/usr/share/singular/LIB/reesclos.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | ////////////////////////////////////////////////////////////////////////////
version="version reesclos.lib 4.0.0.0 Jun_2013 "; // $Id: 53ae3f0d9c887447ca52755d6ebd614cced1b9bb $
category="Commutative Algebra";
info="
LIBRARY: reesclos.lib PROCEDURES TO COMPUTE THE INT. CLOSURE OF AN IDEAL
AUTHOR: Tobias Hirsch, email: hirsch@math.tu-cottbus.de
Janko Boehm, email: boehm@mathematik.uni-kl.de
Magdaleen Marais, email: magdaleen@aims.ac.za
OVERVIEW:
A library to compute the integral closure of an ideal I in a polynomial ring
R=k[x(1),...,x(n)] using the Rees Algebra R[It] of I. It computes the integral
closure of R[It],
which is a graded subalgebra of R[t]. The degree-k-component is the integral
closure of the k-th power of I.
In contrast to the previous version, the library uses 'normal.lib' to compute the
integral closure of R[It]. This improves the performance considerably.
PROCEDURES:
ReesAlgebra(I); computes the Rees Algebra of an ideal I
normalI(I[,p[,r]]); computes the integral closure of an ideal I using R[It]
";
LIB "locnormal.lib"; // for HomJJ
LIB "standard.lib"; // for groebner
///////////////////////////////////////////////////////////////////////////////
proc ReesAlgebra (ideal I)
"USAGE: ReesAlgebra (I); I = ideal
RETURN: The Rees algebra R[It] as an affine ring, where I is an ideal in R.
The procedure returns a list containing two rings:
[1]: a ring, say RR; in the ring an ideal ker such that R[It]=RR/ker
[2]: a ring, say Kxt; the basering with additional variable t
containing an ideal mapI that defines the map RR-->Kxt
EXAMPLE: example ReesAlgebra; shows an example
"
{
// remember the data of the basering
def oldring = basering;
string oldchar = charstr(basering);
string oldvar = varstr(basering);
string oldord = ordstr(basering);
int n = ncols(I);
ideal m = maxideal(1);
// Create a new ring with variables for each generator of I
execute ("ring Rees = "+oldchar+",("+oldvar+",U(1.."+string(n)+")),dp");
// Kxt is the old ring with additional variable t
// Here I -> t*I, so the generators of I generate the subalgebra R[It] in Kxt
execute ("ring Kxt = "+oldchar+",("+oldvar+",t),dp");
ideal I = fetch(oldring,I);
ideal m = fetch(oldring,m);
int k;
for (k=1;k<=n;k++)
{
I[k]=t*I[k];
}
// Now we map from Rees to Kxt, identity on the original variables, and
// U(k) -> I[k]
ideal mapI = m,I;
map phi = Rees,mapI;
ideal zero = 0;
export (mapI);
// Now the Rees-Algebra is Rees/ker(phi)
setring Rees;
ideal ker = preimage(Kxt,phi,zero);
export (ker);
list result = Rees,Kxt;
return(result);
}
example
{
"EXAMPLE:"; echo=2;
ring R = 0,(x,y),dp;
ideal I = x2,xy4,y5;
list L = ReesAlgebra(I);
def Rees = L[1]; // defines the ring Rees, containing the ideal ker
setring Rees; // passes to the ring Rees
Rees;
ker; // R[It] is isomorphic to Rees/ker
}
////////////////////////////////////////////////////////////////////////////
static
proc ClosureRees (list L, int useLocNormal)
"USAGE: ClosureRees (L,useLocNormal); L a list, useLocNormal an integer
ASSUME: L is a list containing
- a ring L[1], inside L[1] an ideal ker such that L[1]/ker is
isomorphic to the Rees Algebra R[It] of an ideal I in k[x]
- a ring L[2]=k[x,t], inside L[1] an ideal mapI defining the
map L[1] --> L[2] with image R[It]
RETURN: quotients of elements of k[x,t] representing generators of the
integral closure of R[It]. The result of ClosureRees is a list
images, the first size(images)-1 entries are the numerators of the
generators, the last one is the universal denominator
"
{
int dblvl=printlevel-voice+2; // toggles how much data is printed
// during the procedure
def Kxt = basering;
def R(1) = L[1];
setring R(1); // declaration of variables used later
ideal ker(1)=ker; // in STEP 2
if (useLocNormal==1) {
list preimages1 = locNormal(ker);
ideal preimagesI=preimages1[1];
list preimagesL = list(preimagesI[2..size(preimagesI)])+list(preimagesI[1]);
ideal preimages = ideal(preimagesL[1..size(preimagesL)]);
} else {
list nor = normal(ker);
ideal preimages=nor[2][1];
}
setring Kxt;
map psi=R(1),mapI; // from ReesAlgebra: the map Rees->Kxt
ideal images=psi(preimages);
ideal psii = images[size(images)]*ideal(psi);
list imagesl = images[1..size(images)];
list psil =psii[1..size(psii)];
imagesl=psil+imagesl;
return(imagesl);
}
////////////////////////////////////////////////////////////////////////////
static
proc ClosurePower(list images, list #)
"USAGE: ClosurePower (L [,#]); L a list, # an optional list containing an
integer
ASSUME: - L is a list containing generators of the closure of R[It] in k[x,t]
(the first size(L)-1 elements are the numerators, the last one
is the denominator)
- if # is given: #[1] is an integer, compute generators for the
closure of I, I^2, ..., I^#[1]
RETURN: the integral closure of I, ... I^#[1]. If # is not given, compute
the closure of all powers up to the maximum degree in t occurring
in the closure of R[It] (so this is the last power whose closure is
not just the sum/product of the smaller powers). The returned
result is a list of elements of k[x,t] containing generators of the
closure of the desired powers of I. "
{
int dblvl=printlevel-voice+2; // toggles how much data is printed
// during the procedure
int j,k,d,computepow; // some counters
int pow=0;
int length = size(images)-1; // the number of generators
poly image;
poly @denominator = images[length+1]; // the universal denominator
if (size(#)>0)
{
pow=#[1];
}
computepow=pow;
if (dblvl>0)
{
"";
"// The generators of the closure of R[It]:";
}
intmat m[nvars(basering)-1][1]; // an intvec used for jet and maxdeg1
intvec tw=m,1; // such that t has weight 1 and all
// other variables have weight 0
// Construct the generators of the closure of R[It] as elements of k[x,t]
// If # is not given, determine the highest degree pow in t that occurs.
for (j=1;j<=length;j++)
{
images[j] = (images[j]/@denominator); // construct the fraction
image = images[j];
if (dblvl>0)
{
"generator",j,":",image;
}
if (computepow==0) // #[1] not given or ==0 => compute pow
{
if (maxdeg1(image,tw)>pow) // from poly.lib
{
pow=maxdeg1(image,tw);
}
}
}
if (dblvl>0)
{
"";
if (computepow==0)
{
"// Compute the closure up to the given powers of I";
}
else
{
"// Compute the closure up to the maximal power of t that occurred:",pow;
}
}
// Construct a list consisting of #[1] resp. pow times the zero ideal
ideal CurrentPower=0;
list result;
for (k=1;k<=pow;k++)
{
result=insert(result,CurrentPower);
}
// For each generator and each k, add its degree-k-coefficient to the #
// closure of I^k
for (j=1;j<=length;j++)
{
for (k=1;k<=pow;k++)
{
image=images[j]-jet(images[j],k-1,tw);
if (image<>0)
{
image=subst(image/t^k,t,0);
if (image<>0)
{
result[k]=result[k]+image;
}
}
}
}
if (dblvl>0)
{
"";
"// The 'pure' parts of degrees 1..pow:";
result;
"";
}
// finally, add the suitable products of generators in lower degrees
for (k=2;k<=pow;k++)
{
for (j=1;j<=(k div 2);j++)
{
result[k]=result[k]+result[j]*result[k-j];
}
}
return(result);
}
////////////////////////////////////////////////////////////////////////////
proc normalI(ideal I, list #)
"USAGE: normalI (I [,p [,r [,l]]]); I an ideal, p, r, and l optional integers
RETURN: the integral closure of I, ..., I^p, where I is an ideal in the
polynomial ring R=k[x(1),...x(n)]. If p is not given, or p==0,
compute the closure of all powers up to the maximum degree in t
occurring in the closure of R[It] (so this is the last power whose
closure is not just the sum/product of the smaller). If r
is given and r==1, normalI starts with a check whether I is already a
radical ideal.
If l==1 then locNormal instead of normal is used to compute normalization.
The result is a list containing the closure of the desired powers of
I as ideals of the basering.
DISPLAY: The procedure displays more comments for higher printlevel.
EXAMPLE: example normalI; shows an example
"
{
int dblvl=printlevel-voice+2; // toggles how much data is printed
// during the procedure
def BAS=basering; // remember the basering
// two simple cases: principal ideals and radical ideals are always
// integrally closed
if (size(I)<=1) // includes the case I=(0)
{
if (dblvl>0)
{
"// Trivial case: I is a principal ideal";
}
list result=I;
if (size(#)>0)
{
for (int k=1;k<=#[1]-1;k++)
{
result=insert(result,I*result[k],k);
}
}
return(result);
}
int testrad=0; // do the radical check?
int uselocNormal=0;
if (size(#)>1)
{
testrad=#[2];
if (size(#)==3) {
uselocNormal=#[3];
}
}
if (testrad==1)
{
if (dblvl>0)
{
"//Check whether I is radical";
}
if (size(reduce(radical(I),std(I)))==0)
{
if (dblvl>0)
{
"//Trivial case: I is a radical ideal";
}
list result=I;
if (size(#)>0)
{
for (int k=1;k<=#[1]-1;k++)
{
result=insert(result,I*result[k],k);
}
}
return(result);
}
}
// start with the computation of the Rees Algebra R[It] of I
if (dblvl>0)
{
"// We start with the Rees Algebra of I:";
}
list Rees = ReesAlgebra(I);
def R(1)=Rees[1];
def Kxt=Rees[2];
setring R(1);
if (dblvl>0)
{
R(1);
ker;
"";
"// Now ClosureRees computes generators for the integral closure";
"// of R[It] step by step";
}
// ClosureRees computes fractions in R[x,t] representing the generators
// of the closure of R[It] in k[x,t], which is the same as the closure
// in Q(R[It]).
// the first size(images)-1 entries are the numerators of the gene-
// rators, the last entry is the 'universal' denominator
setring Kxt;
list images = ClosureRees(Rees,uselocNormal);
// ClosureRees was done after the first HomJJ-call
// ==> I is integrally closed, and images consists of the only entry "closed"
if ((size(images)==1) && (typeof(images[1])=="string"))
{
if (dblvl>0)
{
"//I is integrally closed!";
}
setring BAS;
list result=I;
if (size(#)>0)
{
for (int k=1;k<=#[1]-1;k++)
{
result=insert(result,I*result[k],k);
}
}
return(result);
}
// construct the fractions corresponding to the generators of the
// closure of I and its powers, depending on # (in fact, they will
// not be real fractions, of course). This is done in ClosurePower.
list result = ClosurePower(images,#);
// finally fetch the result to the old basering
setring BAS;
list result=fetch(Kxt,result);
return(result);
}
example
{
"EXAMPLE:"; echo=2;
ring R=0,(x,y),dp;
ideal I = x2,xy4,y5;
list J = normalI(I);
I;
J; // J[1] is the integral closure of I
}
/*
LIB"reesclos.lib";
// 1. x^i,y^i in k[x,y]
// geht bis i = 19 (800sec), bis i=10 wenige Sekunden,
// bei i = 20 ueber 1GB Hauptspeicher, in der 9. Iteration no memory
// (braucht 20 Iterationen)
ring r = 0,(x,y),dp;
int i = 6;
ideal I = x^i,y^i;
list J = normalI(I);
I;
J;
//================================================================
// 2. x^i,y^i,z^i in k[x,y,z]
// aehnlich wie 1., funktioniert aber nur bis i=5 und dauert dort
// >1 h
//================================================================
// 3. scheitert in der ersten Iteration beim Radikal
// Standardbasis des singulaeren Ortes: 7h (in char0),
// in char(p) viel schneller, obwohl kleine Koeffizienten
// schon bei Radikal -Test braucht er zu lang (>1h)
ring r = 0,(x,y,z),dp;
//ring r = 32003,(x,y,z),dp;
ideal I = x2+xy3-5z,z3+y2-xzy,x2y3z5+y3-y5;
list l= ReesAlgebra(I);
list J = normalI(I);
I;
J;
*/
|