;
ideal id = xy,xz,yz;
list L = T_2(id,"");
vdim(L[1]); // vdim of T_2
print(L[3]); // syzygy module of id
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc T_12 (ideal i, list #)
"USAGE: T_12(i[,any]); i = ideal
RETURN: T_12(i): list of 2 modules: @*
* standard basis of T_1-module =T_1(i), 1st order deformations @*
* standard basis of T_2-module =T_2(i), obstructions of R=P/i @*
If a second argument is present (of any type) return a list of
9 modules, matrices, integers: @*
[1]= standard basis of T_1-module
[2]= standard basis of T_2-module
[3]= vdim of T_1
[4]= vdim of T_2
[5]= matrix, whose cols present infinitesimal deformations @*
[6]= matrix, whose cols are generators of relations of i(=syz(i)) @*
[7]= matrix, presenting Hom_P(syz/kos,R), lifted to P @*
[8]= presentation of T_1-module, no std basis
[9]= presentation of T_2-module, no std basis
DISPLAY: k-dimension of T_1 and T_2 if printlevel >= 0 (default)
NOTE: Use proc miniversal from deform.lib to get miniversal deformation of i,
the list contains all objects used by proc miniversal.
EXAMPLE: example T_12; shows an example
"
{
def RR=basering;
list RRL=ringlist(RR);
if(RRL[4]!=0)
{
int aa=size(#);
ideal QU=RRL[4];
RRL[4]=ideal(0);
def RS=ring(RRL);
setring RS;
ideal id=imap(RR,id);
ideal QU=imap(RR,QU);
if(aa)
{
list RES=T_12(id+QU,1);
}
else
{
list RES=T_12(id+QU);
}
setring RR;
list RES=imap(RS,RES);
return(RES);
}
//--------------------------- initialisation ----------------------------------
int n,r1,r2,d1,d2;
def P = basering;
i = simplify(i,10);
module jac,t1,t2,sbt1,sbt2;
matrix Kos,Syz,SK,kbT_1,Sx;
list L;
ideal i0 = std(i);
//-------------------- presentation of non-trivial syzygies -------------------
list I= nres(i,2); // resolve i
Syz = matrix(I[2]); // syz(i)
jac = jacob(i); // jacobi ideal
Kos = koszul(2,i); // koszul-relations
SK = modulo(Syz,Kos); // presentation of syz/kos
//--------------------- fetch to quotient ring mod i -------------------------
qring Ox = i0; // make P/i the basering
module Jac = fetch(P,jac);
matrix No = transpose(fetch(P,Syz)); // ker(No) = Hom(syz,Ox)
module So = transpose(fetch(P,SK)); // Hom(syz/kos,R)
list resS = nres(So,2);
matrix Sx = resS[2];
list resN = nres(No,2);
matrix Nx = resN[2];
module T_2 = modulo(Sx,No); // presentation of T_2
r2 = nrows(T_2);
module T_1 = modulo(Nx,Jac); // presentation of T_1
r1 = nrows(T_1);
//------------------------ pull back to basering ------------------------------
setring P;
t1 = fetch(Ox,T_1)+i*freemodule(r1);
t2 = fetch(Ox,T_2)+i*freemodule(r2);
sbt1 = std(t1);
d1 = vdim(sbt1);
sbt2 = std(t2);
d2 = vdim(sbt2);
dbprint(printlevel-voice+3,"// dim T_1 = "+string(d1),"// dim T_2 = "+string(d2));
if ( size(#)>0)
{
if (d1>0)
{
kbT_1 = fetch(Ox,Nx)*kbase(sbt1);
}
else
{
kbT_1 = 0;
}
Sx = fetch(Ox,Sx);
L = sbt1,sbt2,d1,d2,kbT_1,Syz,Sx,t1,t2;
return(L);
}
L = sbt1,sbt2;
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
printlevel = 1;
ring r = 199,(x,y,z,u,v),(c,ws(4,3,2,3,4));
ideal i = xz-y2,yz2-xu,xv-yzu,yu-z3,z2u-yv,zv-u2;
//a cyclic quotient singularity
list L = T_12(i,1);
print(L[5]); //matrix of infin. deformations
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc codim (def id1,def id2)
"USAGE: codim(id1,id2); id1,id2 ideal or module, both must be standard bases
RETURN: int, which is:
1. the vectorspace dimension of id1/id2 if id2 is contained in id1
and if this number is finite@*
2. -1 if the dimension of id1/id2 is infinite@*
3. -2 if id2 is not contained in id1
COMPUTE: consider the Hilbert series iv1(t) of id1 and iv2(t) of id2.
If codim(id1,id2) is finite, q(t)=(iv2(t)-iv1(t))/(1-t)^n is
rational, and the codimension is the sum of the coefficients of q(t)
(n = dimension of basering).
EXAMPLE: example codim; shows an example
"
{
if (attrib(id1,"isSB")!=1) { "first argument of codim is not a SB";}
if (attrib(id2,"isSB")!=1) { "second argument of codim is not a SB";}
intvec iv1, iv2, iv;
int i, d1, d2, dd, i1, i2, ia, ie;
//--------------------------- check id2 < id1 -------------------------------
ideal led = lead(id1);
attrib(led, "isSB",1);
i = size(NF(lead(id2),led));
if ( i > 0 )
{
return(-2);
}
//--------------------------- 1. check finiteness ---------------------------
i1 = dim(id1);
i2 = dim(id2);
if (i1 < 0)
{
if ( i2 < 0 )
{
return(0);
}
if (i2 == 0)
{
return (vdim(id2));
}
else
{
return(-1);
}
}
if (i2 != i1)
{
return(-1);
}
if (i2 <= 0)
{
return(vdim(id2)-vdim(id1));
}
// if (mult(id2) != mult(id1))
//{
// return(-1);
// }
//--------------------------- module ---------------------------------------
d1 = nrows(id1);
d2 = nrows(id2);
dd = 0;
if (d1 > d2)
{
id2=id2,maxideal(1)*gen(d1);
dd = -1;
}
if (d2 > d1)
{
id1=id1,maxideal(1)*gen(d2);
dd = 1;
}
//--------------------------- compute first hilbertseries ------------------
iv1 = hilb(id1,1);
i1 = size(iv1);
iv2 = hilb(id2,1);
i2 = size(iv2);
//--------------------------- difference of hilbertseries ------------------
if (i2 > i1)
{
for ( i=1; i<=i1; i=i+1)
{
iv2[i] = iv2[i]-iv1[i];
}
ie = i2;
iv = iv2;
}
else
{
for ( i=1; i<=i2; i=i+1)
{
iv1[i] = iv2[i]-iv1[i];
}
iv = iv1;
for (ie=i1;ie>=0;ie=ie-1)
{
if (ie == 0)
{
return(0);
}
if (iv[ie] != 0)
{
break;
}
}
}
ia = 1;
while (iv[ia] == 0) { ia=ia+1; }
//--------------------------- ia <= nonzeros <= ie -------------------------
iv1 = iv[ia];
for(i=ia+1;i<=ie;i=i+1)
{
iv1=iv1,iv[i];
}
//--------------------------- compute second hilbertseries -----------------
iv2 = hilb(iv1);
//--------------------------- check finitenes ------------------------------
i2 = size(iv2);
i1 = ie - ia + 1 - i2;
if (i1 != nvars(basering))
{
return(-1);
}
//--------------------------- compute result -------------------------------
i1 = 0;
for ( i=1; i<=i2; i=i+1)
{
i1 = i1 + iv2[i];
}
return(i1+dd);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
ideal j = y6,x4;
ideal m = x,y;
attrib(m,"isSB",1); //let Singular know that ideals are a standard basis
attrib(j,"isSB",1);
codim(m,j); // should be 23 (Milnor number -1 of y7-x5)
}
///////////////////////////////////////////////////////////////////////////////
proc tangentcone (def id,list #)
"USAGE: tangentcone(id [,n]); id = ideal, n = int
RETURN: the tangent cone of id
NOTE: The procedure works for any monomial ordering.
If n=0 use std w.r.t. local ordering ds, if n=1 use locstd.
EXAMPLE: example tangentcone; shows an example
"
{
int ii,n;
def bas = basering;
ideal tang;
if (size(#) !=0) { n= #[1]; }
if( n==0 )
{
def @newr@=changeord(list(list("ds",1:nvars(basering))));
setring @newr@;
ideal @id = imap(bas,id);
@id = std(@id);
setring bas;
id = imap(@newr@,@id);
kill @newr@;
}
else
{
id = locstd(id);
}
for(ii=1; ii<=size(id); ii++)
{
tang[ii]=jet(id[ii],mindeg(id[ii]));
}
return(tang);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),ds;
ideal i = 7xyz+z5,x2+y3+z7,5z5+y5;
tangentcone(i);
}
///////////////////////////////////////////////////////////////////////////////
proc locstd (def id)
"USAGE: locstd (id); id = ideal
RETURN: a standard basis for a local degree ordering
NOTE: the procedure homogenizes id w.r.t. a new 1st variable @t@, computes
a SB w.r.t. (dp(1),dp) and substitutes @t@ by 1.
Hence the result is a SB with respect to an ordering which sorts
first w.r.t. the order and then refines it with dp. This is a
local degree ordering.
This is done in order to avoid cancellation of units and thus
be able to use option(contentSB);
EXAMPLE: example locstd; shows an example
"
{
int ii;
def bas = basering;
execute("ring @r_locstd
=("+charstr(bas)+"),(@t@,"+varstr(bas)+"),(dp(1),dp);");
ideal @id = imap(bas,id);
ideal @hid = homog(@id,@t@);
@hid = std(@hid);
@hid = subst(@hid,@t@,1);
setring bas;
def @hid = imap(@r_locstd,@hid);
attrib(@hid,"isSB",1);
kill @r_locstd;
return(@hid);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),ds;
ideal i = xyz+z5,2x2+y3+z7,3z5+y5;
locstd(i);
}
|