/usr/share/singular/LIB/realclassify.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | ////////////////////////////////////////////////////////////////////////////
version="version realclassify.lib 4.0.0.0 Jun_2013 "; // $Id: 304c900973a128db7524e71def15982bf895ee09 $
category="Singularities";
info="
LIBRARY: realclassify.lib Classification of real singularities
AUTHOR: Magdaleen Marais, magdaleen@aims.ac.za
Andreas Steenpass, steenpass@mathematik.uni-kl.de
OVERVIEW:
A library for classifying isolated hypersurface singularities over the reals
w.r.t. right equivalence, based on the determinator of singularities by
V.I. Arnold. This library is based on classify.lib by Kai Krueger, but
handles the real case, while classify.lib does the complex classification.
REFERENCES:
Arnold, Varchenko, Gusein-Zade: Singularities of Differentiable Maps.
Vol. 1: The classification of critical points caustics and wave fronts.
Birkh\"auser, Boston 1985
Greuel, Lossen, Shustin: Introduction to singularities and deformations.
Springer, Berlin 2007
PROCEDURES:
realclassify(f); real classification of singularities of modality 0 and 1
realmorsesplit(f); splitting lemma in the real case
milnornumber(f); Milnor number
determinacy(f); an upper bound for the determinacy
";
LIB "linalg.lib";
LIB "elim.lib";
LIB "primdec.lib";
LIB "classify.lib";
LIB "rootsur.lib";
LIB "rootsmr.lib";
LIB "atkins.lib";
LIB "solve.lib";
///////////////////////////////////////////////////////////////////////////////
proc realclassify(poly f, list #)
"
USAGE: realclassify(f[, format]); f poly, format string
RETURN: A list containing (in this order)
@* - the type of the singularity as a string,
@* - the normal form,
@* - the corank, the Milnor number, the inertia index and
a bound for the determinacy as integers.
@* The normal form involves parameters for singularities of modality
greater than 0. The actual value of the parameters is not computed
in most of the cases. If the value of the parameter is unknown,
the normal form is given as a string with an \"a\" as the
parameter. Otherwise, it is given as a polynomial.
@* An optional string @code{format} can be provided. Its default
value is \"short\" in which case the return value is the list
described above. If set to \"nice\", a string is added at the end
of this list, containing the result in a more readable form.
NOTE: The classification is done over the real numbers, so in contrast to
classify.lib, the signs of coefficients of monomials where even
exponents occur matter.
@* The ground field must be Q (the rational numbers). No field
extensions of any kind nor floating point numbers are allowed.
@* The monomial order must be local.
@* The input polynomial must be contained in maxideal(2) and must be
an isolated singularity of modality 0 or 1. The Milnor number is
checked for being finite.
SEE ALSO: classify
KEYWORDS: Classification of singularities
EXAMPLE: example realclassify; shows an example"
{
/* auxiliary variables */
int i, j;
/* name for the basering */
def br = basering;
/* read optional parameters */
int printcomments;
if(size(#) > 0)
{
if(size(#) > 1 || typeof(#[1]) != "string")
{
ERROR("Wrong optional parameters.");
}
if(#[1] != "short" && #[1] != "nice")
{
ERROR("Wrong optional parameters.");
}
if(#[1] == "nice")
{
printcomments = 1;
}
}
/* error check */
if(charstr(br) != "0")
{
ERROR("The ground field must be Q (the rational numbers).");
}
int n = nvars(br);
for(i = 1; i <= n; i++)
{
if(var(i) > 1)
{
ERROR("The monomial order must be local.");
}
}
if(jet(f, 1) != 0)
{
ERROR("The input polynomial must be contained in maxideal(2).");
}
/* compute Milnor number before continuing the error check */
int mu = milnornumber(f);
/* continue error check */
if(mu < 1)
{
ERROR("The Milnor number of the input polynomial must be"+newline
+"positive and finite.");
}
/* call classify before continuing the error check */
list dataFromClassify = prepRealclassify(f);
int m = dataFromClassify[1]; // the modality of f
string complextype = dataFromClassify[2]; // the complex type of f
/* continue error check */
if(m > 1)
{
ERROR("The input polynomial must be a singularity of modality 0 or 1.");
}
/* apply splitting lemma */
list morse = realmorsesplit(f, mu);
int cr = morse[1];
int lambda = morse[2];
int d = morse[3];
poly rf = morse[4];
/* determine the type */
string typeofsing;
poly nf;
poly monparam; // the monomial whose coefficient is the parameter
// in the modality 1 cases, 0 otherwise
string morecomments = newline;
if(cr == 0) // case A[1]
{
typeofsing, nf = caseA1(rf, lambda, n);
}
if(cr == 1) // case A[k], k > 1
{
typeofsing, nf = caseAk(rf, n);
}
if(cr == 2)
{
if(complextype[1,2] == "D[") // case D[k]
{
if(mu == 4) // case D[4]
{
typeofsing, nf = caseD4(rf);
}
else // case D[k], k > 4
{
typeofsing, nf = caseDk(rf, mu);
}
}
if(complextype == "E[6]") // case E[6]
{
typeofsing, nf = caseE6(rf);
}
if(complextype == "E[7]") // case E[7]
{
typeofsing, nf = caseE7();
}
if(complextype == "E[8]") // case E[8]
{
typeofsing, nf = caseE8();
}
if(typeofsing == "")
{
ERROR("This case is not yet implemented.");
}
}
if(cr > 2)
{
ERROR("This case is not yet implemented.");
}
/* add the non-corank variables to the normal forms */
nf = addnondegeneratevariables(nf, lambda, cr);
/* write normal form as a string in the cases with modality greater than 0 */
if(monparam != 0)
{
poly nf_tmp = nf;
kill nf;
def nf = modality1NF(nf_tmp, monparam);
}
/* write comments */
if(printcomments)
{
string comments = newline;
comments = comments+"Type of singularity: " +typeofsing +newline
+"Normal form: " +string(nf) +newline
+"Corank: " +string(cr) +newline
+"Milnor number: " +string(mu) +newline
+"Inertia index: " +string(lambda)+newline
+"Determinacy: <= "+string(d) +newline;
if(morecomments != newline)
{
comments = comments+morecomments;
}
}
/* return results */
if(printcomments)
{
return(list(typeofsing, nf, cr, mu, lambda, d, comments));
}
else
{
return(list(typeofsing, nf, cr, mu, lambda, d));
}
}
example
{
"EXAMPLE:";
echo = 2;
ring r = 0, (x,y,z), ds;
poly f = (x2+3y-2z)^2+xyz-(x-y3+x2z3)^3;
realclassify(f, "nice");
}
///////////////////////////////////////////////////////////////////////////////
static proc caseA1(poly rf, int lambda, int n)
{
string typeofsing = "A[1]";
poly nf = 0;
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseAk(poly rf, int n)
{
/* preliminaries */
string typeofsing;
poly nf;
int k = deg(lead(rf), 1:n)-1;
if(k%2 == 0)
{
nf = var(1)^(k+1);
typeofsing = "A["+string(k)+"]";
}
else
{
if(leadcoef(rf) > 0)
{
nf = var(1)^(k+1);
typeofsing = "A["+string(k)+"]+";
}
else
{
nf = -var(1)^(k+1);
typeofsing = "A["+string(k)+"]-";
}
}
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseD4(poly rf)
{
/* preliminaries */
string typeofsing;
poly nf;
def br = basering;
map phi;
rf = jet(rf, 3);
number s1 = number(rf/(var(1)^3));
number s2 = number(rf/(var(2)^3));
if(s2 == 0 && s1 != 0)
{
phi = br, var(2), var(1);
rf = phi(rf);
}
if(s1 == 0 && s2 == 0)
{
number t1 = number(rf/(var(1)^2*var(2)));
number t2 = number(rf/(var(2)^2*var(1)));
if(t1+t2 == 0)
{
phi = br, var(1)+2*var(2), var(2);
rf = phi(rf);
}
else
{
phi = br, var(1)+var(2), var(2);
rf = phi(rf);
}
}
ring R = 0, y, dp;
map phi = br, 1, y;
poly rf = phi(rf);
int k = nrroots(rf);
setring(br);
if(k == 3)
{
nf = var(1)^2*var(2)-var(2)^3;
typeofsing = "D[4]-";
}
else
{
nf = var(1)^2*var(2)+var(2)^3;
typeofsing = "D[4]+";
}
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseDk(poly rf, int mu)
{
/* preliminaries */
string typeofsing;
poly nf;
def br = basering;
map phi;
rf = jet(rf, mu-1);
list factorization = factorize(jet(rf, 3));
list factors = factorization[1][2];
if(factorization[2][2] == 2)
{
factors = insert(factors, factorization[1][3], 1);
}
else
{
factors = insert(factors, factorization[1][3]);
}
factors[2] = factorization[1][1]*factors[2];
matrix T[2][2] = factors[1]/var(1), factors[1]/var(2),
factors[2]/var(1), factors[2]/var(2);
phi = br, luinverse(T)[2]*matrix(ideal(var(1), var(2)), 2, 1);
rf = phi(rf);
rf = jet(rf, mu-1);
poly g;
int i;
for(i = 4; i < mu; i++)
{
g = jet(rf, i) - var(1)^2*var(2);
if(g != 0)
{
phi = br, var(1)-(g/(var(1)*var(2)))/2,
var(2)-(g/var(1)^i)*var(1)^(i-2);
rf = phi(rf);
rf = jet(rf, mu-1);
}
}
number a = number(rf/var(2)^(mu-1));
if(a > 0)
{
typeofsing = "D["+string(mu)+"]+";
nf = var(1)^2*var(2)+var(2)^(mu-1);
}
else
{
typeofsing = "D["+string(mu)+"]-";
nf = var(1)^2*var(2)-var(2)^(mu-1);
}
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseE6(poly rf)
{
/* preliminaries */
string typeofsing;
poly nf;
def br = basering;
map phi;
poly g = jet(rf,3);
number s = number(g/(var(1)^3));
if(s == 0)
{
phi = br, var(2), var(1);
rf = phi(rf);
g = jet(rf,3);
}
list Factors = factorize(g);
poly g1 = Factors[1][2];
phi = br, (var(1)-(g1/var(2))*var(2))/(g1/var(1)), var(2);
rf = phi(rf);
rf = jet(rf,4);
number w = number(rf/(var(2)^4));
if(w > 0)
{
typeofsing = "E[6]+";
nf = var(1)^3+var(2)^4;
}
else
{
typeofsing = "E[6]-";
nf = var(1)^3-var(2)^4;
}
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseE7()
{
string typeofsing = "E[7]";
poly nf = var(1)^3+var(1)*var(2)^3;
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
static proc caseE8()
{
string typeofsing = "E[8]";
poly nf = var(1)^3+var(2)^5;
return(typeofsing, nf);
}
///////////////////////////////////////////////////////////////////////////////
/*
print the normal form as a string for the modality 1 cases.
The first argument is the normalform with parameter = 1,
the second argument is the monomial whose coefficient is the parameter.
*/
static proc modality1NF(poly nf, poly monparam)
{
def br = basering;
list lbr = ringlist(br);
ring r = (0,a), x, dp;
list lr = ringlist(r);
setring(br);
list lr = fetch(r, lr);
lbr[1] = lr[1];
def s = ring(lbr);
setring(s);
poly nf = fetch(br, nf);
poly monparam = fetch(br, monparam);
nf = nf+(a-1)*monparam;
string result = string(nf);
setring(br);
return(result);
}
///////////////////////////////////////////////////////////////////////////////
/*
add squares of the non-degenerate variables (i.e. var(cr+1), ...,
var(nvars(basering)) for corank cr) to the normalform nf,
with signs according to the inertia index lambda
*/
static proc addnondegeneratevariables(poly nf, int lambda, int cr)
{
int n = nvars(basering);
int i;
for(i = cr+1; i <= n-lambda; i++)
{
nf = nf+var(i)^2;
}
for(i = n-lambda+1; i <= n ; i++)
{
nf = nf-var(i)^2;
}
return(nf);
}
///////////////////////////////////////////////////////////////////////////////
proc realmorsesplit(poly f, list #)
"
USAGE: realmorsesplit(f[, mu]); f poly, mu int
RETURN: a list consisting of the corank of f, the inertia index, an upper
bound for the determinacy, and the residual form of f
NOTE: The characteristic of the basering must be zero, the monomial order
must be local, f must be contained in maxideal(2) and the Milnor
number of f must be finite.
@* The Milnor number of f can be provided as an optional parameter in
order to avoid that it is computed again.
SEE ALSO: morsesplit
KEYWORDS: Morse lemma; Splitting lemma
EXAMPLE: example morsesplit; shows an example"
{
int i;
/* error check */
if(char(basering) != 0)
{
ERROR("The characteristic must be zero.");
}
int n = nvars(basering);
for(i = 1; i <= n; i++)
{
if(var(i) > 1)
{
ERROR("The monomial order must be local.");
}
}
if(jet(f, 1) != 0)
{
ERROR("The input polynomial must be contained in maxideal(2).");
}
/* get Milnor number before continuing error check */
int mu;
if(size(#) > 0) // read optional parameter
{
if(size(#) > 1 || typeof(#[1]) != "int")
{
ERROR("Wrong optional parameters.");
}
else
{
mu = #[1];
}
}
else // compute Milnor number
{
mu = milnornumber(f);
}
/* continue error check */
if(mu < 0)
{
ERROR("The Milnor number of the input polynomial must be"+newline
+"non-negative and finite.");
}
/* compute the determinacy */
int k = determinacy(f, mu);
f = jet(f, k);
/* get jet(f, 2) right */
matrix H = concat(jet(jacob(jacob(f)), 0)/2, unitmat(n));
H = sym_reduce(H);
intvec perm_zero;
intvec perm_neg;
intvec perm_pos;
int c;
int lambda;
for(i = 1; i <= n; i++)
{
if(H[i, i] == 0)
{
perm_zero = perm_zero, i;
c++;
}
if(H[i, i] < 0)
{
perm_neg = perm_neg, i;
lambda++;
}
if(H[i, i] > 0)
{
perm_pos = perm_pos, i;
}
}
intvec perm;
if(size(perm_zero) > 1)
{
perm = perm, perm_zero[2..size(perm_zero)];
}
if(size(perm_neg) > 1)
{
perm = perm, perm_neg[2..size(perm_neg)];
}
if(size(perm_pos) > 1)
{
perm = perm, perm_pos[2..size(perm_pos)];
}
perm = perm[2..size(perm)];
matrix T[n][n];
matrix D[1][n];
for(i = 1; i <= n; i++)
{
T[1..n, i] = H[perm[i], (n+1)..(2*n)];
D[1, i] = H[perm[i], perm[i]];
}
map phi = basering, matrix(maxideal(1))*transpose(T);
f = phi(f);
f = jet(f, k);
/* separate the variables */
phi = basering, maxideal(1);
map corank_part = basering, maxideal(1);
for(i = c+1; i <= n; i++)
{
corank_part[i] = 0;
}
poly h = f-jet(f, 2)-corank_part(f);
poly hi;
while(h != 0)
{
for(i = c+1; i <= n; i++)
{
hi = h/var(i);
phi[i] = var(i)-hi/(2*D[1, i]);
h = h-hi*var(i);
}
f = phi(f);
f = jet(f, k);
h = f-jet(f, 2)-corank_part(f);
}
poly g = f-jet(f, 2);
poly lead_g = leadcoef(g);
if(lead_g > 0)
{
g = g/lead_g;
}
if(lead_g < 0)
{
g = -g/lead_g;
}
return(list(c, lambda, k, g));
}
example
{
"EXAMPLE:";
echo = 2;
ring r = 0, (x,y,z), ds;
poly f = (x2+3y-2z)^2+xyz-(x-y3+x2z3)^3;
realmorsesplit(f);
}
///////////////////////////////////////////////////////////////////////////////
/*
symmetric Gauss algorithm
If A is not a square matrix, then the largest upper or left submatrix
is assumed to be symmetric.
*/
proc sym_reduce(matrix A)
{
int r = nrows(A);
int c = ncols(A);
int n = r;
if(n > c)
{
n = c;
}
poly q;
int i, j;
for(i = 1; i <= n; i++)
{
for(j = i+1; j <= n; j++)
{
if(A[i, j] != 0)
{
while(A[i, i] == 0)
{
A[1..r, i] = A[1..r, i]+A[1..r, j];
A[i, 1..c] = A[i, 1..c]+A[j, 1..c];
}
q = A[i, j]/A[i, i];
A[1..r, j] = A[1..r, j]-q*A[1..r, i];
A[j, 1..c] = A[j, 1..c]-q*A[i, 1..c];
}
}
}
return(A);
}
///////////////////////////////////////////////////////////////////////////////
/*
- apply jet(f, k)
- rewrite f as f = a*var(i)^2+p*var(i)+r with
var(i)-free p and r
*/
static proc rewriteformorsesplit(poly f, int k, int i)
{
f = jet(f, k);
matrix C = coeffs(f, var(i));
poly r = C[1,1];
poly p = C[2,1];
poly a = (f-r-p*var(i))/var(i)^2;
return(f, a, p, r);
}
///////////////////////////////////////////////////////////////////////////////
proc milnornumber(poly f)
"
USAGE: milnornumber(f); f poly
RETURN: Milnor number of f, or -1 if the Milnor number is not finite
KEYWORDS: Milnor number
NOTE: The monomial order must be local.
EXAMPLE: example milnornumber; shows an example"
{
/* error check */
int i;
for(i = nvars(basering); i > 0; i--)
{
if(var(i) > 1)
{
ERROR("The monomial order must be local.");
}
}
return(vdim(std(jacob(f))));
}
example
{
"EXAMPLE:";
echo = 2;
ring r = 0, (x,y), ds;
poly f = x3+y4;
milnornumber(f);
}
///////////////////////////////////////////////////////////////////////////////
proc determinacy(poly f, list #)
"
USAGE: determinacy(f[, mu]); f poly, mu int
RETURN: an upper bound for the determinacy of f
NOTE: The characteristic of the basering must be zero, the monomial order
must be local, f must be contained in maxideal(1) and the Milnor
number of f must be finite.
@* The Milnor number of f can be provided as an optional parameter in
order to avoid that it is computed again.
SEE ALSO: milnornumber, highcorner
KEYWORDS: Determinacy
EXAMPLE: example determinacy; shows an example"
{
/* auxiliary variables */
int i;
def br = basering;
/* error check */
if(char(br) != 0)
{
ERROR("The characteristic must be zero.");
}
int n = nvars(br);
for(i = 1; i <= n; i++)
{
if(var(i) > 1)
{
ERROR("The monomial order must be local.");
}
}
if(jet(f, 0) != 0)
{
ERROR("The input polynomial must be contained in maxideal(1).");
}
/* get Milnor number before continuing error check */
int mu;
if(size(#) > 0) // read optional parameter
{
if(size(#) > 1 || typeof(#[1]) != "int")
{
ERROR("Wrong optional parameters.");
}
else
{
mu = #[1];
}
}
else // compute Milnor number
{
mu = milnornumber(f);
}
/* continue error check */
if(mu < 0)
{
ERROR("The Milnor number of the input polynomial must be"+newline
+"non-negative and finite.");
}
int k; // an upper bound for the determinacy,
// we use several methods:
/* Milnor number */
k = mu+1;
f = jet(f, k);
/* highest corner */
int hc;
if(ordstr(br) != "ds")
{
list lbr = ringlist(br);
lbr[3] = list(list("ds", 1:nvars(br)), list("C", 0));
def br_ds = ring(lbr);
setring(br_ds);
poly f = fetch(br, f);
}
for(i = 0; i < 3; i++)
{
hc = deg(highcorner(std(maxideal(i)*jacob(f))));
hc = hc+2-i;
if(hc < k)
{
k = hc;
f = jet(f, k);
}
}
if(ordstr(br) != "ds")
{
setring(br);
}
return(k);
}
example
{
"EXAMPLE:";
echo = 2;
ring r = 0, (x,y), ds;
poly f = x3+xy3;
determinacy(f);
}
|