This file is indexed.

/usr/share/singular/LIB/ringgb.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/////////////////////////////////////////////////////////////////////////////
version="version ringgb.lib 4.0.0.0 Jun_2013 "; // $Id: 4ddabf56c4914ebf04eacb3a180c200e78759fee $
category="Miscellaneous";
info="
LIBRARY:  ringgb.lib     Functions for coefficient rings
AUTHOR:  Oliver Wienand, email: wienand@mathematik.uni-kl.de

KEYWORDS: vanishing polynomial; zeroreduce; polynomial functions; library, ringgb.lib; ringgb.lib, functions for coefficient rings

PROCEDURES:
 findZeroPoly(f);        finds a vanishing polynomial for reducing f
 zeroReduce(f);          normal form of f concerning the ideal of vanishing polynomials
 testZero(poly f);       tests f defines the constant zero function
 noElements(def r);      the number of elements of the coefficient ring, if of type (integer, ...)
";

LIB "general.lib";
///////////////////////////////////////////////////////////////////////////////

proc findZeroPoly (poly f)
"USAGE:   findZeroPoly(f); f - a polynomial
RETURN:  zero polynomial with the same leading term as f if exists, otherwise 0
EXAMPLE: example findZeroPoly; shows an example
"
{
  list data = getZeroCoef(f);
  if (data[1] == 0)
  {
    return(0);
  }
  number q = leadcoef(f) / data[1];
  if (q == 0)
  {
    return(0);
  }
  poly g = getZeroPolyRaw(data[2]);
  g = leadmonom(f) / leadmonom(g) * g;
  return(q * data[1] * g);
  //return(system("findZeroPoly", f));
}
example
{ "EXAMPLE:"; echo = 2;
  ring r = (integer, 65536), (y,x), dp;
  poly f = 1024*x^8*y^2+11264*x^8*y+28672*x^8+45056*x^7*y^2+36864*x^7*y+16384*x^7+40960*x^6*y^2+57344*x^6*y+32768*x^6+30720*x^5*y^2+10240*x^5*y+8192*x^5+35840*x^4*y^2+1024*x^4*y+20480*x^4+30720*x^3*y^2+10240*x^3*y+8192*x^3+4096*x^2*y^2+45056*x^2*y+49152*x^2+40960*x*y^2+57344*x*y+32768*x;
  findZeroPoly(f);
}

proc zeroReduce(poly f, list #)
"USAGE:   zeroReduce(f, [i = 0]); f - a polynomial, i - noise level (if != 0 prints all steps)
RETURN:  reduced normal form of f modulo zero polynomials
EXAMPLE: example zeroReduce; shows an example
"
{
   int i = 0;
   if (size(#) > 0)
   {
     i = #[1];
   }
   poly h = f;
   poly n = 0;
   poly g = findZeroPoly(h);
   if (i <> 0) {
     printf("reducing polyfct  : %s", h);
   }
   while ( h <> 0 ) {
      while ( g <> 0 ) {
         h = h - g;
         if (i <> 0) {
            printf(" reduce with: %s", g);
            printf(" to: %s", h);
         }
         g = findZeroPoly(h);
      }
      n = lead(h) + n;
      if (i <> 0) {
         printf("head irreducible  : %s", lead(h));
         printf("irreducible start : %s", n);
         printf("remains to check  : %s", h - lead(h));
      }
      h = h - lead(h);
      g = findZeroPoly(h);
   }
   return(n);
}
example
{ "EXAMPLE:"; echo = 2;
  ring r = (integer, 65536), (y,x), dp;
  poly f = 1024*x^8*y^2+11264*x^8*y+28672*x^8+45056*x^7*y^2+36864*x^7*y+16384*x^7+40960*x^6*y^2+57344*x^6*y+32768*x^6+30720*x^5*y^2+10240*x^5*y+8192*x^5+35840*x^4*y^2+1024*x^4*y+20480*x^4+30720*x^3*y^2+10240*x^3*y+8192*x^3+4096*x^2*y^2+45056*x^2*y+49152*x^2+40960*x*y^2+57344*x*y+32768*x;
  zeroReduce(f);
  kill r;
  ring r = (integer, 2, 32), (x,y,z), dp;
  // Polynomial 1:
  poly p1 = 3795162112*x^3+587202566*x^2*y+2936012853*x*y*z+2281701376*x+548767119*y^3+16777216*y^2+268435456*y*z+1107296256*y+4244635648*z^3+4244635648*z^2+16777216*z;
  // Polynomial 2:
  poly p2 = 1647678464*x^3+587202566*x^2*y+2936012853*x*y*z+134217728*x+548767119*y^3+16777216*y^2+268435456*y*z+1107296256*y+2097152000*z^3+2097152000*z^2+16777216*z;
  zeroReduce(p1-p2);
}

proc testZero(poly f)
"USAGE:   testZero(f); f - a polynomial
RETURN:  returns 1 if f is zero as a function and otherwise a counterexample as a list [f(x_1, ..., x_n), x_1, ..., x_n]
EXAMPLE: example testZero; shows an example
"
{
  poly g;
  int j;
  bigint i = 0;
  bigint modul = noElements(basering);
  printf("Teste %s Belegungen ...", modul^nvars(basering));
  for (; i < modul^nvars(basering); i = i + 1)
  {
    if ((i + 1) % modul^(nvars(basering)/2) == 0)
    {
      printf("bisher: %s", i);
    }
    g = f;
    for (j = 1; j <= nvars(basering); j++)
    {
      g = subst(g, var(j), number((i / modul^(j-1)) % modul));
    }
    if (g != 0)
    {
      list counter = g;
      for (j = 1; j <= nvars(basering); j++)
      {
        counter = insert(counter, (i / modul^(j-1)) % modul);
      }
      return(counter);
    }
  }
  return(1);
}
example
{ "EXAMPLE:"; echo = 2;
  ring r = (integer, 12), (y,x), dp;
  poly f = 1024*x^8*y^2+11264*x^8*y+28672*x^8+45056*x^7*y^2+36864*x^7*y+16384*x^7+40960*x^6*y^2+57344*x^6*y+32768*x^6+30720*x^5*y^2+10240*x^5*y+8192*x^5+35840*x^4*y^2+1024*x^4*y+20480*x^4+30720*x^3*y^2+10240*x^3*y+8192*x^3+4096*x^2*y^2+45056*x^2*y+49152*x^2+40960*x*y^2+57344*x*y+32768*x;
  zeroReduce(f);
  testZero(f);
  poly g = findZeroPoly(x2y3);
  g;
  testZero(g);
}

proc noElements(def r)
"USAGE:   noElements(r); r - a ring with a finite coefficient ring of type integer
RETURN:  returns the number of elements of the coefficient ring of r
EXAMPLE: example noElements; shows an example
"

{
  list l = ringlist(basering);
  return(l[1][2][1]^l[1][2][2]);
}
example
{ "EXAMPLE:"; echo = 2;
  ring r = (integer, 233,6), (y,x), dp;
  noElements(r);
}

static proc getZeroCoef(poly f)
{
  if (f == 0)
  {
    return(0, leadexp(f))
  }
  list data = sort(leadexp(f));
  intvec exp = data[1];
  intvec index = data[2];
  intvec nec = 0:size(exp);
  int i = 1;
  int j = 2;
  bigint g;
  bigint G = 1;
  bigint modul = noElements(basering);
  bigint B = modul;

  for (; exp[i] < 2; i++) {if (i == size(exp)) break;}
  for (; i <= size(exp); i++)
  {
    g = gcd(B, G);
    G = G * g;
    B = B / g;
    if (g != 1)
    {
      nec[index[i]] = j - 1;
    }
    if (B == 1)
    {
      return(B, nec);
    }
    for (; j <= exp[i]; j++)
    {
      g = gcd(B, bigint(j));
      G = G * g;
      B = B / g;
      if (g != 1)
      {
        nec[index[i]] = j;
      }
      if (B == 1)
      {
        return(B, nec);
      }
    }
  }
  if (B == modul)
  {
    nec = 0;
    return(0, nec);
  }
  return(B, nec);
}

static proc getZeroPolyRaw(intvec fexp)
{
  list data = sort(fexp);
  intvec exp = data[1];
  intvec index = data[2];
  int j = 0;
  poly res = 1;
  poly tillnow = 1;
  int i = 1;
  for (; exp[i] < 2; i++) {if (i == size(exp)) break;}
  for (; i <= size(exp); i++)
  {
    for (; j < exp[i]; j++)
    {
      tillnow = tillnow * (var(1) - j);
    }
    res = res * subst(tillnow, var(1), var(index[i]));
  }
  return(res);
}

static proc getZeroPoly(poly f)
{
  list data = getZeroCoef(f);
  poly g = getZeroPolyRaw(data[2]);
  g = leadmonom(f) / leadmonom(g) * g;
  return(data[1] * g);
}

static proc findZeroPolyWrap (poly f)
"USAGE:   findZeroPolyWrap(f); f - a polynomial
RETURN:  zero polynomial with the same leading term as f if exists, otherwise 0
NOTE:    just a wrapper, work only in Z/2^n with n < int_machine_size - 1
EXAMPLE: example findZeroPoly; shows an example
"
{
  return(system("findZeroPoly", f));
}
example
{ "EXAMPLE:"; echo = 2;
  ring r = (integer, 2, 16), (y,x), dp;
  poly f = 1024*x^8*y^2+11264*x^8*y+28672*x^8+45056*x^7*y^2+36864*x^7*y+16384*x^7+40960*x^6*y^2+57344*x^6*y+32768*x^6+30720*x^5*y^2+10240*x^5*y+8192*x^5+35840*x^4*y^2+1024*x^4*y+20480*x^4+30720*x^3*y^2+10240*x^3*y+8192*x^3+4096*x^2*y^2+45056*x^2*y+49152*x^2+40960*x*y^2+57344*x*y+32768*x;
  findZeroPoly(f);
}

///////////////////////////////////////////////////////////////////////////////

/*
                           Examples:


// POLYNOMIAL EXAMPLES (Singular ready)
// ===================
//
// For each of the examples below, there are three equivalent polynomials. 'm' indicates the bit-widths of the
// input/output variables. For some of the polynomials, I have attached the RTL as well.
//
//
// 1) VOLTERRA MODELS:
//
//        A) CUBIC FILTER: (m = 32, 3 Vars)

LIB "ringgb.lib";
ring r = (integer, 2, 32), (x,y,z), dp;
poly p1 = 3795162112*x^3+587202566*x^2*y+2936012853*x*y*z+2281701376*x+548767119*y^3+16777216*y^2+268435456*y*z \
         +1107296256*y+4244635648*z^3+4244635648*z^2+16777216*z;
poly p2 = 1647678464*x^3+587202566*x^2*y+2936012853*x*y*z+134217728*x+548767119*y^3+16777216*y^2+268435456*y*z \
         +1107296256*y+2097152000*z^3+2097152000*z^2+16777216*z;
poly p3 = 1647678464*x^3+587202566*x^2*y+2936012853*x*y*z+134217728*x+548767119*y^3+16777216*y^2+268435456*y*z \
         +1107296256*y+2097152000*z^3+2097152000*z^2+16777216*z;
zeroReduce(p1-p2);
zeroReduce(p1-p3);
zeroReduce(p2-p3);

//        B) DEGREE-4 FILTER: (m=16 , 3 Vars)

LIB "ringgb.lib";
ring r = (integer, 2, 16), (x,y,z), dp;
poly p1 = 16384*x^4+y^4+57344*z^4+64767*x*y^3+16127*y^2*z^2+8965*x^3*z+19275*x^2*y*z+51903*x*y*z+32768*x^2*y  \
         +40960*z^2+32768*x*y^2+49152*x^2+4869*y;
poly p2 = 8965*x^3*z+19275*x^2*y*z+31999*x*y^3+51903*x*y*z+32768*x*y+y^4+32768*y^3+16127*y^2*z^2+32768*y^2 \
         +4869*y+57344*z^4+40960*z^2;
poly p3 = 8965*x^3*z+19275*x^2*y*z+31999*x*y^3+51903*x*y*z+32768*x*y+y^4+16127*y^2*z^2+4869*y+16384*z^3+16384*z;
zeroReduce(p1-p2);
zeroReduce(p1-p3);
zeroReduce(p2-p3);


// 2) Savitzsky Golay filter(m=16,5 Vars)

LIB "ringgb.lib";
ring r = (integer, 2, 16), (v,w,x,y,z), dp;
poly p1 = 25000*v^2*y+37322*v^2+22142*v*w*z+50356*w^3+58627*w^2+17797*w+17797*x^3+62500*x^2*z+41667*x \
         +22142*y^3+23870*y^2+59464*y+41667*z+58627;
poly p2 = 25000*v^2*y+4554*v^2+22142*v*w*z+32768*v+17588*w^3+25859*w^2+17797*w+17797*x^3+29732*x^2*z+32768*x^2 \
         +32768*x*z+8899*x+22142*y^3+23870*y^2+59464*y+41667*z+58627;
poly p3 = 25000*v^2*y+4554*v^2+22142*v*w*z+32768*v+17588*w^3+25859*w^2+17797*w+17797*x^3+29732*x^2*z+32768*x*z \
         +41667*x+22142*y^3+23870*y^2+59464*y+41667*z+58627;
zeroReduce(p1-p2);
zeroReduce(p1-p3);
zeroReduce(p2-p3);


// 3) Anti-alias filter:(m=16, 1 Var)

LIB "ringgb.lib";
ring r = (integer, 2, 16), c, dp;
poly p1 = 156*c^6+62724*c^5+17968*c^4+18661*c^3+43593*c^2+40224*c+13281;
poly p2 = 156*c^6+5380*c^5+1584*c^4+43237*c^3+27209*c^2+40224*c+13281;
poly p3 = 156*c^6+5380*c^5+1584*c^4+10469*c^3+27209*c^2+7456*c+13281;
zeroReduce(p1-p2);
zeroReduce(p1-p3);
zeroReduce(p2-p3);


// 4) PSK:(m=16, 2 Var)

LIB "ringgb.lib";
ring r = (integer, 2, 16), (x,y), dp;
poly p1 = 4166*x^4+16666*x^3*y+25000*x^2*y^2+15536*x^2+16666*x*y^4+31072*x*y+4166*y^4+15536*y^2+34464;
poly p2 = 4166*x^4+16666*x^3*y+8616*x^2*y^2+16384*x^2*y+15536*x^2+282*x*y^4+47456*x*y+53318*y^4+31920*y^2+34464;
poly p3 = 4166*x^4+16666*x^3*y+8616*x^2*y^2+16384*x^2*y+15536*x^2+282*x*y^4+47456*x*y+4166*y^4+15536*y^2+34464;
zeroReduce(p1-p2);
zeroReduce(p1-p3);
zeroReduce(p2-p3);

// Ref: A. Peymandoust G. De Micheli, �Application of Symbolic Computer Algebra in High-Level Data-Flow
// Synthesis,� IEEE Transactions on CAD/ICAS, Vol. 22, No. 9, September 2003, pp.1154-1165.

*/